

Figure 1: Quadratic function with linear equality constraints. Positive definite.

0.1 Quadratic forms

0.1.1 Positive definite

$$
f=\frac{1}{2} x^{T} H x+c^{T} x+c_{0}
$$

where

$$
H=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad c=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad c_{0}=0
$$

The constraints are given by

- (Red) $A_{1} x=b, A_{1}=[0,1]$ and $b=0$.
- (Black) $A_{2} x=b, A_{2}=[1,0]$ and $b=0$.

The optimization problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{i} x=b
\end{aligned}
$$

has a unique optimal solution for $i=1,2$.

Figure 2: Quadratic function with linear equality constraints. Positive semidefinite, Case 1

0.1.2 Positive semidefinite, Case 1

$$
f=\frac{1}{2} x^{T} H x+c^{T} x+c_{0}
$$

where

$$
H=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], \quad c=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad c_{0}=0
$$

The constraints are given by

- (Red) $A x=b, A=[0,1]$ and $b=0$.
- (Black) $A x=b, A=[1,0]$ and $b=0$.

The optimization problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{1} x=b
\end{aligned}
$$

has a unique optimal solution, and

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{2} x=b
\end{aligned}
$$

has infinitely many optimal solutions.

Figure 3: Quadratic function with linear equality constraints. Positive semidefinite, Case 2

0.1.3 Positive semidefinite, Case 2

$$
f=\frac{1}{2} x^{T} H x+c^{T} x+c_{0}
$$

where

$$
H=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], \quad c=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \quad c_{0}=0
$$

The constraints are given by

- $($ Red $) A_{1} x=b, A_{1}=[0,1]$ and $b=0$.
- (Black) $A_{2} x=b, A_{2}=[1,0]$ and $b=0$.

The optimization problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{1} x=b
\end{aligned}
$$

has a unique optimal solution, and

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{2} x=b
\end{aligned}
$$

is unbounded from below.

Negative definite

Figure 4: Quadratic function with linear equality constraints. Negative definite

0.1.4 Negative definite

$$
f=\frac{1}{2} x^{T} H x+c^{T} x+c_{0}
$$

where

$$
H=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], \quad c=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad c_{0}=0
$$

The constraints are given by

- (Red) $A_{1} x=b, A_{1}=[0,1]$ and $b=0$.
- (Black) $A_{2} x=b, A_{2}=[1,0]$ and $b=0$.

The optimization problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{i} x=b
\end{aligned}
$$

is unbounded from below for $i=1,2$.

Figure 5: Quadratic function with linear equality constraints. Indefinite

0.1.5 Indefinite

$$
f=\frac{1}{2} x^{T} H x+c^{T} x+c_{0}
$$

where

$$
H=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right], \quad c=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad c_{0}=0
$$

The constraints are given by

- (Red) $A_{1} x=b, A_{1}=[0,1]$ and $b=0$.
- (Black) $A_{2} x=b, A_{2}=[1,0]$ and $b=0$.

The optimization problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{1} x=b
\end{aligned}
$$

has a unique optimal solution, and

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A_{2} x=b
\end{aligned}
$$

is unbounded from below.

