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Abstract— In a wireless communication network different
users share a common resource. An objective of radio resource
management is to assign the resources in an effective way
between the users. Power control is an important component
in this setting that has been extensively studied over the last
two decades.

In many real networks there are inherent time delays due
to filtering of signals and control signaling. Time delays can
affect stability and convergence properties of the power control
algorithms. We therefore consider power control laws of higher
order to include models with delays and delay compensation.

The main contribution of this paper is to exploit more
structure of the interference feedback to prove less conservative
conditions for system stability. Our primary tool to reduce
conservativeness is to use scalings in an input output framework
for stability analysis.

I. I NTRODUCTION

Power control in wireless networks aims to assign powers
to a set of users in a distributed fashion giving each user
a Quality of Service (QoS). Users transmitting on the same
channel interfere with each other, which degrades their QoS.
This interference feedback has to be taken into account when
analyzing system stability. In this paper we focus on the
Signal-to-Interference Ratio (SIR) as a measure of QoS.
This is a reasonable assumption since most other relevant
measures of QoS, such as bit error rate (BER) or frame
success rate, are monotone functions of the SIR. The SIR
is modeled as

γ̄i =
δ̄iḡiip̄i∑

i6=j ḡij p̄j + (1 − δ̄i)ḡiip̄i + σ̄2
i

∆
=

δ̄iḡiip̄i

R̄i(p̄)
,

where p̄ = [p̄1 . . . p̄n]T and p̄i is the power of useri, δ̄i ∈
[0, 1] is a constant modeling auto-interference,ḡij > 0 is
the channel gain from userj to useri and σ̄2

i > 0 is the
receiver noise.̄Ri(p̄) is sometimes referred to as theeffective
interference.

Consider the following iterative update equation of the
powers

p̄[t + 1] = Ī(p̄[t]). (1)

An example is the Distributed Power Control (DPC) algo-
rithm, proposed by Foschini and Miljanic [8], which balances
the SIRs of the users. The next power update is given by

p̄i[t + 1] = Īi(p̄[t])
∆
=

γ̄T
i

γ̄i
p̄i[t] =

γ̄T
i R̄i(p̄[t])

δ̄iḡii
, (2)
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where γ̄T
i is the SIR-target. This algorithm is suitable for

speech applications where it is important to keep a SIR-
level throughout time. Convergence for a class of algorithms
denotedstandard, including the DPC algorithm, was shown
by Yates in [22].

For applications with data traffic more bandwidth is de-
sired for each user. Contrary to traditional applications such
as speech, it is more important to have an overall high
bandwidth, rather than maintaining a stable high SIR-level.
Hence it can be allowed that the QoS-level drops heavily over
short periods of time, given that it is higher during others.
Sung and Leung [19] proposed an opportunistic power con-
trol law that takes advantage of these characteristics. Their
opportunistic algorithm is defined as

p̄i[t + 1] = Īi(p̄[t])
∆
=

ζ̄i

R̄i(p̄[t])
, (3)

whereζ̄i is called the Signal-to-Interference-Product (SIP) of
useri. This implies that when a user has good interference
conditions it transmits at a high power, and when it measures
high interference it transmits at a low power. Furthermore
they proposed a framework in [19] that generalizes Yates
work to also include opportunistic algorithms. A key concept
is two-sided scalability. Given the distance function

d(p̄1, p̄2) = max
i

{
max

{
p̄1,i

p̄2,i
,
p̄2,i

p̄1,i

}}
, (4)

two-sided scalability for a function̄I(p̄) is equivalent (see
Appendix) to the condition

d(Ī(p̄1), Ī(p̄2)) < d(p̄1, p̄2),

which is used to derive Lipschitz constants in this paper.

II. H IGHER ORDER CONTROL LAWS

Real communication networks can suffer from so called
“power rushes”, where the transmission powers of the users
significantly increase leading to system instability. It has
been shown that delays can cause instability and many sys-
tems have inherent delays due to measuring and transmission
of control commands. Gunnarsson [11] showed that using a
Smith predictor it is possible to compensate for delay. The
introduction of delays and delay compensation motivates the
use of higher order power control laws.

Stability of similar systems with delays have also been
studied in e.g. [4], [3], [1], [7], [16], [18] and [17]. An
important difference is that with the model we study, time-
delays are allowed in both the interference and the transmis-
sion power of each user, without any assumption on local
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Fig. 1. Logarithmized system as block diagram.

replacement of delayed powers (delay compensation). Delays
in the transmission powers of a user is present in many
wireless networks with control signalling, e.g. when a base
station controls the transmission power of a mobile user, see
e.g. [6] and [20].

In [13] the framework of Sung and Leung was extended
to include higher order control. Convergence and speed of
convergence could be established. However the conditions
were only sufficient and simulations indicated that they were
conservative. In this paper we exploit more structure of
the interference feedback to remove conservatism from the
previous results. This implies that it is possible to prove
stability for a wider class of control laws.

In section III we introduce logarithmic variables to rewrite
the power control problem as a classical feedback intercon-
nection. This model is then rewritten to input output form
around an equilibrium point in section IV. Section V is
devoted to input output analysis of the system and sufficient
conditions for local stability are given. In section VI scalings
are introduced to further improve the results of the previous
section. We then introduce saturation of the transmission
powers in the model to prove global stability in section
VII. That is followed by section VIII on optimization of the
Lipschitz constant to reduce conservativeness. An example
illustrating the results is presented in section IX and the paper
is concluded in section X.

The results of this paper generalizes our earlier conference
contribution in [14] and technical report [12].

III. SYSTEM MODEL IN LOGARITHMIC SCALE

The DPC and opportunistic algorithm can be interpreted
as nonlinear feedback systems by introducing logarithmic
variables. Letpi = ln(p̄i), δi = ln(δ̄i), gij = ln(ḡij),
Ii(p) = ln(Īi(p̄)) = ln(Īi(e

p)), Ri(p) = ln(R̄i(e
p)) and

γT
i = ln(γ̄T

i ). Then the fixed point iteration̄pi[t + 1] =
Īi(p̄[t]) can be rewritten as

pi[t + 1] = Ii(p[t]) = pi[t] + (Ii(p[t]) − pi[t])

which can be represented in the block diagram in Fig-
ure 1 with Ci(q) = 1

q−1 , where q represents the time-
shift operator, and with the interference functionI(p) =[
I1(p) . . . In(p)

]
.

In implementations it is common that measurements are
made on both the interference and signal part of the received
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Fig. 2. Logarithmized system with filters as block diagram.

power, i.e. both the upper and lower loop in Figure 1 are
implemented. In this paper we study a model that include
linear filters both for the interference and signal part of the
received power, as well as for the system itself, as shown
in Figure 2. This extended system model, first proposed in
[11], models a large variety of systems, where delays and
higher order control laws can be included.

Define the linear filters as

Ci(q) =
bi,0q

mC−1 + bi,1q
mC−2 + · · · + bi,mC−1

(q − 1)(qmC−1 + ai,1qmC−2 + · · · + ai,mC−1)
(5)

FI,i(q) =
di,0q

mI + di,1q
mI−1 + · · · + di,mI

qmI + ci,1qmI−1 + ci,2qmI−2 + · · · + ci,mI

(6)

FG,i(q) =
fi,0q

mG + fi,1q
mG−1 + · · · + fi,mG

qmG + ei,1qmG−1 + ei,2qmG−2 + · · · + ei,mG

,

(7)

where we assume thatFI,i(q) and FG,i(q) are stable and
with FI,i(1) = FG,i(1) 6= 0. The pole atq = 1 in Ci(q)
implies that the system has integral action. Assume first that
we are using the pure DPC-algorithm, with the parameters
γT

i , δi andgii. With the filters introduced as in Figure 2, we
have

Ci(q) =
1

q − 1
, Ii(p) = γ̂T

i + Ri(p) − δ̂i − ĝii,

where γ̂T
i = 1

FI,i(1)
γT

i , δ̂i =
FG,i(1)
FI,i(1)

δi and ĝii =
FG,i(1)
FI,i(1)

gii.
The somewhat cumbersome relation between the constants
is due to the physical implementation, where the received
signal,δi +gii +pi, and the received interference,Ri(p), are
filtered separately and then compared with the (unfiltered)
target SIR. UsuallyFI,i(1) = FG,i(1) = 1. This way of
modelling the system does not affect the steady state and
stability properties of the system. However the transient is
different.

When we study the opportunistic algorithm with the SIP-



targetζi, we have

Ci(q) =
1

q − 1
, Ii(p) = ζ̂i − Ri(p),

where ζ̂i = 1
FI,i(1)

ζi.

IV. I NPUT OUTPUT MODEL

In this section we will derive an input output model of the
higher order control loop. The model will be on the form of
Figure 3 where the outputz corresponds to the deviation
of the power level from its equilibrium values, whileδr is
a disturbance input that models for example the effect of
initial conditions, variations in gain or measurement errors
of the interference. The blocksH andΦ denotes the linear
and nonlinear parts of the model, respectively.

Before deriving the exact model we will introduce some
notation and preliminary results.

A. Notation

Consider first the finite dimensional vector spaces

(i) Rn
∞ = (Rn, | · |∞), where|x|∞ = max

1≤k≤n
|xk|

(ii) Rn
2 = (Rn, | · |2), where|x|2 =

( n∑

k=1

x2
k

)1/2

.

Now consider the following function spaces.

(i) ln∞ = {z : N → Rn
∞ : ‖z‖∞ < ∞}

(ii) ln2,∞ = {z : N → Rn
∞ : ‖z‖2,∞ < ∞}

(iii) ln2 = {z : N → Rn
2 : ‖z‖2 < ∞},

where the norms are defined as‖z‖∞ = supk |z[k]|∞,
‖z‖2,∞ = (

∑∞
k=0 |z[k]|2∞)1/2 and ‖z‖2 =

(
∑∞

k=0 |z[k]|22)1/2. The spatial dimension will often
be suppressed.

In the next few definitions we consider a nonlinear oper-
ator F : X → X such thatF (0) = 0 and X is a normed
vector space. Thegain of F is defined as

‖F‖X→X
∆
= sup

z∈X;z 6=0

‖F (z)‖X

‖z‖X
,

where‖ · ‖X denotes the norm onX. A stronger assumption
is Lipschitz continuity. Theglobal Lipschitz constantof the
operatorF is defined as

L[F ;X]
∆
= sup

z1,z2∈X,z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X
.

Notice that‖F‖X→X ≤ L[F ;X]. For us it will be interesting
to consider the Lipschitz constant on a subsetBX of X
defined by how large deviations around the equilibrium we
consider. Define

L[F ;BX ]
∆
= sup

z1,z2∈BX ,z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X
.

For linear operators the gain and Lipschitz constants
coincide. Thel1-norm of a linear systemHi is defined as

‖Hi‖1
∆
=

∞∑

k=0

|hi[k]|,

+
+ P

H(q)
zδr

Φ(z)

Fig. 3. The system on input-output form.

wherehi[k] is the impulse response at timek. For a diagonal
matrix H, H(q) = diag (Hi : i = 1, . . . , n), the induced
norms froml∞ and l2,∞ become (see e.g. [5])

‖H‖l∞→l∞ = ‖H‖1
∆
= max(‖H1‖1, . . . , ‖Hn‖1)

and

‖H‖l2,∞→l2,∞
≤ ‖H‖1,1

∆
=

∞∑

k=0

|h[k]|1,

where we used the matrix norm|M |1 = |M |Rn
∞

→Rn
∞

=
max1≤i≤n

∑n
j=1 |Mij |. Clearly‖H‖1 ≤ ‖H‖1,1, and equal-

ity holds if Hi = Hj ,∀(i, j).

B. Existence of equilibrium point

The model of the wireless network in Figure 2 can be
rewritten. Define

H(q) = diag (Hi : i = 1, . . . , n) , (8)

where

Hi(q) =
FI,i(q)Ci(q)

1 + Ci(q)FG,i(q)
.

We assume thatHi has the following time domain represen-
tation in terms of its impulse response

(Hiu)[k] =

k∑

l=0

hi[k − l]u[l], k ≥ 0.

Therefore the system can be represented as

p[t] = (H ◦ I(p))[t] =

t∑

l=0

h[t − l]I(p[l]), t ≥ 0, (9)

where◦ denotes the composition of operators.
The assumption thatCi(q) has integral action and thatFI

andFG have the same steady state gain implies thatHi(1) =∑∞
l=0 hi[l] = 1,∀i. Hence at equilibrium (9) reduces to

p∗ = I(p∗), (10)

from which we conclude that the equilibrium is the same as
for the standard power update equation in (1).

Let L[I,B] denote the Lipschitz constant of the nonlinear
function I over any compact setB ⊂ Rn

∞.
Proposition 1: AssumeI(p) : Rn

∞ → Rn
∞ is two-sided

scalable. ThenI is Lipschitz on any compact subsetB ⊂ Rn
∞

andL[I,B] < 1.
A proof can be found in the appendix.



It is possible to derive conditions for the iterations in (1)to
remain within a compact setB = [pmin, pmax], see e.g. [13].
In such casesI : B → B and sinceL[I,B] < 1, the Banach
fixed point theorem proves the existence and uniqueness of
an equilibrium point.

C. Input Output model

Define deviations in the powers around the equilibrium
point asz = p − p∗. We now also introduce a disturbance
term, δr, which can model for example disturbances in the
measurements of the interference or the target SIR. We can
then write the system as the operator equation

p = H ◦ (δr + I(p)),

where H and I are interpreted as operators on a Banach
spaceX. Furthermore

z = p − p∗ = H ◦ (δr + I(p)) − H ◦ (I(p∗))

= H ◦ (I(p) − I(p∗) + δr)

= H ◦ (Φ(z) + δr),

whereΦ(z)
∆
= I(p∗ + z) − I(p∗). This system is illustrated

in Figure 3.

V. I NPUT OUTPUT ANALYSIS

In this section we perform an input output analysis of the
model that was derived in the previous section. We will show
that the gains of the linear and nonlinear parts of the system
do not satisfy the small gain theorem. Instead, we need to
analyze the system in bounded regions of the signal space.
This is not surprising in view of the fact that no guaranteed
rate of convergence can be obtained for the power update
law in (1) for general two-sided scalable functions. It is also
interesting to notice that input output analysis in the standard
l2 space seems infeasible, see Subsection V-C.

A. Lipschitz Constants for the Interference Mapping

Consider the nonlinear operatorΦ, defined byΦ(z) =
I(p∗ + z) − I(p∗), where I is two-sided scalable. Clearly
Φ(0) = 0. Initially we will focus attention on the case when
the system consists of DPC and opportunistic users, i.e. when
some users use the power update in (2) while others use (3).
This means that the interference function has the following
form

Ī =
[
Ī1(p̄), . . . , Īn(p̄)

]
,

where Īi(p̄) has either of the following forms

Īi(p̄) =
γ̄T

i

δ̄iḡii
R̄i(p̄) DPC

Īi(p̄) =
ζ̄i

R̄i(p̄)
Opportunistic,

where

R̄i(p̄) = F̄ ip̄ + σ̄2
i

and whereF̄ i =
[
F̄i1, . . . , F̄in

]
, where

F̄ij =

{
(1 − δ̄i)ḡii, i = j,

ḡij , i 6= j.
(11)

SinceΦi(z) = Ii(p
∗ + z) − Ii(p

∗), we have

∂Φi

∂zj
(z) = ± ∂

∂zj
(ln(R̄i(z)))

depending on whether it is a DPC or opportunistic user,
respectively. This gives

∇Φ(z) =





±
[

(1−δ̄1)ḡ11ep∗

1+z1

σ̄2
1+F̄ 1ep∗+z . . . ḡ1nep∗

n+zn

σ̄2
1+F̄ 1ep∗+z

]

...

±
[

ḡn1ep∗

1+z1

σ̄2
n+F̄ nep∗+z . . . (1−δ̄n)ḡnnep∗

n+zn

σ̄2
n+F̄ nep∗+z

]




,

(12)

where the plus sign corresponds to DPC users and the minus
sign to opportunistic users. The results in this paper will be
independent of whether the users are DPC, opportunistic or
combinations thereof, since the differences in sign will be
removed by norms.

Proposition 2: Let Φ be defined by a combination of DPC
and opportunistic users. Forl∞ and l2,∞ we have that the
gain and global Lipschitz constants satisfy

‖Φ‖l∞→l∞ = L[Φ; l∞] = 1

‖Φ‖l2,∞→l2,∞
= L[Φ; l2,∞] = 1.

Proof: A proof is given in the appendix.
A consequence of the above result is that global versions

of the small gain theorem cannot not be applied. This
follows since the integral action in the controller impliesthat
H(1) = 1, which in turn implies that‖H‖1 ≥ 1. Since in
Proposition 2 it was shown that the global Lipschitz constant
is equal to one for our considered signal spaces it follows
that ‖H‖1L[Φ; l∞] ≥ 1 and the small gain condition of the
loop gain is violated. Global stability can be proven if the
condition onH(1) is relaxed toH(1) < 1. Then, however,
the relationp∗ = I(p∗) in (10) does not hold, which in the
DPC case means that the target SIR is not reached in steady
state. This fact motivates the study of local stability instead
of global.

B. Local Analysis

Let X be either of the spacesln∞ or ln2,∞. Consider the
set B, defined componentwise bypmin,i ≤ pi ≤ pmax,i,∀i.
The induced sets for the deviations around the equilibrium
point, z, is then given by

B∗ = {z ∈ R
n
∞ : pmin,i − p∗i ≤ zi ≤ pmax,i − p∗i ,∀i}

(13)

B∗
X = {z ∈ X : z[k] ∈ B∗,∀k}. (14)

Proposition 3: Any Φ : X → X defined by two-sided
scalable interference functions is Lipschitz on the closed
convex setB∗

X with

L[Φ;B∗
l∞ ] = L[Φ;B∗

l2,∞
] = L[Φ;B∗] < 1.



Assume furthermore thatΦ is continuously differentiable and
that the Jacobian is Lipschitz onB∗. Then

L[Φ;B∗] = max
z∈B∗

|∇Φ(z)|1.

For the DPC and opportunistic algorithms the Lipschitz
constant is easily computed. It is given by

max
z∈B∗

|∇Φ(z)|1 = max
i

F̄ iep∗+zmax

σ̄2
i + F̄ iep∗+zmax

,

whereep∗+zmax = [ep∗

1+zmax,1 , . . . , ep∗

n+zmax,n ] andzmax,i =
pmax,i − p∗i ,∀i.

Proof: A proof can be found in the appendix.
For one of our main analysis results we need to consider

the maximum interior ball inB∗ andB∗
X , respectively, which

are defined as

B∗(γ) = {z ∈ R∞ : |z|∞ ≤ γ},
B∗

X(γ) = {z ∈ X : z[k] ∈ B∗(γ), ∀k},

where γ = mini{min{p∗i − pmin,i, pmax,i − p∗i }} and the
corresponding Lipschitz bounds

L[Φ;B∗
l∞(γ)] = L[Φ;B∗

l2,∞
(γ)] = L[Φ;B∗(γ)].

Theorem 1:If ‖H‖1 < 1
L[Φ;B∗(γ)] , then there exists a

unique power distributionz ∈ B∗
l∞

(γ) for all

‖δr‖∞ ≤ γ(1 − ‖H‖1L[Φ;B∗(γ)])

‖H‖1
. (15)

If it in addition holds that‖δr‖2,∞ < ∞ and

‖H‖l2,∞→l2,∞
<

1

L[Φ;B∗(γ)]
,

thenz[k] → 0 ask → ∞.
Proof: A proof is given in the appendix.

C. Failure of l2-based analysis

It is often advantageous to analyze the system in a Hilbert
space such asln2 . Then the inner product structure and Fourier
domain tools may be used to capture phase information and
frequency domain interpretations. Note also that the gain
‖H‖ln2 →ln2

= sup
ω∈R

max
i

|Hi(jω)| is less than or equal to

‖H‖1. Despite these potential advantages it turns out that
the interference nonlinearity has a structure that appearsto
be unsuitable forl2-analysis. Our first negative result shows
that its gain and Lipschitz constant grows with the number
of users for the cases where the interference nonlinearity is
defined from the DPC or opportunistic algorithms.

Proposition 4: ‖Φ‖l2→l2 = L[Φ; l2] =
√

n.
See [12] for a proof.

Our second negative observation shows that for the same
algorithms, the interference nonlinearity violates the defi-
nition of incremental positivity in [21]. This implies that
powerful characterizations of memoryless nonlinearitiesfrom
the input output theory cannot be used, see e.g. [21], [15]

+
+ P

H(q)
ẑδr

Φ(·) D

D−1

D−1

bδr

Φ̂

Fig. 4. The system on input-output form with scale factors.

and the references therein. Consider first the DPC case. The
proof of our claim follows because if

z1 =

[
z11

z12

]
=

[
1
0

]
, z2 =

[
z21

z22

]
=

[
0
1

]
,

and δ̄i = 1, σ̄2
i > 0, i = 1, 2. Then one can show that

(z1 − z2)
T (Φ(z1) − Φ(z2))

= ln

(
σ̄2

1 + ḡ12e
p∗

2

σ̄2
1 + ḡ12ep∗

2e

)
− ln

(
σ̄2

2 + g21e
p∗

1e

σ̄2
2 + ḡ21ep∗

1

)
< 0,

which implies that the interference nonlinearity cannot be
incrementally positive. Now consider the opportunistic case,
and the choice of signals

z1 =

[
z11

z12

]
=

[
0

−1

]
, z2 =

[
z21

z22

]
=

[
1
0

]
,

and δ̄i = 1, σ̄2
i > 0, i = 1, 2. Then one can show that

(z1 − z2)
T (Φ(z1) − Φ(z2))

= ln

(
σ̄2

1 + ḡ12e
p∗

2e−1

σ̄2
1 + ḡ12ep∗

2

)
+ ln

(
σ̄2

2 + g21e
p∗

1

σ̄2
2 + ḡ21ep∗

1e

)
< 0,

and hence the same holds for the opportunistic case.

VI. I NPUT OUTPUT ANALYSIS USING SCALINGS

In this section we will see how the results of the previous
section can be improved. We insert multipliers into the loop,
which gives the transformed, but equivalent system

Ĥ(q)
∆
= D−1H(q)D = H(q)

Φ̂(ẑ)
∆
= D−1Φ(Dẑ)

δ̂r
∆
= D−1δr, ẑ

∆
= D−1z

for any D ∈ D = {D = diag(d1, . . . , dn) : dk > 0}. See
Figure 4. An interpretation of this is that we study stability
of an equivalent, transformed system where the norm is
changed. The advantage is that structure of the interconnec-
tion matrix can be taken into account in the computation of
the local Lipschitz constant. In the following we assume that
Φ is continuously differentiable. Let̂x = D−1x, ŷ = D−1y.
Note that ∇(MΦ(x)) = M∇Φ(x), M ∈ Rn×n, and
∇(Φ(Mx)) = ∇Φ(Mx)M , where∇Φ(x) is the Jacobian
of Φ. We have



|Φ̂(x̂) − Φ̂(ŷ)|∞

= |
∫ 1

0

∇Φ̂(ŷ + θ(x̂ − ŷ))(x̂ − ŷ)dθ|∞

= |
∫ 1

0

D−1∇Φ(Dŷ + Dθ(x̂ − ŷ))D(x̂ − ŷ)dθ|∞

≤
∫ 1

0

|D−1∇Φ(y + θ(x − y))D|1dθ|x̂ − ŷ|∞

≤ max
z∈B∗

|D−1∇Φ(z)D|1
︸ ︷︷ ︸

∆
=KD

|x̂ − ŷ|∞.

whereB∗ is given in (13).
By a suitable choice of scalings we may obtain lower

Lipschitz gain and thus less restrictive stability criteria. The
following result shows thatKD is the Lipschitz constant of
the scaled nonlinearitŷΦ.

Proposition 5: Assume that the Jacobian ofΦ is Lipschitz
on B∗. Then the scaled nonlinearitŷΦ : Rn

∞ → Rn
∞ is

Lipschitz onD−1B∗ ⊂ Rn
∞ with

L[Φ̂;D−1B∗] = max
z∈B∗

|D−1∇Φ(z)D|1 = KD.

Proof: A proof is given in the appendix.
Let di be our scalings. Define

γ̂ = min
i

{
min

{
1

di
(p∗i − pmin,i),

1

di
(pmax,i − p∗i )

}}
,

and the sets

C(γ̂) = {z ∈ R∞ : −diγ̂ ≤ zi ≤ diγ̂, ∀i}
CX(γ̂) = {z ∈ X : z[k] ∈ C(γ̂), ∀k}

Cδ,X(γ̂) =

{
δr ∈ X : |δri[k]| ≤ γ̂di(1 − ‖H‖1KD)

‖H‖1
,∀i, k

}

In complete analogy to Proposition 3 it follows that the
Lipschitz gain of the scaled nonlinearitŷΦ over the set
CX(γ̂) is computed according to the next proposition.

Proposition 6: The scaled nonlinearitŷΦ : X → X is
Lipschitz onCX(γ̂) with

L[Φ̂;Cl∞(γ̂)] = L[Φ̂;Cl2,∞
(γ̂)] = L[Φ̂;C(γ̂)]

≤ max
z∈B∗

|D−1∇Φ(z)D|1 = KD

Proof: We have thatC(γ̂) ⊂ D−1B∗ and hence
L[Φ̂;C(γ̂)] ≤ L[Φ̂;D−1B∗] = KD. The proof of the
equalities follows the lines of Proposition 3.

The following central result gives improved sufficient
conditions of stability and convergence under disturbances
for the wide class of power control algorithms studied.

Corollary 1: If ‖H‖1 < 1
KD

then there exists a unique
power distributionz ∈ Cl∞(γ̂) for all δr ∈ Cδ,l∞(γ̂).

If it in addition holds that ‖δr‖2,∞ < ∞ and
‖H‖l2,∞→l2,∞

< 1
KD

, thenz[k] → 0 ask → ∞.
Proof: We study stability in the scaled signal space,

whereẑ = D−1z. z ∈ Cl∞(γ̂) implies thatẑ ∈ B∗
l∞

(γ̂) and
δr ∈ Cδ,l∞(γ̂) implies that

‖δ̂r‖∞ ≤ γ̂
1 − ‖H‖1KD

‖H‖1
.

Theorem 1 then proves the statement.
Note that some conservativeness is introduced in Corollary1
since the Lipschitz constant is taken over the setB∗, whereas
stability is guaranteed in the subsetC(γ̂). By working on
the setD−1B∗ there is no conservatism, but the bounds
on the powers may be violated. In section VIII we will
optimize over the scalings to obtain a lower Lipschitz
constant.

VII. GLOBAL ANALYSIS USING SATURATED POWERS

In this section we will consider a model with a saturation
on the powers entering the interference nonlinearity. The
modified system is shown in Figure 5. With the saturation
introduced we prove global stability and show that some
conservatism in the results of the original model in Figure 1
is removed for the saturated system.

A saturation operator was used already in the proof of
Theorem 1. We then showed that the saturation operator is
inactive for an appropriate choice of bound on the distur-
bances. In that procedure we used a maximum interior ball,
which introduced conservatism. By instead starting from a
saturated system an analogous stability analysis is developed
for the modified system where there is less conservatism and
global results can be established.

A drawback of using the saturated model is that the class
of system architectures which can be included is differ-
ent from the original model. In Section VII-A we discuss
architectures that can be modelled and compare possible
approaches to include saturation. In Section VII-B we apply
the previous stability analysis to the saturated model.

A. System Architecture and Modelling

Saturation of the powers models bounds on the maximal
and minimal transmission power of the users. It is a realistic
assumption that such limitations exist. However, including
the saturation operator imposes structure on the location of
information in the network. Parting from the original model
in Figure 1 there are two natural ways to introduce saturation.

Consider first introducing saturation only to the trans-
mission powers in the interference, i.e. the upper loop, see
Figure 5. The filtersFI and FG are given as before in (6),
(7) andC̃(q)

∆
= q−1

β C(q), with C(q) given in (5).
An architecture included in this model is a base station

measuring interference and computing unsaturated internal
states of the transmission powers. If the transmission gains
between useri and receiveri is known for all users, by
for example pilot transmissions in the network, this can be
motivated.

Next consider including the saturation in the transmission
powers in both the upper and lower loop, see Figure 6. This
includes an architecture with a base station measuring both
interference and transmission powers before computing and
transmitting a feedback signal to the mobile user. This model
implies that a marginally stable loop is saturated, which may
cause instability problems. Analysis of this model is beyond
the scope of this paper.
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B. Global Analysis of Saturated Model

Define the saturation sat[B] : Rn → Rn whose ith

component is

[satB(p)]i =






pmax,i if pi > pmax,i

pi if − pmin,i ≤ pi ≤ pmax,i

pmin,i if pi < pmin,i,

where the setB = {p ∈ Rn : pmin,i ≤ pi ≤ pmin,i}. Now
define

Isat[B]
(p)

∆
= I(sat[B](p)).

Proposition 7: Assume thatI(p) : Rn
∞ → Rn

∞ is two-
sided scalable and thatB is compact. ThenIsat[B]

(p) is
Lipschitz for anyp ∈ Rn

∞ with

L[Isat[B]
;Rn

∞] = L[I;B] < 1.
Proof: The saturation cuts all powers to values within

the setB. This reduces the feasible set of the maximization
problem giving the Lipschitz constant,

L[Isat[B]
;Rn

∞] = sup
z1,z2∈B,z1 6=z2

‖I(z1) − I(z2)‖X

‖z1 − z2‖X

= L[I;B] < 1,

+
+ P

H(q)
ẑδr

Φsat[B∗] D

D−1

D−1

bδr

Φ̂sat[B∗]

Fig. 7. The saturated system on input-output form with scalefactors.

where the last inequality is given by Proposition 1.
Now consider the deviations around the equilibrium point,
z, and the setB∗ as defined in (13). Define

Φsat[B∗]
(z)

∆
= Φ(sat[B∗](z)) = I(p∗ + sat[B∗](z)) − I(p∗)

Proposition 8: Any Φsat[B∗]
: X → X defined by two-

sided scalable interference functions is Lipschitz with

L[Φsat[B∗]
; l∞] = L[Φsat[B∗]

; l2,∞] = L[Φ;B∗] < 1.
Proof: The proof follows from Proposition 3 and

the observation that the optimization giving the Lipschitz
constant is always performed over setsB∗

l∞
andB∗

l2,∞
.

Theorem 2:If ‖H‖1 < 1
L[Φ;B∗] , then there exists a unique

power distributionz ∈ l∞ for any disturbanceδr. If it in
addition holds that

‖H‖l2,∞→l2,∞
<

1

L[Φ;B∗]
,

then z[k] → 0 ask → ∞. A bound on the internal statesz
is given by

‖z‖∞ ≤ ‖H‖1

1 − L[Φ;B∗]‖H‖1
‖δr‖∞

and

‖z‖2,∞ ≤ ‖H‖l2,∞→l2,∞

1 − L[Φ;B∗]‖H‖l2,∞→l2,∞

‖δr‖2,∞,

respectively.
Proof: A proof can be found in the appendix.

Note that by Proposition 8 the Lipschitz constant is the
same as for the original model without saturation and by
Proposition 3 we have that if∇Φ is Lipschitz, then the Lip-
schitz constant is equal tomaxz∈B∗ |∇Φ(z)|1. A difference
for the saturated model is that we no longer need to study an
interior ball to ensure that the transmitted powers are within
B∗. However, by doing so, we can again guarantee that the
saturation is inactive and Theorem 2 reduces to Theorem 1.

We will next introduce scalings to the model following the
same steps and notation as in Section VI. The scaled model
with saturation in given in Figure 7. Define

Φ̂sat[B∗]

∆
= D−1Φsat[B∗]

(Dẑ).

Proposition 9: Assume that the Jacobian ofΦ is Lipschitz
on B∗. Then the scaled saturated nonlinearityΦ̂sat[B∗]

: X →
X is Lipschitz with

L[Φ̂sat[B∗]
; l∞] = L[Φ̂sat[B∗]

; l2,∞] = L[Φ̂;D−1B∗]

= max
z∈B∗

|D−1∇Φ(z)D|1 = KD.



Proof: A proof is given in the appendix.
Next follows our main result on the saturated model.

Corollary 2: If ‖H‖1 < 1
KD

then there exists a unique
power distributionz ∈ l∞ for any disturbanceδr. If it in
addition holds that‖H‖l2,∞→l2,∞

< 1
KD

, thenz[k] → 0 as
k → ∞.

Proof: As in the proof of Corollary 1 we study stability
in the scaled signal space. We then haveẑ = D−1z andKD

is an upper bound of the Lipschitz constant of the scaled
interference nonlinearity. The statement then follows from
Theorem 2.

In Corollary 1 the set for guaranteed stability of the powers
was a strict subset of the set over which the Lipschitz
constant was taken. In Corollary 2 the sets are equal and
there is no such conservatism. Another strength of the results
for the saturated model is that the disturbances are allowed
to be arbitrarily large in any direction. This comes at the cost
of possibly large internal power levels.

VIII. O PTIMIZATION OF L IPSCHITZ CONSTANT

In order to obtain the best possible scalings for
Corollary 1 and 2 we optimize overD ∈ D =
{D = diag(d1, . . . , dn) : dk > 0}. We hence have the fol-
lowing optimization problem.

K∗
D = inf

D∈D
max
z∈B∗

|D−1∇Φ(z)D|1, (16)

whereK∗
D is the minimal Lipschitz constant in the scaled

signal space. A negative conclusion is that the optimization
problem in (16) is neither convex nor quasiconvex.

In general it holds that

inf
D∈D

max
z∈B∗

|D−1∇Φ(z)D|1 ≥ max
z∈B∗

inf
D∈D

|D−1∇Φ(z)D|1,
(17)

so a lower bound ofK∗
D in (16) can easily be achieved, since

it is a well known fact that (see e.g. [5])

max
z∈B∗

inf
D∈D

|D−1∇Φ(z)D|1 = max
z∈B∗

ρ(∇Φ(z)). (18)

However, in general the bounds in (17) are not equal.
In this section we discuss how the optimization can be

performed in the case when the interference function is
defined by DPC and opportunistic users as in Subsection V-
A. For convenience of notation, let̄aii = (1− δ̄i)ḡiie

p∗

i and
āij = ḡije

p∗

j in the expression for∇Φ in (12) and letd be the
vector defined by the scalingsd = [d1, . . . , dn]T . Defining

fi(d, z)
∆
=

1

di

1

σ̄2
i +

∑n
j=1 āijezj

n∑

j=1

dj āije
zj , (19)

we have
|D−1∇Φ(z)D|1 = max

i
fi(d, z),

and hence the inner optimization in (16) is equivalently
written

max
z∈B∗

max
i

fi(d, z) = max
i

max
z∈B∗

fi(d, z).

We propose the following heuristic algorithm to solve the
optimization problem in (16).

Algorithm 1 Optimization of Lipschitz Constant

1) Let d0 = d0.
2) Solvez∗ = arg maxi maxz∈B∗ fi(d, z).
3) Compute step direction̄sk(d, z∗).
4) Computeαk.
5) Update scalings throughdk+1 = dk − αks̄k.
6) Return to 2).

1) : A good starting point of the algorithm is to taked0

as the eigenvector corresponding toρ(∇Φ(z̃)), where z̃ is
maximizing the lower bound in (18). In the case when the
bounds in (17) are equal, this will be the optimal scaling
vector. In general suboptimal solutions must be used, since
it is a hard optimization problem to find the highest lower
bound.

2) : The optimization in Step 2 can be solved using dif-
ferent methods. For fixedd, the problem is linear fractional
in eachfi, and hence the maximizingz can be obtained by
solving n equivalent linear problems [2].

In the following lemma it is also shown that for a givend,
the optimal solution is on the boundary of the feasible set,
B∗. For convenience of notation, denote the componentwise
defined bounds ofB∗ by zmin,i andzmax,i.

Lemma 1:Consider given scalingsd. Then a maximum
solution tomaxz∈B∗ fi(d, z) is eitherzi = zmin,i or zi =
zmax,i, ∀i.

Proof: A proof can be found in the appendix.
Remark 1:fi(d, z) can be interpreted as the Lipschitz

constant of useri, which is a measure on the stability margin
of the user. Lemma 1 proves that the worst case is achieved
when all users transmit with maximum or minimum powers.
In Proposition 3 it was already shown that for the case
D = I, all users transmit withzmax,i.

According to Lemma 1 the inner optimization problem
can be solved as a combinatoric problem, which is efficient
for small dimensional systems, or by using some active set
method for larger problems [10].

3) : As step direction ofd, s̄k(d, z∗), we used a weighted
linear combination of the gradients of the differentfi,

s̄k(d, z∗) =

n∑

i=1

∇dfi(d, z∗)
fi(d, z∗) − f̄∑n

i=1 |fi(d, z∗) − f̄ | ,

wheref̄ = 1
n

∑n
i=1 fi(d, z∗). The intuition is that we balance

the functionsfi with the scalingsdi to decrease elements
above the mean and increase elements below the mean. This
is motivated by the fact that in the lower bound (18) allfi are
equal and furthermore, a property of non-negative matrices
is that the biggest eigenvalue is bounded between the lowest
and highest row sum, in this casemini fi andmaxi fi, see
e.g. p. 63 in [9]. We also weight the gradients according to
the distance to the mean value.

4) : As step length we used Polyak’s stepsize rule

αk = κ
maxi fi(d, z∗) − f∗

‖s̄k‖2
,



whereκ is a constant andf∗ is an estimate of the optimal
value. We used the highest lower bound in (18) as estimate
of the optimal value.

This is not a subgradient method, but it seems to have
better convergence properties in our experiments. Conver-
gence of the algorithm can not be guaranteed. However, each
iteration is feasible in the sense that it is a valid Lipschitz
constant, and we can compare with the highest achieved
lower bound to get an idea of optimality.

IX. EXAMPLE

Consider a network with three users, where two of them
heavily interfere the third one. Let the interconnections be
given by the following gain matrix

G =




1 0.0003 0.0015

0.0758 1 0.0758
0.0030 0.0003 1



 ,

and let them use the DPC algorithm with the slight mod-
ification of having the systemC(q) = β

q−1 instead of
C(q) = 1

q−1 . We will study the effect of delay and delay
compensation on stability for the system with and without
saturation on the interfering powers. Assume thatγ̄T

i = 9.0,
δ̄i = 1 and σ̄2

i = 0.05,∀i, and that no filters are used.
Given that the equilibrium point is within the unsaturated
region, it is equal for the saturated and unsaturated system.
The equilibrium point can be computed by

p̄∗ = (I − Γ̄F̄ )−1Γ̄σ̄2,

where Γ̄ = diag(γ̄T
1 /(δ̄1ḡ11), . . . , γ̄

T
n /(δ̄nḡnn)) and σ̄2 =

[σ̄2
1 , . . . σ̄2

n]T , which gives p̄∗ = [0.4606, 1.0853, 0.4668]T .
We will first study the original model without saturation.

A. System without saturation

First consider the case without delay. To analyze stability
of the system we compute‖H‖1. We have

H(q) =
β

q − 1 + β
,

and

‖H‖1 =

∞∑

k=0

|h[k]| =

∞∑

k=0

β(1 − β)k =
β

1 − (1 − β)
= 1.

Since by two-sided scalability the Lipschitz constant is less
than one, stability follows forβ ∈ [0, 1] by Theorem 1.

We will now study what happens when a delay is added
to the system. We then get

H(q) =
β

q2 − q + β
.

The norm is now dependent on the choice ofβ. To guarantee
stability by Theorem 1 or Corollary 1, we need‖H‖1K < 1
and‖H‖1KD < 1 respectively, whereK = L[Φ;B∗(γ)] and
KD is from (16). Stability of the system is dependent on both
the value ofβ, and the value ofγ or γ̂, the bound of the
deviations from the equilibrium point. This is illustratedin
Figure 8. The product‖H‖1KD is plotted and compared to
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guaranteed for some disturbance.

the plane‖H‖1KD = 1, whereKD was obtained by use of
the optimization algorithm proposed in section VIII. Stability
for some disturbance can be guaranteed by Corollary 1 for all
β andγ where the surface of‖H‖1KD is below the plane.

Consider the caseγ = 2. This corresponds to the bounds
on the powers in linear scale

p̄min = [0.062, 0.147, 0.063]T , p̄max = [3.403, 8.020, 3.449]T ,

defining B∗ as in (13). When the Lipschitz constant is
computed as in Proposition 1 and 3, we getL[Φ;B∗(γ)] =
0.9121, which implies that Theorem 1 guarantees stability
for β ∈ [0, 0.34]. However, when using Corollary 1 and
using optimization we obtainKD = 0.2643. Now stability
can be guaranteed forβ ∈ [0, 0.707]. This is illustrated in
Figure 9, where the value of‖H‖1 is plotted as a function
of β ∈ (0, 1). Stability as a function ofβ can be determined
from the graph by comparing the value of‖H‖1 with the
value of1/K and1/KD for different values ofγ. Note that
asγ → ∞, L[Φ;B∗(γ)] → 1.

Now consider fixingβ = 0.7. In this case Theorem 1 can
not be applied. However, Corollary 1 guarantees stability for



powers inCl∞(γ̂) given that the scaled disturbances are in
Cδ,l∞(γ̂). For this example the optimal scalings are given by
d = [0.3048, 1.1428, 0.3571]T , which givesγ̂ = 1.7500 and
C(γ̂) is defined by the componentwise bounds

pmax = [−0.2419, 2.0819,−0.1369]T

pmin = [−1.3086,−1.9181,−1.3867]T .

We note that this set is smaller than the original setB∗ used
for computing the scalings. The bounds on the disturbances
are given by

∣∣∣∣∣∣




δr1

δr2

δr3





∣∣∣∣∣∣
≤

γ̂(1 −
∥∥H

∥∥
1
KD)∥∥H

∥∥
1




d1

d2

d3



 =




0.0049
0.0184
0.0057



 .

Note that the disturbances from the first and third user are
required to be much lower than the disturbances from the
second user. This is because of the high cross couplings on
the second row of the gain matrix which make the second
user sensitive for interference by the other users.

Now consider delay and delay compensation. We then get

H(q) =
β

q(q − (1 − β))
.

By making the same calculations as in the first case, it is
easy to show that‖H‖1 = 1,∀β ∈ [0, 1], and stability can
be guaranteed.

B. Saturated model

Now consider the saturated model as introduced in Fig-
ure 5. Let the saturation be defined on the setB∗ as in (13).
By Theorem 2 and Corollary 2 stability for the saturated
system is given by the same conditions on the system gain
and the Lipschitz constant as in Theorem 1 and Corollary 1.
Hence the same conditions on stability for the different delay
cases as in the previous example are valid also for this
saturated system.

However, for the saturated model we no longer have
bounds on the powers and the disturbances. Furthermore the
Lipschitz constant is computed on the same set as the powers.

X. CONCLUSIONS

In this paper we model a wide class of power control
algorithms including the distributed power control (DPC) and
opportunistic algorithm with higher orders, giving the possi-
bility to model delays in both the powers and interference.
The paper extends the frameworks of Yates and Sung and
Leung to include higher order control laws. This is highly
motivated by implementations in real networks.

We believe that the structure of the power control laws
are best analyzed using logarithmic variables and analyzing
the system around the equilibrium point. The cumbersome
definition of two-sided scalability proposed by Sung and
Leung in linear scale is equivalent to a standard contrac-
tion condition on the Lipschitz constant of the interference
function using the infinity norm with logarithmic variables.

We analyze one model without saturation and one model
with saturated interfering powers. Existence of a unique fixed

point and sufficient conditions for convergence are given
using input output analysis. To reduce conservativeness of
the results scalings are introduced to exploit more structure
of the interference feedback. Finding the optimal scalingsis
a non-convex optimization problem. However, we show that
the optimization problem has a lot of structure and propose
an heuristic solution algorithm.

From an example we conclude that delays have an impor-
tant impact on stability, which motivates the use of higher
order models. Scalings significantly reduce conservativeness
compared to previous results and delay compensation can be
used to stabilize a system with known delay.

Acknowledgement:The authors are grateful to Mats Blom-
gren and Fredrik Gunnarsson at Ericsson for valuable sug-
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[14] A. Möller and U. T. J̈onsson. Input output analysis of power control
in wireless networks. InProceedings of the 49th IEEE Conference on
Decision and Control, Atlanta, USA, 2010. To appear.

[15] M. G. Safonov and V. Kulkarni. Zames-falb multipliers forMIMO
nonlinearities.International Journal of Robust and Nonlinear Control,
10(11-12):1025 – 1038, 2000.

[16] S.Koskie and Z.Gajic. Signal-to-interference-basedpower control for
wireless networks: A survey, 1992–2005.Dynamics of Continuous,
Discrete and Impulsive Systems B: Applications and Algorithms,
13(2):187–220, 2006.

[17] N. Stefanovic and L. Pavel. An analysis of stability with time-delay of
link level power control in optical networks.Automatica, 45(1):149–
154, 2009.



[18] N. Stefanovic and L. Pavel. A stability analysis with time-delay of
primal-dual power control in optical links.Automatica, 45(5):1319–
1325, 2009.

[19] C. W. Sung and K.-K. Leung. A generalized framework for distributed
power control in wireless networks.IEEE Transactions on Information
Theory, 51(7):2625–2635, 2005.

[20] Andrew J. Viterbi. CDMA : principles of spread spectrum communi-
cation. Addison-Wesley, Reading, Massachusetts, USA, 1995.

[21] J.C. Willems. The Analysis of Feedback Systems. MIT Press,
Cambridge, Massachusetts, 1971.

[22] R.D. Yates. A framework for uplink power control in cellular
radio systems.IEEE Journal on selected areas in communications,
13(7):1341–1347, 1995.

APPENDIX: PROOFS

A. Property of two-sided scalability

Definition 1: (Two-sided scalability) For allα > 1,
(1/α)p̄′ ≤ p̄ ≤ αp̄′ implies

(1/α)Ī(p̄′) < Ī(p̄) < αĪ(p̄′).

Proposition 10: Let d(·, ·) be defined as in (4). Then the
definition of two-sided scalability is equivalent to

d(Ī(p̄), Ī(p̄′)) < d(p̄, p̄′).

Proof: The condition d(Ī(p̄), Ī(p̄′)) < d(p̄, p̄′) is
equivalent to

max
i

{
max

{
Īi(p̄)

Īi(p̄′)
,
Īi(p̄

′)

Īi(p̄)

}}
< max

i

{
max

{
p̄i

p̄′i
,
p̄′i
p̄i

}}
.

Let

i∗ = arg max
i

{
max

{
p̄i

p̄′i
,
p̄′i
p̄i

}}
.

Let p̄ 6= p̄′ and assume w.l.o.g.̄p′i∗ > p̄i∗ . Now defineα =
p̄′

i∗

p̄i∗
> 1.

α =
p̄′i∗

p̄i∗
⇒ αp̄i∗ = p̄′i∗ ⇒ αp̄i∗ ≥ p̄′i∗

1

α
p̄i∗ =

1
p̄′

i∗

p̄i∗

p̄i∗ =
(p̄i∗)

2

p̄′i∗
<

(p̄′i∗)
2

p̄′i∗
= p̄′i∗ ⇒ 1

α
p̄i∗ ≤ p̄′i∗ .

This holds since0 < p̄i∗ < p̄′i∗ . We hence have established
that with this choice ofα we have 1

α p̄′i∗ ≤ p̄i∗ ≤ αp̄′i∗ .
Similarly one can show that this relation holds for all
elements of̄p and p̄′. We now have

max
i

{
max

{
Īi(p̄)

Īi(p̄′)
,
Īi(p̄

′)

Īi(p̄)

}}
< α,

which implies that for alli we have the following relations

Īi(p̄)

Īi(p̄′)
< α,

Īi(p̄
′)

Īi(p̄)
< α,

which is equivalent to

1

α
Ī(p̄′) < Ī(p̄) < αĪ(p̄′).

B. Proof of Proposition 1

Proof: Considerp̄1 6= p̄2 ∈ B. Each component of̄I
being two-sided scalable implies by definition that

max
i

{
max

{
Ī(p̄1,i)

Ī(p̄2,i)
,
Ī(p̄2,i)

Ī(p̄1,i)

}}
< max

i

{
max

{
p̄1,i

p̄2,i
,
p̄2,i

p̄1,i

}}
.

Using logarithmic variables this is equivalent to

max
i

{
max

{
I(p1,i) − I(p2,i), I(p2,i) − I(p1,i)

}}

< max
i

{
max

{
p1,i − p2,i, p2,i − p1,i

}}

⇔ |I(p1) − I(p2)|∞ < |p1 − p2|∞

⇔ |I(p1) − I(p2)|∞
|p1 − p2|∞

< 1.

C. Proof of Proposition 2

Proof: Let us first consider the interference nonlinearity
as a multivariable functionΦ : Rn

∞ → Rn
∞. It follows that

|Φ(x) − Φ(y)|∞ = |
∫ 1

0

∇Φ(y + θ(x − y))(x − y)dθ|∞

≤
∫ 1

0

|∇Φ(y + θ(x − y))|1dθ|x − y|∞

≤ sup
z∈Rn

|∇Φ(z)|1|x − y|∞.

This gives the Lipschitz bound

L[Φ;Rn
∞] ≤ K

∆
= sup

z
|∇Φ(z)|1

= sup
z

∣∣∣∣∣∣∣∣∣





±
[

(1−δ̄1)ḡ11ep∗

1+z1

σ̄2
1+F̄ 1ep∗+z . . . ḡ1nep∗

n+zn

σ̄2
1+F̄ 1ep∗+z

]

...

±
[

ḡn1ep∗

1+z1

σ̄2
n+F̄ nep∗+z . . . (1−δ̄n)ḡnnep∗

n+zn

σ̄2
n+F̄ nep∗+z

]





∣∣∣∣∣∣∣∣∣
1

= sup
z

max
i

F̄ iep∗+z

σ̄2
i + F̄ iep∗+z

= 1.

We then have

‖Φ(z1) − Φ(z2)‖2,∞ =

√√√√
∞∑

k=0

|Φ(z1[k]) − Φ(z2[k])|2∞

≤ K

√√√√
∞∑

k=0

|z1[k] − z2[k]|2∞

= K‖z1 − z2‖2,∞,

which shows thatL[Φ; l2,∞] ≤ K = 1. We will next see that
the bound can be achieved asymptotically by considering the
l2,∞-signal,

z =

{
1, k = 0

0, otherwise.



Let ep∗+α1 be defined asep = [ep1 , . . . , epn ]T . Consider for
simplicity the DPC case. We have

1

α
‖Φ(αz) − Φ(0)‖2,∞ =

1

α

( ∞∑

k=0

|Φ(αz[k])|2∞
)1/2

=

∣∣∣∣∣∣∣∣∣

1

α





ln
(

σ̄2
1+F 1ep∗+α

σ̄2
1+F 1ep∗

)

...

ln
(

σ̄2
n+F nep∗+α

σ̄2
n+F nep∗

)





∣∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣∣




1
...
1



 +





1
α ln

(
σ̄2
1e−α+F 1ep∗

σ̄2
1+F 1ep∗

)

...
1
α ln

(
σ̄2

ne−α+F nep∗

σ̄2
n+F nep∗

)





∣∣∣∣∣∣∣∣∣
∞

→ 1

as α → ∞. A case with opportunistic or mixed users
is analogous. The denominator and numerator will switch
place, giving a difference in sign within the norm, but not
changing the result.

It follows that L[Φ; l2,∞] = 1 as well as‖Φ‖l2,∞→l2,∞
=

1 for both the DPC, opportunistic and mixed case. The
case with thel∞-space follows using essentially the same
arguments.

D. Proof of Proposition 3

Proof: First consider the interference nonlinearity as a
functionΦ : Rn

∞ → Rn
∞. We have by definition thatΦ(z) =

I(p∗ + z) − I(p∗), and from the proof of Proposition 1 we
get

⇔ |I(p1) − I(p2)|∞
|p1 − p2|∞

< 1

⇔ |I(p1) − I(p∗) − (I(p2) − I(p∗))|∞
|p1 − p∗ − (p2 − p∗)|∞

< 1

⇔ |Φ(z1) − Φ(z2)|∞
|z1 − z2|∞

< 1.

Hence we have that for powers,p ∈ B, L[I;B] < 1, or
equivalently forz ∈ B∗, L[Φ;B∗] < 1. Now considerΦ as
an operatorln∞ → ln∞.

L[Φ;B∗
l∞ ] = sup

z1,z2∈B∗

l∞
,z1 6=z2

‖Φ(z1) − Φ(z2)‖∞
‖z1 − z2‖∞

= sup
z1,z2∈B∗

l∞
,z1 6=z2

supk |Φ(z1[k]) − Φ(z2[k])|∞
supk |z1[k] − z2[k]|∞

≤ sup
z1,z2∈B∗

l∞
,z1 6=z2

L[Φ;B∗] supk |z1[k] − z2[k]|∞
supk |z1[k] − z2[k]|∞

= L[Φ;B∗]

We now show that the inequality in fact is an equality. Since
B∗ ⊂ Rn

∞ is compact, there existz∗1 , z∗2 s.t. |Φ(z∗1) −
Φ(z∗2)|∞ = L[Φ;B∗]|z∗1 − z∗2 |l∞ . Equality is then reached
above for the signals

z1 =

{
z∗1 , k = 0

0, otherwise
, z2 =

{
z∗2 , k = 0

0, otherwise.

The case whereΦ : l2,∞ → l2,∞ is analoguous. Hence
L[Φ;B∗

l∞
] = L[Φ;B∗

l2,∞
] < 1.

Now assumeΦ is continuously differentiable and that the
Jacobian is Lipschitz. From the first part of the proof of
Proposition 2 we have thatL[Φ;B∗] ≤ maxz∈B∗ |∇Φ(z)|1.
To see that equality can be achieved we assume

max
z∈B∗

|∇Φ(z)|1 = fi∗(z
∗),

wherei∗ is the maximizing index andz∗ is the corresponding
maximizing solution. We know the existence of such since
|∇Φ(z)|1 is a continuous function andB∗ is compact.
Further, let δz be a unit length vector inRn

∞ such that
|∇Φ(z∗)δz|∞ = |∇Φ(z∗)|1. Let ž be an interior point ofB∗

such that|ž − z∗|∞ ≤ η. Now let y = ž andx = ž − ǫδz.
We get

ǫ−1|Φ(x) − Φ(y)|∞ = |
∫ 1

0

∇Φ(ž − ǫθδz)δzdθ|∞

≥ |∇Φ(z∗)|1 − |
∫ 1

0

(
∇Φ(z∗) −∇Φ(ž − ǫθδz)

)
δzdθ|∞

≥ |∇Φ(z∗)|1 − (ǫ + η)L[∇Φ;B∗]

whereL[∇Φ;B∗] denotes the Lipschitz bound of the Jaco-
bian∇Φ : B∗ → Rn×n

1 andRn×n
1 is the vector space of real

valuedn × n matrices equipped with the matrix| · |1-norm.
Hence

ǫ−1|Φ(x) − Φ(y)|∞ ≥ |∇Φ(z∗)|1 − (ǫ + η)L[∇Φ;B∗],

and sinceǫ and η are arbitrary it follows thatL[Φ;B∗] ≥
|∇Φ(z∗)|1. We conclude thatL[Φ;B∗] = |∇Φ(z∗)|1.

Now consider the DPC and opportunistic algorithms. Then
the Jacobian is given in (12) and the absolute value of the
row sums are on the form

F̄ iep∗+z

σ̄2
i + F̄ iep∗+z

.

The maximum is achieved when̄F iep∗+z is maximized.
Since all coefficients are positive, the maximum solution
is given by zi = zmax,i,∀i. The Lipschitz constant is
then given by the maximizing indexi∗, since the order of
the maximization over the indexi and the setB∗ can be
interchanged.

E. Proof of Theorem 1

Proof: Define the saturation sat[−γ1,γ1] : Rn → Rn

whoseith component is

[sat[−γ1,γ1](z)]i =






γ if zi > γ
zi if − γ ≤ zi ≤ γ
−γ if zi < −γ

and let
Φγ(z) = Φ(sat[−γ1,γ1](z)).

DefineF (z) = H(δr + Φγ(z)), then

‖F (z1) − F (z2)‖∞ = ‖H(Φγ(z1) − Φγ(z2))‖∞
≤ ‖H‖1L[Φ;B∗(γ)]︸ ︷︷ ︸

<1

‖z1 − z2‖∞,



where we used Proposition 3. Hence F is a contraction onl∞
and according to the Banach fixed point theorem there exists
a unique solutionz∗ to the fixed point equationz∗ = F (z∗).
Assume now that the bound in (15) holds. Then the fixed
point z∗ satisfies

‖z∗‖∞ = ‖F (z∗)‖∞

≤ ‖H‖1

(
‖δr‖∞ + L[Φ;B∗(γ)]‖z∗‖∞

)

≤ ‖H‖1
γ(1 − L[Φ;B∗(γ)]‖H‖1)

‖H‖1

+ ‖H‖1L[Φ;B∗(γ)]‖z∗‖∞
which is equivalent to‖z∗‖∞ ≤ γ. This implies that there
also exists a unique power distribution with‖z‖∞ ≤ γ to
the real system because the saturation in the definition ofΦγ

is inactive.
The last statement in the theorem follows from the bound

‖z∗‖2,∞ ≤ ‖H‖l2,∞→l2,∞

1 − L[Φ;B∗(γ)]‖H‖l2,∞→l2,∞

‖δr‖2,∞

which is derived in the same fashion as the previous bound.

F. Proof of Proposition 5

Proof: From the derivations when introducing the
scalings it is clear thatL[Φ̂;D−1B∗] ≤ KD. To see that
equality can be achieved we assume

KD = max
z∈B∗

|D−1∇Φ(z)D|1 = fi∗(z
∗),

where i∗ is the maximizing index andz∗ is the maxi-
mizing argument. Such index and argument exists, since
|D−1∇Φ(z)D|1 is a continuous function and the optimiza-
tion is over a compact set. Let̂δz = D−1δz be a unit
length vector in Rn

∞ such that |D−1∇Φ(z∗)Dδ̂z|∞ =
|D−1∇Φ(z∗)D|1. Let ž be an interior point ofB∗ such
that |ž − z∗|∞ ≤ η. Furthermore, let̂x = D−1ž − ǫδ̂z and
ŷ = D−1ž. We then get

1

ǫ
|Φ̂(x̂) − Φ̂(ŷ)|∞ =

1

ǫ
|
∫ 1

0

∇Φ̂(ŷ + θ(x̂ − ŷ))(x̂ − ŷ)dθ|∞

=
1

ǫ
|
∫ 1

0

D−1∇Φ(Dŷ + Dθ(x̂ − ŷ))D(x̂ − ŷ)dθ|∞

= |
∫ 1

0

D−1∇Φ(ž − θǫδz)Dδ̂zdθ|∞

≥ |D−1∇Φ(z∗)D|1

− |
∫ 1

0

D−1
(
∇Φ(z∗) −∇Φ(ž − θǫδz)

)
Dδ̂zdθ|∞

≥ |D−1∇Φ(z∗)D|1 − (η + ǫd̃)L[D−1∇ΦD;B∗]

where d̃ = maxi di and L[D−1∇ΦD;B∗] denotes the
Lipschitz bound of the scaled Jacobian ofΦ, D−1∇ΦD :
B∗ → Rn×n

1 and Rn×n
1 is the vector space of real valued

n × n matrices equipped with the matrix| · |1-norm. By
assumption∇Φ is Lipschitz onB∗, and hence we have that
also D−1∇ΦD is Lipschitz. Sinceǫ and η are arbitrary it
follows thatL[Φ̂;D−1B∗] ≥ KD.

G. Proof of Theorem 2

Proof: DefineF (z) = H(δr + Φsat[B∗]
(z)), then

‖F (z1) − F (z2)‖∞ = ‖H(Φsat[B∗]
(z1) − Φsat[B∗]

(z2))‖∞
≤ ‖H‖1L[Φ;B∗]︸ ︷︷ ︸

<1

‖z1 − z2‖∞,

where we used Proposition 8. Hence F is a contraction onl∞
and according to the Banach fixed point theorem there exists
a unique solutionz∗ to the fixed point equationz∗ = F (z∗).
Assume now a fixedδr, then the fixed pointz∗ satisfies

‖z∗‖∞ = ‖F (z∗)‖∞

≤ ‖H‖1

(
‖δr‖∞ + L[Φ;B∗]‖z∗‖∞

)
,

which is equivalent to

‖z∗‖∞ ≤ ‖H‖1

1 − ‖H‖1L[Φ;B∗]
‖δr‖∞.

The case whereΦ : l2,∞ → l2,∞ is analoguous.

H. Proof of Proposition 9

Proof: First consider

L[Φ̂sat[B∗]
;Rn

∞]

= sup
Dẑ1,Dẑ2∈B∗

|D−1Φ(Dẑ1) − D−1Φ(Dẑ2)|∞
|ẑ1 − ẑ2|∞

= sup
ẑ1,ẑ2∈D−1B∗

|D−1Φ(Dẑ1) − D−1Φ(Dẑ2)|∞
|ẑ1 − ẑ2|∞

= L[Φ̂;D−1B∗].

This can be expanded toL[Φ̂sat[B∗]
; ln∞] andL[Φ̂sat[B∗]

; ln2,∞]
by the same argument as is Proposition 3. The last equalities
is a restatement of Proposition 5.

I. Proof of Lemma 1

Proof: Consider fixed values ofd and study the function
fi(z) := fi(d, z), as defined in (19). First we show that
there is no stationary point in the interior of the feasible
region. That gives us that at least one index,kj , of z must
be eitherzmax,kj

or zmin,kj
. We then fix the value forzkj

to
zkj

= {zmax,kj
, zmin,kj

} and study the optimization problem
again. Recursively we prove that for the reduced problems,
with some variables fixed, stationary points only exist on a
set of measure zero of thed-space. Furthermore this set is
independent of the remaining variables. Hence the remaining
variables can also be taken on the boundary. If the scalings
d do not belong to this set of measure zero, the optimal
solution at the boundary is unique.

1) First step: First consider

f
(n)
i (z) =

d1

di
āi1e

z1 + · · · + dn

di
āinezn

āi1ez1 + · · · + āinezn + σ̄2
i

,

wheren is denotes that there aren free variables and̄aii =
(1 − δ̄i)ḡiie

p∗

i and āij = ḡije
p∗

j . Now differentiate w.r.t.zj



and set to zero.

∂f
(n)
i

∂zj
(z) =

dj

di
āije

zj (āi1e
z1 + · · · + āinezn + σ̄2

i )

(āi1ez1 + · · · + āinezn + σ̄2
i )2

−
āije

zj (d1

di
āi1e

z1 + · · · + dn

di
āinezn)

(āi1ez1 + · · · + āinezn + σ̄2
i )2

= 0

Note that the denominator is always positive so we can focus
on the numerator. First multiply all terms withdi, then divide
by āije

zj , which is always strictly greater than zero.
We then get the following equivalent equation.

dj āi1e
z1 + · · · + dj āinezn + dj σ̄

2
i

−d1āi1e
z1 − · · · − dnāinezn = 0,

which is equivalent to

āi1(dj − d1)e
z1 + · · · + āin(dj − dn)ezn = −σ̄2

i dj .

Differentiating fi w.r.t. all zj , j = 1, . . . , n, we get the
following system ofn equations, corresponding to∇fi(z) =
0,

(d1 − d1)x1 + · · · + (d1 − dn)xn = −σ̄2
i d1

...
...

...
(dn − d1)x1 + · · · + (dn − dn)xn = −σ̄2

i dn,

wherexj = āije
zj . Assuming the dimensionn > 1 we get

the following relation

( n∑

i=0

xi

)
d − (dT x)1 = −σ̄2

i d,

which has no solution for positivex and d. Hence there is
no extreme point in the interior, and the maximum must be
at the boundary. This implies that at least one element of the
z-vector must be eitherzmax,kj

or zmin,kj
.

2) Second step:Let k1 be an index of a variable
at the boundary. DefineK1 = āik1

ezk1 , where zk1
∈

{zmax,k1
, pmin,k1

}. Note thatK1 > 0. With the indexk1

taken away, order the remaining variables from1 to n − 1.
We then study the stationary point of the function

f
(n−1)
i (z) =

d1

di
āi1e

z1 + · · · + dn−1

di
āi,n−1e

zn−1 +
dk1

di
K1

āi1ez1 + · · · + āi,n−1ezn−1 + σ̄2
i + K1

.

Following the same steps as before, we differentiate w.r.t.zj ,
j ∈ [1, n − 1] and set to zero

∂f
(n−1)
i

∂zj
(z) =

dj

di
āije

zj (āi1e
z1 + · · · + āi,n−1e

zn−1 + σ̄2
i + K1)

(āi1ez1 + · · · + āi,n−1ezn−1 + σ̄2
i + K1)2

−
āije

zj (d1

di
āi1e

z1 + · · · + dn−1

di
āi,n−1e

zn−1 +
dk1

di
K1)

(āi1ez1 + · · · + āi,n−1ezn−1 + σ̄2
i + K1)2

= 0.

As before, the denominator is always positive so we can
focus on the numerator. Multiply all terms withdi and divide
by āije

zj > 0. We then get the equation

dj āi,1e
z1 + · · · + dj āi,n−1e

zn−1 + dj σ̄
2
i + djK1

−d1āi,1e
z1 − · · · − dn−1āi,n−1e

zn−1 − dk1
K1 = 0,

which is equivalent to

āi,1(dj − d1)e
z1 + · · · + āi,n−1(dj − dn−1)e

zn−1 =

− (σ̄2
i + K1)dj + dk1

K1.

Differentiating f
(n−1)
i w.r.t. all zj , j = 1, . . . , n − 1, we

get a system ofn − 1 equations, now corresponding to
∇f

(n−1)
i (z) = 0. Again, let āije

zj = xj .

(d1 − d1)x1 + · · · + (d1 − dn−1)xn−1

= −(σ̄2
i + K1)d1 + dk1

K1

...

(dn−1 − d1)x1 + · · · + (dn−1 − dn−1)xn−1

= −(σ̄2
i + K1)dn−1 + dk1

K1

Reorganizing the equations gives the following relation that
must be fulfilled for existence of an interior stationary point

( n−1∑

i=1

xi

)



d1

...
dn−1



 − (dT x)




1
...
1



 =

−(σ̄2
i + K1)




d1

...
dn−1



 + dk1
K1




1
...
1



 .

Consider first the case when at least onedi 6= dj , (i, j) ∈
{1, . . . , n− 1}. Then the coefficients of the vectors must be
the same, giving the conditions

n−1∑

j=1

xj =

n−1∑

j=1

āije
zj = −(σ̄2

i + K1) = −(σ̄2
i + āi,k1

ezk1 ),

and
n−1∑

j=1

djxj =

n−1∑

j=1

dj āije
zj = −dk1

K1 = −dk1
āi,k1

ezk1 ,

which cannot be fulfilled for positivex, d. Now consider the
casedi = α, i = 1, . . . , n − 1. We then get

α

n−1∑

i=1

xi − α

n−1∑

i=1

xi = −α(σ̄2
i + K1) + dk1

K1,

which reduces to

α =
dk1

K1

σ̄2
i + K1

.

Hence there is a stationary point on the set of measure zero
of thed-space whendi = α,∀i 6= k1. However, the condition
on the scalings for the stationary point is independent of the
values of the remaining powers, which implies that they can
be taken on the boundary.



Assuming the fixed scalings do not fulfill the condition
for a stationary point, another variable can be fixed to the
boundary.

3) l:th step: In the l:th step we have the free variables
z1, . . . , zl and the fixed variableszk1

, . . . , zkn−l
giving

f
(l)
i (z) =

d1

di
āi1e

z1 + · · · + dl

di
āi,le

zl +
∑n−l

j=1

dkj

di
Kj

āi1ez1 + · · · + āi,lezl + σ̄2
i +

∑n−l
j=1 Kj

.

Differentiate w.r.t.zj , j ∈ {1, . . . , l} and set equal to zero
we get

∂f
(l)
i

∂zj
(z) =

dj

di
āije

zj (āi1e
z1 + · · · + āi,le

zl + σ̄2
i +

∑n−l
j=1 Kj)

(āi1ez1 + · · · + āi,lezl + σ̄2
i +

∑n−l
j=1 Kj)2

−
āije

zj (d1

di
āi1e

z1 + · · · + dl

di
āi,le

zl +
∑n−l

j=1

dkj

di
Kj)

(āi1ez1 + · · · + āi,lezl + σ̄2
i +

∑n−l
j=1 Kj)2

= 0.

As before, multiply all terms with the denominator anddi

and divide byāije
zj . We then get

dj āi1e
z1 + · · · + dj āi,le

zl + dj σ̄
2
i + dj

n−l∑

j=1

Kj

−d1āi1e
z1 − · · · − dlāi,le

zl −
n−l∑

j=1

dkj
Kj = 0.

This is equivalent to

(dj − d1)āi1e
z1 + · · · + (dj − dl)āi,le

zl =

− (σ̄2
i + K1 + . . . Kn−l)dj + dk1

K1 + · · · + dkn−l
Kn−l.

Differentiating w.r.t. allj ∈ {1, . . . , l} we get the following
system ofl equations, corresponding to∇f

(l)
i (z) = 0. Again,

let āije
zj = xj .

(d1 − d1)x1 + · · · + (d1 − dl)xl

= −(σ̄2
i +

n−l∑

j=1

Kj)d1 +

n−l∑

j=1

dkj
Kj

...

(dl − d1)x1 + · · · + (dl − dl)xl

= −(σ̄2
i +

n−l∑

j=1

Kj)dl +
n−l∑

j=1

dkj
Kj

Reorganizing gives

( l∑

i=1

xi

)



d1

...
dl



 − (dT x)




1
...
1



 =

−(σ̄2
i +

n−l∑

j=1

Kj)




d1

...
dl



 +
( n−l∑

j=1

dkj
Kj

)



1
...
1



 .

Again, consider first the case wheredi 6= α, i = 1, . . . , l.
Then the coefficients of the vectors must be the same, giving
the conditions

l∑

j=1

xi =
l∑

j=1

āije
zj = −(σ̄2

i +
n−l∑

j=1

Kj) = −(σ̄2
i +

n−l∑

j=1

āi,kj
ezkj ),

and
l∑

j=1

djxj =

l∑

j=1

dj āije
zj = −(

n−l∑

j=1

dkj
Kj) = −

n−l∑

j=1

dkj
āi,kj

ezkj ,

which cannot be fulfilled for positivex, d. Now consider
di = α, i = 1, . . . , l. We then get

α

l∑

j=1

xi − α

l∑

j=1

xi = −α(σ̄2
i +

n−l∑

j=1

Kj) +

n−l∑

j=1

dkj
Kj ,

giving

α =

∑n−l
j=1 dkj

Kj

σ̄2
i +

∑n−l
j=1 Kj

.

Hence again there is a set of measure zero in thed-space,
given bydi = α, i = 1, . . . , l, which is a stationary point. As
before the condition on the scalings for the stationary point
is independent of the values of the remaining powers, which
implies that they can be taken on the boundary.

4) Final step: If the scalings are not on the special set
giving a stationary point, we proceed in the same way fixing
the variables on the boundary until the number of free
variables reach one.

For n = 1 we have

f
(1)
i (z) =

d1

di
āi1e

z1 +
∑n−1

j=1

dkj

di
āi,kj

ezkj

āi1ez1 + σ̄2
i +

∑n−1
j=1 āi,kj

ezkj

.

Differentiate w.r.t.z1 and set to zero

∂f
(1)
i

∂z1
(z) =

d1

di
āi1e

z1(āi1e
z1 + σ̄2

i +
∑n−1

j=1 āi,kj
ezkj )

(āi1ez1 + σ̄2
i +

∑n−1
j=1 āi,kj

ezkj )2

−
āi1e

z1(d1

di
āi1e

z1 +
∑n−1

j=1

dkj

di
āi,kj

ezkj )

(āi1ez1 + σ̄2
i +

∑n−1
j=1 āi,kj

ezkj )2

= 0.

This is equivalent to

d1āi1e
z1 + d1σ̄

2
i + d1

n−1∑

j=1

āi,kj
ezkj − d1āi1e

z1

−
n−1∑

j=1

dkj
āi,kj

ezkj = 0,

which gives the relation

dj =
dk1

āi,k1
ezk1 + · · · + dkn−1

āi,kn−1
ezkn−1

āi,k1
ezk1 + · · · + āi,kn−1

ezkn−1 + σ̄2
i

.

Note that it is independent of the last free variablez1 and
only fulfilled on a set of measure zero of the d-space. This



implies that almost surely allzi will be on the boundary.
On the set of measure zero, allzi will be on the boundary,
except possibly one index. For this index,kj , f

(1)
i (zkj

) has
a stationary point independent of the value ofzkj

, and hence
we can take any value ofzkj

without changing the function
value off (1)

i , including the boundary.


