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Abstract—In a wireless communication network different where ¥} is the SIR-target. This algorithm is suitable for
users share a common resource. An objective of radio resource speech applications where it is important to keep a SIR-
management is to assign the resources in an effective way |gyq| throughout time. Convergence for a class of algorithm

between the users. Power control is an important component . . .
in this setting that has been extensively studied over the last denotedstandard including the DPC algorithm, was shown

two decades. by Yates in [22].

In many real networks there are inherent time delays due For applications with data traffic more bandwidth is de-
to filtering of signals and control signaling. Time delays can sired for each user. Contrary to traditional applicationshs
affect stability and convergence properties of the power contlo 54 speech, it is more important to have an overall high

algorithms. We therefore consider power control laws of higher . Lo .

or?jer to include models with dela;)s and delay compensa%ion. bandw@th, rather than maintaining a stable high SIR-leveI
The main contribution of this paper is to exploit more Henceitcan be allowed that the QoS-level drops heavily over

structure of the interference feedback to prove less conserti@e  short periods of time, given that it is higher during others.

conditions for system stability. Our primary tool to reduce  Sung and Leung [19] proposed an opportunistic power con-

conservativeness is to use scalings in an input output framework | |aw that takes advantage of these characteristicsir The

for stability analysis. opportunistic algorithm is defined as

I. INTRODUCTION ~ oA G
o ) ] pilt + 1] = L;(p[t]) = ===, (3)
Power control in wireless networks aims to assign powers Ri(plt])
to a set of users in a distributed fashion giving each usgjhere(; is called the Signal-to-Interference-Product (SIP) of
a Quality of Service (Qo0S). Users transmitting on the samgser;. This implies that when a user has good interference
channel interfere with each other, which degrades their.Qogonditions it transmits at a high power, and when it measures
analyzing system stability. In this paper we focus on thghey proposed a framework in [19] that generalizes Yates
Signal-to-Interference Ratio (SIR) as a measure of Qo$ork to also include opportunistic algorithms. A key coricep

This is a reasonable assumption since most other relevagtyyo-sided scalabilityGiven the distance function
measures of QoS, such as bit error rate (BER) or frame

success rate, are monotone functions of the SIR. The SIR d(p1, p2) = max{max{ljl,i,]j&i }}’ 4)
is modeled as i D2,i P,

- 5:GiiDs N two-sided scalability for a functiod(p) is equivalent (see

Vi = >z Gisbs + (1 — 5.)giibi + 02 = Ri(p)’ Appendix) to the condition

. - I(py), I(p p1, P

wherep = [p; ...p,]|T andp; is the power of uset, 0; € d(I(pr), 1(p2)) < d(Pr, P2),
[0,1] is a constant modeling auto-interferengg; > 0 is  which is used to derive Lipschitz constants in this paper.
the channel gain from user to useri and 52 > 0 is the

receiver noiseR;(p) is sometimes referred to as teffective

II. HIGHER ORDER CONTROL LAWS

interference Real communication networks can suffer from so called
Consider the following iterative update equation of thePower rushes”, where the transmission powers of the users

powers significantly increase leading to system instability. Itsha
plt + 1) = I(p[t]). 1) been shown that delays can cause instability and many sys-

tems have inherent delays due to measuring and transmission
An example is the Distributed Power Control (DPC) algo-of control commands. Gunnarsson [11] showed that using a
rithm, proposed by Foschini and Miljanic [8], which balaace Smith predictor it is possible to compensate for delay. The
the SIRs of the users. The next power update is given by introduction of delays and delay compensation motivates th
_ = use of higher order power control laws.
) N 7 Ri(p[t]) il imi i
pit + 1] = L(p[t]) = “—pift] = =220 2) Stability of similar systems with delays have also been
Vi 0iGii studied in e.g. [4], [3], [1], [7], [16], [18] and [17]. An
o i __important difference is that with the model we study, time-
Anders Mller is supported by the Center for Industrial and Applledd | I d in both the i f d th .
Mathematics (CIAM) and UIf T. dnsson is supported by the Swedish .eays are allowed in both t _e Interference an t e transmis
Research Council (VR) and the ACCESS Linnaeus Centre at KTH. sion power of each user, without any assumption on local
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Fig. 1. Logarithmized system as block diagram.
Faa(a)
replacement of delayed powers (delay compensation). Belay Fa,n(q)

in the transmission powers of a user is present in many
wireless networks with control signalling, e.g. when a base  Fig. 2. Logarithmized system with filters as block diagram.
station controls the transmission power of a mobile user, se
e.g. [6] and [20].

In [13] the framework of Sung and Leung was extended

) : wer, i.e. both the upper and lower loop in Figure 1 are
to include higher order control. Convergence and speed |8 plemented. In this paper we study a model that include

convergence could be established. However the Cond't'oﬂﬁear filters both for the interference and signal part of th

were only'suff|C|ent.and simulations md'lcated that theyeNerreceive d power, as well as for the system itself, as shown
conservative. In this paper we exploit more structure of

the interference feedback to remove conservatism from ti-‘n Figure 2. This extended system model, first proposed in

previous results. This implies that it is possible to prov fl]’ models a large variety of systems, where delays and

. . igher order control laws can be included.
stability for a wider class of control laws. i . )
. ) - . . Define the linear filters as
In section 11l we introduce logarithmic variables to rewerit

the power control problem as a classical feedback intercon- bi0g™C ™Y + b 1g™C 2 4 4 b1

. . . . . Cl(q — ) ) ,mc
nection. This mgde] is the.n rgwntten. to input oquut for.m (g — 1) (g™ "+ ai1qmC 2+ 4 Gime 1)
around an equilibrium point in section IV. Section V is (5)

devoted to input output analysis of the system and sufficient
conditions for local stability are given. In section VI scajs Fri(q) =
are introduced to further improve the results of the pregiou

dioq™ +ding™ 4 4 dim,
g™+ g™+ i aq™ T A Gy

section. We then introduce saturation of the transmission . N ©6)
powers in the model to prove global stability in section Fe.i(q) = fi0q™ + finq" e 4+ fime

VII. That is followed by section VIII on optimization of the ' g e 1qMGT e 0™ T2 4t €img
Lipschitz constant to reduce conservativeness. An example (7)
illustrating the results is presented in section IX and thpgy

is concluded in section X. where we assume thdt; ;(¢) and Fg ;(¢) are stable and

The results of this paper generalizes our earlier confaren®ith F7,i(1) = Fg,i(1) # 0. The pole atg = 1 in Ci(q)
contribution in [14] and technical report [12]. implies that the system has integral action. Assume firdt tha

we are using the pure DPC-algorithm, with the parameters

[1l. SYSTEM MODEL IN LOGARITHMIC SCALE vF, 6; andg;;. With the filters introduced as in Figure 2, we
The DPC and opportunistic algorithm can be interpretedae
as nonlinear feedback systems by introducing logarithmic 1 T N
variables. Letp; = In(p;), 0; = In(d;), gi; = In(gs;), Cila) = g1 Li(p) = i + Ri(p) = i — g,
Ii(p) = In(Zi(p)) = In(Zi(e?)), Ri(p) = In(R;(e?)) and
liT_: In(37). Then the fixed point iteratiom;[t + 1] =  where§? = e 5, = if((ll)) 5 and §i; = I;C,;i((ll))gu
I;(plt]) can be rewritten as The somewhat cumbersome relation between the constants
is due to the physical implementation, where the received
pilt + 1] = Lplt) = pilt) + (Li(plt]) — pilt]) oo prysieer e o "

signal,d; + g;; + pi, and the received interferenci; (p), are
which can be represented in the block diagram in Figfiltered separately and then compared with the (unfiltered)

ure 1 with C;(q) = q_% where ¢ represents the time- target SIR. UsuallyF;;(1) = Fg;(1) = 1. This way of
shift operator, and with the interference functiditp) = modelling the system does not affect the steady state and
[11 (p) ... In(p)]. stability properties of the system. However the transient i

In implementations it is common that measurements adifferent.
made on both the interference and signal part of the receivedWhen we study the opportunistic algorithm with the SIP-



target(;, we have ®(2)
1 R
Ci(Q): q—l’ Iz(p):Ci_Rz(p)v
or z
2 H
where¢; = z7Gi- (@)

IV. INPUT OUTPUT MODEL Fig. 3. The system on input-output form.

In this section we will derive an input output model of the
higher order control loop. The model will be on the form of
Figure 3 where the output corresponds to the deviation whereh;[k] is the impulse response at timeFor a diagonal
of the power level from its equilibrium values, white- is  matrix H, H(q) = diag(H;:¢=1,...,n), the induced
a disturbance input that models for example the effect aforms fromi,, andls become (see e.g. [5])
initial conditions, variations in gain or measurement ero
of the interference. The blockH and ® denotes the linear
and nonlinear parts of the model, respectively. and

Before deriving the exact model we will introduce some
notation and preliminary results.

A
[H 1o —10e = [1H[[2 = max([[Hlly, ..., [ Hnll1)

A o0
1H 1y o=t < 1Hll11 £ (ALK,
A. Notation k=0
where we used the matrix nori/ |, = |M|gn rn =

Consider first the finite dimensional vector spaces n
n
maxi<;<n »_;—; | Mi;|. Clearly||H|[y <|[H]|1,1, and equal-

(i) R% =(R",]|" |co), Where|z|oo = max |z X L 2 =
1<k<n ity holds if H; = H;,V(3, j).
- N N n 5\ 1/2
(i) Ry = (R",|[2), where|z|; = <Z$k) - B. Existence of equilibrium point
k=1 . . .
Now consider the following function spaces. The model_of the wireless network in Figure 2 can be
M) 1" = {z: N — R : ||2]|ee < 00} rewritten. Define
(i) 15 ={2:N— RL :[2]l2,00 < 00} . .
i) 5= {22 N — B2+ ||]ls < oo}, Hq) = diag (Hi i =1,...,m), ®

where the norms are defined 43| = supy |2z[k]|cos
lzll200 = (Cplol2lklZ)Y?  and lz]la =
(Cry |2k ]|2)1/2. The spatial dimension will

be suppressed.

often

where

Fr.i(q)Ci(q)

D) = 16 (0 Foata)

In the next few definitions we consider a nonlinear operWe assume that/; has the following time domain represen-

ator F : X — X such thatF(0) = 0 and X is a normed

vector space. Thgain of F' is defined as

F
||FHX—>Xé sup m
cexipo 7llx

tation in terms of its impulse response

k

=0

(Hiu)[k] = k> 0.

. Therefore the system can be represented as
where|| - || x denotes the norm oX . A stronger assumption

is Lipschitz continuity. Theglobal Lipschitz constandf the

t
operatorF is defined as plt] = (H = nlt—1r1 t>0, (9)
=0
F —F
LIF;X]2  sup [1F(z1) = Flz)lx whereo denotes the composition of operators.
21,220€X,21#£22 Hzl - Z2||X

The assumption thaf;(¢) has integral action and tha&t;
Notice that|| F|| x _.x < L[F; X]. For us it will be interesting andFG have the same steady state gain implies fidt ) =

to consider the Lipschitz constant on a sub&at of X >, ha[l] = 1,Vi. Hence at equilibrium (9) reduces to
defined by how large deviations around the equilibrium we bt = I(p") (10)

consider. Define
from which we conclude that the equilibrium is the same as
for the standard power update equation in (1).

Let L[I, B] denote the Lipschitz constant of the nonlinear
For linear operators the gain and Lipschitz constantginction I over any compact seB c R™ .

coincide. Thel;-norm of a linear systent{; is defined as Proposition 1: Assumel(p) : R®, — R", is two-sided
scalable. Thed is Lipschitz on any compact subsgtC R2
A
[ H;ll, = Z |hi[k]
k=0

1F'(21) — Fz2) ] x

A
L[F;Bx] = sup o1 = 2alx

z1,22€Bx ,z17#22

andL[I,B] < 1.
A proof can be found in the appendix.



Itis possible to derive conditions for the iterations int{d) and wheref" = [Fj,..., F},], where

remain within a compact s&® = [pPmin, Pmax|, S€€ €.9. [13]. o o
In such case$ : B — B and sincel[I, B] < 1, the Banach Fo— 100G =17 (11)
fixed point theorem proves the existence and uniqueness of ’ Jij i £ 7.
an equilibrium point. Since®; () = Li(p* + 2) — L;(p*), we have
C. Input Output model 0P, (2) = ii(ln(f_i'(z)))
Define deviations in the powers around the equilibrium 9z; 0z

point asz = p — p*. We now also introduce a disturbancedepending on whether it is a DPC or opportunistic user,
term, dr, which can model for example disturbances in theespectively. This gives

measurements of the interference or the target SIR. We can (1-51)gra e +21 GunePhtn
then write the system as the operator equation [W J#Fﬁ}
p=Ho(br +1(p)). Ve = S
where H and I are interpreted as operators on a Banach ohtEmert gpEmert
spaceX. Furthermore (12)
where the plus sign corresponds to DPC users and the minus
z=p—p"=Ho(br+1(p)—Ho((p")) sign to opportunistic users. The results in this paper wéll b
=Ho(I(p) — I(p*) + or) independent of whether the users are DPC, opportunistic or
= Ho (®(z) + 6r), combinations thereof, since the differences in sign will be

removed by norms.
where () 2 I(p* + z) — I(p*). This system is illustrated ~ Proposition 2: Let  be defined by a combination of DPC
in Figure 3. and opportunistic users. Fég, andls ., we have that the
gain and global Lipschitz constants satisfy

V. INPUT OUTPUT ANALYSIS
[®f1c—10e = L[P31oc] =1

In this section we perform an input output analysis of the 19Nty oty oo = L[®;10.00] = 1.
model that was derived in the previous section. We will show o ) ' )
that the gains of the linear and nonlinear parts of the system Proof: A proof is given in the appendix. .

do not satisfy the small gain theorem. Instead, we need toA consequence of the above result is that global versions

analyze the system in bounded regions of the signal spa®. the small gain theorem cannot not be applied. This
This is not surprising in view of the fact that no guarantee(SOHOWS since the integral action in the controller implibst

rate of convergence can be obtained for the power updaté(l) = 1, which in turn implies that|H ||, > 1. Since in
law in (1) for general two-sided scalable functions. It iscal Proposition 2 it was shown that the global Lipschitz constan

interesting to notice that input output analysis in the déad is equal to one for our considered signal spaces it follows

I, space seems infeasible, see Subsection V-C. that | ||, L[®; loc] = 1 and the small gain condition of the
loop gain is violated. Global stability can be proven if the
A. Lipschitz Constants for the Interference Mapping condition onH (1) is relaxed toH (1) < 1. Then, however,

the relationp* = I(p*) in (10) does not hold, which in the
DPC case means that the target SIR is not reached in steady

[(p" + 2) *.I.(p ), whe_re[ IS tWO'S'd.ed scalable. Clearly state. This fact motivates the study of local stability é&ast
®(0) = 0. Initially we will focus attention on the case when of global

the system consists of DPC and opportunistic users, i.enwhe

some users use the power update in (2) while others use (B). Local Analysis

This means that the interference function has the following | et x pe either of the space§. or I3 __. Consider the

form o B set B, defined componentwise By i <p < Pmax,is Vi
I=[L(p),...,I.(D)], The induced sets for the deviations around the equilibrium

point, z, is then given by

Consider the nonlinear operatdr, defined by®(z) =

where I;(p) has either of the following forms
B* = {Z € Rgo :pminﬂ' —Pj S Z; S pmax,i —Pj7VZ}

=T
L(p) = 2 Ri(p) DPC (13)
g By ={z € X : z[k] € B*,Vk}. (14)
Ii(p) = T, Zﬁ) Opportunistic, Proposition 3: Any ® : X — X defined by two-sided
’ scalable interference functions is Lipschitz on the closed
where convex setB% with

Ri(p) = F'p + 57 L[®; Bi | = L[®; B, | = L[®; B*] < 1.



Assume furthermore that is continuously differentiable and =
that the Jacobian is Lipschitz aB*. Then D

L[®; B7] = max [V®(z)|1.

+

or D1 57»+Z

For the DPC and opportunistic algorithms the Lipschitz
constant is easily computed. It is given by

Fig. 4. The system on input-output form with scale factors.

FieP" +2max
max |V®(z)|1 = max ——=—5——
2B+ (=)l i 57? + Fiep*+2max’
whereep +7max — [gPitzmax1 ePrtoman] andzpag; = and the references therein. Consider first the DPC case. The
[ ’ : i
Prmax.i — Pl Vi. proof of our claim follows because if
Proof: A proof can be found in the appendix. = . 1 . 0
. . . 11 21
For one of our main analysis results we need to consider z1 = [ 212 ] - { 0 } » o F2 = { 299 ] = { 1 } )

the maximum interior ball ilB* and B, respectively, which

are defined as andd; = 1,52 >0, i=1,2. Then one can show that
B*(y) ={z € Rus : [2]0c <7},
Bx(v) ={z € X : z[k] € B*(v), Vk},

6’%+§12€p; 5’%+921GPT6
. . . . =In - | —In| 5—F—) <0,
wherey = min;{min{p} — Pmin,i; Pmax,; — p; } and the o2 + graePie 53 + gorePi
corresponding Lipschitz bounds

(21— 22)" (®(21) — @(22))

which implies that the interference nonlinearity cannot be
L[®;B] ()] = L[®; B, _(v)] = L[®;B*(7)]. incrementally positive. Now consider the opportunistis&a
and the choice of signals
Theorem 1:If ||H|; < m, then there exists a
unique power distributiorr € B} E’y) for all PO 2R 0 || |1
o 1 — - 9 22 - - 9
Z12 71 Z992 0

31— [ H | L[®; B*(1)])

o7l < | H||, (15) andd; = 1,52 >0, i=1,2. Then one can show that
If it in addition holds that||dr||2,. < co and (21 — 20)T(®(21) — B(25))
1 57 4 groeP2e ! 73 + gareP1
||HH1 o200 < TId. e N’ =1 % 1 % <0
B L[®; B*(v)] "\ Tt graers o 72+ garePie ’
thenz[k] — 0 ask — oc. and hence the same holds for the opportunistic case.
Proof: A proof is given in the appendix. [ ]

. . VI. INPUT OUTPUT ANALYSIS USING SCALINGS
C. Failure ofi;-based analysis

It is often advantageous to analyze the system in a Hilbert N this section we will see how the results of the previous
space such d§. Then the inner product structure and FourieS€Ction can be improved. We insert multipliers into the loop
domain tools may be used to capture phase information a¥dhich gives the transformed, but equivalent system

frequency domain interpretations. Note also that the gain . A

|Hllip 1y = sup max|H;(jw)| is less than or equal to H(q) =D~ H(q)D = H(q)
SR - : &(3) 2 D lo(Dz

| H]|:. Despite these potential advantages it turns out that (2) = (Dz)

the interference nonlinearity has a structure that apptears 5r = D Lor, 52 p-1,

be unsuitable fol;-analysis. Our first negative result shows
that its gain and Lipschitz constant grows with the numbefor any D € D = {D =diagd,,...,d,) : d, > 0}. See
of users for the cases where the interference nonlineasity Figure 4. An interpretation of this is that we study stapilit

defined from the DPC or opportunistic algorithms. of an equivalent, transformed system where the norm is
Proposition 4: ||®||;,—i, = L[®;12] = v/n. changed. The advantage is that structure of the intercennec
See [12] for a proof. tion matrix can be taken into account in the computation of

Our second negative observation shows that for the sartfge local Lipschitz constant. In the following we assume tha
algorithms, the interference nonlinearity violates thdi-de ® is continuously differentiable. Let = D'z, = D~ 1y.
nition of incremental positivity in [21]. This implies that Note that V(M ®(x)) = MV®(z), M € R™ ", and
powerful characterizations of memoryless nonlinearitiemm  V(®(Mz)) = VO®(Mz)M, where VO(z) is the Jacobian
the input output theory cannot be used, see e.g. [21], [16F ®. We have



| (2) — ()]s Theorem 1 then proves the statement. [ |
T Note that some conservativeness is introduced in Corollary
= | / V(g +0(2 —9))(& — §)df| since the Lipschitz constant is taken over theBetwhereas
01 stability is guaranteed in the subs€(¥). By working on
= |/ D™'V®(Dj + DO(& — 9))D(2 — §)df| oo the setD~!B* there is no conservatism, but the bounds
(1) on the powers may be violated. In section VIII we will
1 A optimize over the scalings to obtain a lower Lipschitz
< /0 |[D™*V®(y + 0(x — y))D}1d0|Z — §|co constant.

< max [D7IVO(2) D]y [2 = oo

VII. GLOBAL ANALYSIS USING SATURATED POWERS

o ] In this section we will consider a model with a saturation

where B* is given in (13). , , on the powers entering the interference nonlinearity. The
By a suitable choice of scalings we may obtain lowep,qified system is shown in Figure 5. With the saturation
Lipschitz gain and thus less restrictive stability crigefThe  iniroquced we prove global stability and show that some
following result shows thak’p is the Lipschitz constant of qnservatism in the results of the original model in Figure 1

the scaled nonlinearitp. _ _ .. isremoved for the saturated system.
Proposition 5: Assume that the Jacobian &fis Lipschitz A saturation operator was used already in the proof of
* 1 1 . mn nooq
on B*. Then t_hle fcaleti nonlinearity : RS, — R IS Theorem 1. We then showed that the saturation operator is
Lipschitz onD™" 5" C R5, with inactive for an appropriate choice of bound on the distur-
L[(i);Dle*] = max |D"'V®(z)D|; = Kp. bapceg. In that procedure we used a maximum interior ball,
zEB~ which introduced conservatism. By instead starting from a
saturated system an analogous stability analysis is desélo
for the modified system where there is less conservatism and

2Kp

Proof: A proof is given in the appendix. ]
Let d; be our scalings. Define

A N O . N global results can be established.
rem {mm { d; (% = Pmin), d, (Prmax.i = P; )}} : A drawback of using the saturated model is that the class
and the sets of system architectures which can be included is differ-
ent from the original model. In Section VII-A we discuss
C(¥) ={z € Reo : =di¥ < 2z < diY, Vi} architectures that can be modelled and compare possible
Cx(§) ={z€ X :z[k] € C(¥), Yk} approaches to include saturation. In Section VII-B we apply
2 the previous stability analysis to the saturated model.
Csx(§) = {57” € X : |ori[K]| < ydi(l — ”HhKD),Vz‘,k} P Y Y
’ [H 1 A. System Architecture and Modelling

“In complete analogy to Proposition 3 it follows that the saturation of the powers models bounds on the maximal
Lipschitz gain of the scaled nonlinearitp over the set and minimal transmission power of the users. It is a realisti

Cx (%) is computed according to the next proposition.  assumption that such limitations exist. However, inclgdin
_Proposition 6: The scaled nonlinearitgp : X — X is  the saturation operator imposes structure on the location o
Lipschitz onCx () with information in the network. Parting from the original model

Lidb:C ()] = Lid: C N = L (4 in Figure 1 there are two natural ways to introduce satunatio
(@5 Croe (N)] = L1 Cry o ()] = L2 C (7)) Consider first introducing saturation only to the trans-
< max |D™'V®(2)D|; = Kp mission powers in the interference, i.e. the upper loop, see
R ) Figure 5. The filterst’; and F are given as before in (6),
_ Proof: We have thatC(¥) C D~'B* and hence (7) andC(q) 2 =1 (q), with C(q) given in (5).
L[®;C(%)] < L[®;D7'B*] = Kp. The proof of the : B T ; .
’I" ol r’] i ‘ . An architecture included in this model is a base station
eq#ﬁ |t|<:s”o ows the |n|es 0 IIDroposmgn 3. d ﬁ.-. measuring interference and computing unsaturated irlterna
e foflowing cgntra result gives improve S ICleNtgiates of the transmission powers. If the transmissionsgain
conditions of stability and convergence under disturbancg ... cen user and receiveri is known for all users by

for the wide class of power control algorlthm.s StUd'ed.' for example pilot transmissions in the network, this can be
Corollary 1: If |[H||, < &5 then there exists a unique motivated.
power distributionz € Cy,, (5) for all o € C,1. (7). Next consider including the saturation in the transmission
If it in add|t|(1)n holds that ||dr]|2,.0 < oo and powers in both the upper and lower loop, see Figure 6. This
[ 13 o =120 < 75 thenz[lc_] - 0 ask — oo. . includes an architecture with a base station measuring both
Prpof: \i\/le study Sta?'“t.y n the Scéled ilgnAaI SPaCenterference and transmission powers before computing and
where 2 = l? Gz E Ci, (%) implies thatz € B;_(7) and transmitting a feedback signal to the mobile user. This rhode
or € Co1.,(7) implies that implies that a marginally stable loop is saturated, whicly ma
-~ 1 —||H|Kp cause instability problems. Analysis of this model is beyon
1orloe <% Hl, the scope of this paper.
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Fig. 6. System model with saturated powers.

B. Global Analysis of Saturated Model

Define the saturation saf R" — R™ whose it"
component is

Pmax,i if pi > Pmax,i
[SatB(p)]l = Di if — Pmin,i <p; < Pmax,i
DPmini ¥ Di < Pmin,is

where the setB = {p € R"
define

* Pring < Pi < Pmin,i}- NOW

Lsa, (p) 2 I(satp(p)).

Proposition 7: Assume thatl(p) : R — RY, is two-
sided scalable and thaB is compact. ThenfsaﬁB] (p) is
Lipschitz for anyp € R with

L{Isay,; R = LI; B] < 1.

Proof: The saturation cuts all powers to values within
the setB. This reduces the feasible set of the maX|m|zat|0n

problem giving the Lipschitz constant,

I -1
Lllsa R = sup M) TGl
21,20€B,21#2 ”Zl - ZQHX
= L[[; B] <1,

Dsape)

+

D! ‘SAWZ

or

Fig. 7. The saturated system on input-output form with séadéors.

where the last inequality is given by Proposition 1. =
Now consider the deviations around the equilibrium point,
z, and the seB* as defined in (13). Define

Psay - (2) 2 d(satp-)(z)) = I(p* + satp+(2)) — 1(p")

Proposition 8: Any ®sy,,., : X — X defined by two-
sided scalable interference functions is Lipschitz with

L[(I)san*ﬁloo] = L[(I)saQB*];IQ,oc] = L[(I); B*} <1

Proof: The proof follows from Proposition 3 and
the observation that the optimization giving the Lipschitz
constant is always performed over séis andB; . ®

Theorem 2:1f || H||; < 775 5] , then there exists a unique

power distributionz € I %or any disturbancer. If it in
addition holds that

1
L[®; B*]’
then z[k] — 0 ask — oco. A bound on the internal states
is given by

||Hle,oo—>l2,oc <

[ZZAIR
00 < or 00

and

||H||l2,oo*>l2,oc

— L[®; B*][[H 13, 0 12,

|2 167(]2,005

respectively.
Proof: A proof can be found in the appendix. =
Note that by Proposition 8 the Lipschitz constant is the
same as for the original model without saturation and by
Proposition 3 we have that W® is Lipschitz, then the Lip-
schitz constant is equal t@ax,cp- |[V®(2)|;. A difference
for the saturated model is that we no longer need to study an
interior ball to ensure that the transmitted powers are iwith
B*. However, by doing so, we can again guarantee that the
saturation is inactive and Theorem 2 reduces to Theorem 1.
We will next introduce scalings to the model following the
same steps and notation as in Section VI. The scaled model
with saturation in given in Figure 7. Define

Baye) = D Doy, (D2).

Proposition 9: Assume that the Jacobian &fis Lipschitz
n B*. Then the scaled saturated nonllneamﬂrggw X —
X is Lipschitz with

L[®sagy-;iloo] = L[®saie s 12,00] = L[®; D71 B

= max [D"1V® = Kp.
= max [D™'V®(2) D = Kp



Proof: A proof is given in the appendix_ ] Algorlthm 1 Optlmlzatlon of L|pSCh|tZ Constant

Next follows our main result on the saturated model. 1) Let d° = dp.
Corollary 2: If |H|1 < KiD then there exists a unique 2) Solvez* = arg max; max,¢p- fi(d, 2).
power distributionz € [, for any disturbancejr. If it in 3) Compute step directios®(d, z*).
addition holds thaf|H||;, .. 1, .. < %, thenz[k] — 0 as 4) Computea®.
k — oo. 5) Update scalings throughft! = d* — o*5*.

Proof: As in the proof of Corollary 1 we study stability  6) Return to 2).
in the scaled signal space. We then have D~z andKp
is an upper bound of the Lipschitz constant of the scaled
interference nonlinearity. The statement then followsrfro

Theorem 2. : : - .
- as the eigenvector corresponding a46V®(z)), wherez is
In Corollary 1 the set for guaranteed stability of the power?haximizing the lower bound in (18). In the case when the

was a strict subset of the set over which the Lipscmtf)@unds in (17) are equal, this will be the optimal scaling

crf)nstgnt was Laken. In Cprollzzry thhe sets ﬁref ;ahqual aWctor. In general suboptimal solutions must be used, since
there is no such conservatism. Another strength o etrz.asu|t is a hard optimization problem to find the highest lower

for the saturated model is that the disturbances are allow
to be arbitrarily large in any direction. This comes at thetco
of possibly large internal power levels.

1) : A good starting point of the algorithm is to takk

und.
2) : The optimization in Step 2 can be solved using dif-
ferent methods. For fixed, the problem is linear fractional

VIIlI. OPTIMIZATION OF LIPSCHITZ CONSTANT in eachf;, and hence the maximizing can be obtained by
In order to obtain the best possible scalings fofolvingn equivalent linear problems [2].
Corollary 1 and 2 we optimize ovelD € D = In the following lemma it is also shown that for a giveén
{D = diag(d, . ..,d,) : di > 0}. We hence have the fol- the optimal solution is on the boundary of the feasible set,
lowing optimization problem. B*. For convenience of notation, denote the componentwise
.. . defined bounds oB* by znyin,; and zmax ;.
Kp = jnf max|D™V®(z)Dls, (16) Lemma 1:Consider given scalingd. Then a maximum

where K}, is the minimal Lipschitz constant in the scalegSolution tomax.ep- fild,z) is eitherz; = zmin; OF 2 =

signal space. A negative conclusion is that the optimipatio®max.i* V*:

problem in (16) is neither convex nor quasiconvex. Proof: A proof can be found in the appendix. ~
In general it holds that Remark 1: f;(d,z) can be interpreted as the Lipschitz

) . . . constant of usef, which is a measure on the stability margin
Jof max |D Vo(2)D]y > max inf |D7'V@(2)D[1,  of the user. Lemma 1 proves that the worst case is achieved
(17) when all users transmit with maximum or minimum powers.
so a lower bound of’}, in (16) can easily be achieved, sinceln Proposition 3 it was already shown that for the case
it is a well known fact that (see e.qg. [5]) D =1, all users transmit withyax, ;-
. 1 According to Lemma 1 the inner optimization problem
ey [l)IelfD D7 Ve (z) Dl = ey PVO(2)). (18) can be solved as a combinatoric problem, which is efficient
However, in general the bounds in (17) are not equal. for small dimensional systems, or by using some active set
In this section we discuss how the optimization can b&ethod for larger problems [10].
performed in the case when the interference function is 3) : As step direction ofl, 5*(d, z*), we used a weighted
defined by DPC and opportunistic users as in Subsection \/jnear combination of the gradients of the differefat
A. For convenience of notation, lat; = (1 — 8;)giieP and n QT
a;; = gi;ePs in the expression fov® in (12) and letd be the 5*(d,z*) = Zvdfi(d» 2*) nfi( ") = f _.
vector defined by the scalings= [dy,...,d,]T. Defining ] >izi | fild, 2*) = f|

Al 1 L wheref = 1 3™  fi(d, z*). The intuition is that we balance
. = _ A p” 1 .n z=1_ L\ .
fild,z) d; o + E};l a;je?s ;dﬂa”e K (19) the functionsf; with the scalingsd; to decrease elements
B above the mean and increase elements below the mean. This
we have is motivated by the fact that in the lower bound (18) falare

-1
[D™V®(2) D)y = max fi(d, 2), equal and furthermore, a property of non-negative matrices

and hence the inner optimization in (16) is equivalentl)'/S that_ the biggest elge_nvalqe IS bqunded between the lowest
and highest row sum, in this casein; f; andmax; f;, see

written
e.g. p. 63 in [9]. We also weight the gradients according to
max max fild, z) = max max fi(d, 2). the distance to the mean value.
We propose the following heuristic algorithm to solve the 4) : As step length we used Polyak's stepsize rule
optimization problem in (16). & max; f;(d,z*) — f*

“or EE ’



wherek is a constant ang™ is an estimate of the optimal
value. We used the highest lower bound in (18) as estimate J
of the optimal value. 6
This is not a subgradient method, but it seems to have ;
better convergence properties in our experiments. Conver-
gence of the algorithm can not be guaranteed. However, each
iteration is feasible in the sense that it is a valid Lipschit
constant, and we can compare with the highest achieved :
lower bound to get an idea of optimality.

Stability of a DPC system with delay

IX. EXAMPLE o
Consider a network with three users, where two of them N P 02
heavily interfere the third one. Let the interconnectiors b p
given by the following gain matrix Fig. 8. Stability of DPC with delay. Stability for some dishance is

guaranteed for all values below the plane.

1 0.0003 0.0015
G = | 0.0758 1 0.0758 |,
0.0030 0.0003 1 _ Stability of a DPC system with delay

and let them use the DPC algorithm with the slight mod- m |
ification of having the systenC(q) = % instead of
Clq) = q%l We will study the effect of delay and delay

compensation on stability for the system with and without

saturation on the interfering powers. Assume that= 9.0, E
6; = 1 and 6? = 0.05,Vi, and that no filters are used.
Given that the equilibrium point is within the unsaturated L
region, it is equal for the saturated and unsaturated system Ko
The equilibrium point can be computed by =
ﬁ* _ (I_f‘F)*lf\5.27 0.1 0.2 DSZldOA UﬁS 0.6 B}L;w 0.8 0.9

P — diay~T /(5. 7 =T /(5 = =2 _
V\ff;ere ILQ_T dlag.(% /(.619112’ <37 /(0ngnn)) and o Fig. 9. Stability of DPC with delay. Herd{p(2) denotes the scaled
[07,...0,]", which givesp* = [0.4606,1.0853,0.4668]" .  |ipschitz constant computed for = 2, and i (2) the Lipschitz constant
We will first study the original model without saturation.  as computed for Theorem 1 for = 2. 35, and 8}, are the maximum

values of3 given by Corollary 1 and Theorem 1 for which stability can be

A. System without saturation guaranteed for some disturbance.

First consider the case without delay. To analyze stability

of the system we computeH ||,. We have
the plane||H||; Kp = 1, where K, was obtained by use of

H(q) = L’ the optimization algorithm proposed in section VIII. Stabpi
¢=1+p for some disturbance can be guaranteed by Corollary 1 for all
and (3 and~ where the surface ofH||; Kp is below the plane.

0o oo 3 Consider the case = 2. This corresponds to the bounds
H|, = hlk]| = 1-p)k=—52" =1, on the powers in linear scale
I1H kZ:O\ (k]| ;}m B =i p

_ _ B o © Pmin = [0.062,0.147,0.063] 7, praax = [3.403,8.020, 3.449] 7,
Since by two-sided scalability the Lipschitz constant issle

than one, stability follows fo € [0, 1] by Theorem 1. defining B* as in (13). When the Lipschitz constant is
We will now study what happens when a delay is adde@iomputed as in Proposition 1 and 3, we @g®; B*(y)] =
to the system. We then get 0.9121, which implies that Theorem 1 guarantees stability

for g € [0,0.34]. However, when using Corollary 1 and
= ZL using optimization we obtaikp = 0.2643. Now stability

¢ -q+p can be guaranteed fg# € [0,0.707]. This is illustrated in
The norm is now dependent on the choiceloflo guarantee Figure 9, where the value dfH]||; is plotted as a function
stability by Theorem 1 or Corollary 1, we nedd ||y K <1 of 8 € (0,1). Stability as a function off can be determined
and||H||1 Kp < 1 respectively, wherd& = L[®; B*(y)] and from the graph by comparing the value pf|; with the
Kp is from (16). Stability of the system is dependent on botlvalue of1/K and1/Kp for different values ofy. Note that
the value of3, and the value ofy or 4, the bound of the asy — oo, L[®; B*(v)] — 1.
deviations from the equilibrium point. This is illustratéal Now consider fixingG = 0.7. In this case Theorem 1 can
Figure 8. The producf H||; Kp is plotted and compared to not be applied. However, Corollary 1 guarantees stabibty f

H(q)



powers inC;__ (%) given that the scaled disturbances are irpoint and sufficient conditions for convergence are given
Cs.1.. (%). For this example the optimal scalings are given byising input output analysis. To reduce conservativeness of
d = [0.3048,1.1428, 0.3571]7, which givesy = 1.7500 and the results scalings are introduced to exploit more strectu
C (%) is defined by the componentwise bounds of the interference feedback. Finding the optimal scaliisgs
a non-convex optimization problem. However, we show that
Pmax = [~0.2419,2.0819, —0.1369] " the optimizationpproblem hgs a lot of structure and propose
Pmin = [—1.3086, —1.9181, —1.3867]". an heuristic solution algorithm.

From an example we conclude that delays have an impor-
fant impact on stability, which motivates the use of higher
order models. Scalings significantly reduce conservadisen

We note that this set is smaller than the original Bétused
for computing the scalings. The bounds on the disturbanc

are given by . .
compared to previous results and delay compensation can be
ory 51— ||H|, Kp) dq 0.0049 used to stabilize a system with known delay.
1 <—— 11 714 = 0.0184 | .
T2 1= HHH 2 AcknowledgementThe authors are grateful to Mats Blom-
ors 1 d3 0.0057 gren and Fredrik Gunnarsson at Ericsson for valuable sug-
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APPENDIX: PROOFS

A. Property of two-sided scalability

Definition 1: (Two-sided scalability) For alla > 1,
(1/a)p’ < p < ap’ implies

(1/a)I(p) < I(p) < aI(p).
Proposition 10: Let d(-,-) be defined as in (4). Then the
definition of two-sided scalability is equivalent to

d(I(p), 1(p)) < d(p.p).
Proof: The conditiond(I(p),I(p")) < d(p,p') is

equivalent to

L(p) L i 7,
max{max{ ,”(3), 1(17_)}} <max{max{pf,pz}}.
i (') 1i(p) i p; Di
Let
e { {pi pi}}
©¥ = argmax 4 max<{ —, = ¢ o.
t p; Di

Let p # p' and assume w.l.o.gi,.. > p;-. Now definea =

/
D;* 1
Pix > L

—/
a="L" 2 opi = Pl = apie > Pl
Dix
1_ L () () 1_
—pi+ = ——Pir =~ < = =P = —Pir < Pjn
« i* D= D= (e

B. Proof of Proposition 1

Proof: Considerp, # p, € B. Each component of
being two-sided scalable implies by definition that

U Uy T ) <

Using logarithmic variables this is equivalent to

I(p1:) 1(P2,)

D1, D2,

— pR—
D2i D1

I

max
%

max

: {max {I(pu) —1(p2,i), I(p2,i) — I(pu)}}

< max { max {Pu — P2,i,P2,i — Pl }}

< |I(p1) — 1(p2)]ee < |P1 — P2loo
11(p1) = I(p2)loe

< 1.
|p1 - p2|o<>

C. Proof of Proposition 2

Proof: Let us first consider the interference nonlinearity
as a multivariable functio® : R — R . It follows that

() — B(y)]oc = | / VO(y + 0(z — y))(x — y)d]

1
< / V(1 0 — y)[1dblz — yle
0

< sup |VO(2)1]z — Yl|oo-
zER™

This gives the Lipschitz bound

LI®; RL] < K 2 sup [Ve(2)|;

+ (1*51)§116pf+21 GinePnten

G3+Flep™t= G3+Flep™t=
= sup
z -
+ gn]epTJer (176n)gnn€p:"+Zn
G2+ Fnep+z= G2+ Fnep +z 1
FieP'+=
=supmax —————— =
2 i O.LQ + erp*+z

This holds since) < p;- < p;-. We hence have established\ye then have

that with this choice ofo we havelp,. < pi < apl..

Similarly one can show that this relation holds for all

elements ofp andp’. We now have

max{max{ Li(p) L(P) }} <

L(p) Li(p)
which implies that for alli we have the following relations
Li(p) L(p")

L) =" T

which is equivalent to

<,

1) < 1(p) < aI(7)

19 (1) = ®(22)ll2,00 = | D 1@ (21[k]) — B(=2[K])[%
k=0

<K Z |z1[k] — z2[k]|%
k=0

:K”Zl — 29

2,00

which shows thall[®; 5 ] < K = 1. We will next see that
the bound can be achieved asymptotically by considering the
l2 o-signal,

, k=0

otherwise.



Let eP"+o1 pe defined ag? = [eP1, ..., eP»]T. Consider for The case whereb : la,0c — l2. is analoguous. Hence

simplicity the DPC case. We have Li®; By | =L[®; B}, ]<1.
) 12 Now assumeb is continuously differentiable and that the
1@ (az) — B(0)]|2.00 = (Z@ azlk ) Jacobla_lr_w is Lipschitz. From the first part of the proof of
o Proposition 2 we have thdt[®; B*] < max,cp+ |V®(2)]1.
In ( G2yl +a> To see that equality can be achieved we assume
52+ Fler” *
_ |1 E max [Ve(z)ly = fi- (%),
“ In (aﬁ+F"6p*+a> wherei* is the maximizing index and* is the corresponding
ah+Fner” oo maximizing solution. We know the existence of such since
] 1n (6ff2‘“+lFle”*> |[V®(z)|; is a continuous function and3* is compact.
« Hiter Further, letsz be a unit length vector inR” such that
= : ]t : —1 |V®(2*)d2|00 = [V®(2*)|1. Let Z be an interior point of3*
1 1y (6iﬁe*“+F"ip*) such that|z — 2z*|,, < 7. Now lety = Z andz = Z — edz.
a GhtEmer 00 We get

as a — oo. A case with opportunistic or mixed users

is analogous. The denominator and numerator will switch  |®(z) — ®(y)|e = |/ V(2 — e002)62d0 o

place, giving a difference in sign within the norm, but not 1 0

changing the result. > [VO(z*))) — \/ (VE(2*) — V(2 — €002)) 62db] o
It follows that L[®; [3 o] = 1 as well as||®||;, i, .. = 0

1 for both the DPC, opportunistic and mixed case. The = [V®(z%)1 — (e+n)L[V®; B

case with thel.-space follows using essentially the SaMEyhere L[V®; B*| denotes the Lipschitz bound of the Jaco-

arguments. B hianVe : B* — RY*™ andR'*" is the vector space of real
D. Proof of Proposition 3 \éa;ﬁggn x n matrices equipped with the matrjx |;-norm.
Proof: First consider the interference nonlinearity as a . i} .
function® : R, — R™ . We have by definition thab(z) = € |®(@) = 2(y)[ec = [VO(2")1 — (e +n)L[VP; B,
I(p* +2) = I(p"), and from the proof of Proposition 1 We anq sincec andy are arbitrary it follows thatZ[®; B*] >
get IV®(z*)|,. We conclude thal[®; B*] = |[V&(z*)|;.
1I(p1) — I(p2)]os Now consider the DPC and opportunistic algorithms. Then
—|p1 — | <l the Jacobian is given in (12) and the absolute value of the
e * row sums are on the form
[1(p1) = I(p") = U(p2) = I(0")loo _ I
Ip1 —p* — (P2 — P)|se S
[®(21) — P(22)] <1 G2 + Fier +2
|21 — 22|00 The maximum is achieved wheR“e? +* is maximized.
Hence we have that for powers, € B, L[I; B] < 1, or _Sinc_e all coefficients are ppsitive, t_he m_aximum solu_tion
equivalently forz € B*, L[®; B*] < 1. Now considerd as 1S 9IVeN by 2 = 2max;, Vi. The Lipschitz constant is
an operatod”, — I then g|v<.en_by.the maximizing index:, since the order of
the maximization over the indek and the setB* can be
L[®: B | = sup ||‘I’(|»|Zl) - q’(fﬂ”oo interchanged. [
21,2 AL 21 — 22||lco
R e L E. Proof of Theorem 1
= sup supy [D(21[k]) — (22[k]) oo Proof: Define the saturation sat; .1 : " — R"
212€B) atze WPk 21 [k] — 22[k]|o whosei'" component is
< sup L[®; B*| supy, |21[k] — 22[k]|o ~y if 2 >
21722€BZ‘OO,Z17522 Supk |Z1 [k] - z2 [kHOO [Saﬁ_ﬂ,ﬂ](z)]i = Z; |f -7 S Z S Y
= L[®; B¥| -y if 2 < -y

We now show that the inequality in fact is an equality. Sincé'iInd let

B* C Ry, is compact, there exist}, z3 s.t. |®(z]) — ©,(2) = B(sAt—r1,42)(2))-
®(23)|cc = L[®; B*]|27 — 23|;... Equality is then reached Define F'(z) = H(5r + ®,(2)), then

above for the signals
1F(21) = F(22)loc [ H (@ (21) — @(22)) o

o= =0 - < [HIWL®; B (3)] o1 = 22l
0, otherwise 0, otherwise.

A

<1



where we used Proposition 3. Hence F is a contractiohon G. Proof of Theorem 2
and according to the Banach fixed point theorem there exists Proof: Define F(z) = H(6r + ® (2)), then
a unique solution:* to the fixed point equation* = F(z*) S8pm 12/

As;umf now that the bound in (15) holds. Then the fixedF'(z1) — F(22)lloc = [[H(®sayp.(21) — Psaip- (22))loo
point z* satisfies < || H|LL[®; B*] |21 — 22]|oc,
* % ~—_——————
2" ]loc = 1F(z%)lloo e
<||H|: <||57”||oo + L[®; B*(’Y)]IIZ*IIQO> where we used Proposition 8. Hence F is a contractioh.on
and according to the Banach fixed point theorem there exists
< HH||17(1 — L[®; B* ()] HI1) a unique solution* to the fixed point equation* = F(z*).
- Il H |1 Assume now a fixedr, then the fixed point* satisfies
which is equivalent td|z*||. < «. This implies that there
also exists a unique power distribution with| ., < v to < |H|h <|57“||oo +L[(I)§B*]||Z*”oo)v
the real system because the saturation in the definitiah,of
is inactive. which is equivalent to
The last statement in the theorem follows from the bound
e Ml 1l < T pr 197
T 1= L@ BE N H 1, 1 ’°° N
which is derived in the same fashion as the previous bounzi—.he case Where : I 0o — I2,00 is analoguous. u
® W Proof of Proposition 9
F. Proof of Proposition 5 . . . Proof First consider
Proof: From the derivations when introducing the
scalings it is clear tha.[®; D~!B*] < Kp. To see that L[®saty. ;0]
equality can be achieved we assume |ID7'®(D2)) — D7'®(D25)| 0o
= su = ~
Kp = max |D7IV®(2) D]y = fi- (27, Dzl,DgeB* 121 — %20
& -1 5\ _ -1 s
where i* is the maximizing index and:* is the maxi- = sup 1D (I)(DZ}) P P(DZ)|oo
mizing argument. Such index and argument exists, since 21,52€D71B* 21 = Z2foc
|D~'V®(z)D|; is a continuous function and the optimiza- = L[®;D"'B*].
tion is over a compact set. Letz = D16z be a unit _ R )
length vector in R, such that|D~!V®(z*)Déz|,, = This can be expanded O[®say,. ;15| and L[Psay .. 5 15 o ]
|D=1V®(z*)D|;. Let # be an interior point ofB* such by the same argument as is Proposition 3. The last equalities
that |2 — 2*|o < 7. Furthermore, lett = D13 — 5> and s a restatement of Proposition 5. [ |
j = D~1z. We then get
4 N g . I. Proof of Lemma 1
1 - . 1 N
E\<I>(a§) —P(§)|oo = E| / Vo[ +0(&—19))(E—9)d0|so Proof: Consider fixed values ef and study the function
0

. fi(z) := fi(d,z), as defined in (19). First we show that
= 1|/ D™'V&(Dj + DOz — §))D(2 — §)df|,  there is no stationary point in the interior of the feasible
€ 1o region. That gives us that at least one indey, of = must
. B ~ be eitherzmax k; O Zmin,k,. We then fix the value fog,, to
= |/0 D™ V®(z — febz) Dozdb)| o 2y = {Zmaxk, ,szin,k].} and study the optimization prZ)bIem
> |D-'Ve(z*)D|; again. Recursively we prove that for the reduced problems,
1 with some variables fixed, stationary points only exist on a
_ |/ D‘l(V<I>(z*) —V(z — 9652))D(5}d9\w set of measure zero of théspace. Furthermore this set is
0 B independent of the remaining variables. Hence the remginin
> |D7'V®(2*)D|; — (n + ed)L[D~'V®D; B variables can also be taken on the boundary. If the scalings
where d = max;d; and LID-'V&D; B*] denotes the d do not belong to this set of measure zero, the optimal

Lipschitz bound of the scaled Jacobian ®f D~ 'V®D : solluu'o:n at the .blgundary |%un|que.
B* — R*™ and R}*" is the vector space of real valued ) Hirst step: First consider

nxn matrice; eq_uippe_td with the matrix- |;-norm. By n) Dages + -0+ Lagy,e
assumptiorivV® is Lipschitz onB*, and hence we have that fi(z) = e T ta ctn T+ 52
also D~'V®D is Lipschitz. Sincee andn are arbitrary it i " i

follows thatL[é; D~'B*] > Kp. wheren is denotes that there arefree variables and;; =
B (1-0;)gue” anda;; = g;jes. Now differentiate w.r.t.2;



and set to zero.

afi(”)
ﬁzj

dj — (= 5 n 752
2 aie (@pne™ + -+ ame* +a7)

zZ) =
( ) (dilezl + o4 agpe + 5—1.2)2
aije* (Fane™ + -+ Pa,e)

(@j1e* + -+ + ajpe*n +G2)2

=0

As before, the denominator is always positive so we can
focus on the numerator. Multiply all terms with and divide
by a;je* > 0. We then get the equation

dlj@i71€zl —+ -+ djai,n_lez”—l + djﬁf + del
~ 2 = Zn— _
—dya; 1€ — - —dp_1G;p_1€""7 — di, K1 =0,

which is equivalent to

Note that the denominator is always positive so we can focus @, 1(d; —di)e** + -+ @ n—1(d; — dp_1)e* "t =

on the numerator. First multiply all terms with, then divide
by a;;e*, which is always strictly greater than zero.
We then get the following equivalent equation.

djane™ + -+ d;age™ +d;o;
—di@;1e — - — dplipe’™ =0,

which is equivalent to
@i (dj — d1)e™ + -+ + Qi (dy — dy)e™ = —57d;.

Differentiating f; w.r.t. all z;, j = 1,...,n, we get the
following system ofn equations, corresponding ¥ ;(z)
0,

(d1 — dl)xl + -+ (dl - dn)xn 7_2’2d1

-
—0idy,

(dn — dl)xl + -+ (dn - dn)xn

wherez; = a;;e*. Assuming the dimension > 1 we get
the following relation

(fo)d - (de)l

n
=2
= —0; d7

1=0

which has no solution for positive and d. Hence there is

— (67 + K1)dj + dy, K.
Differentiating fi(”’l) wrt al z;, j=1,...,n—1, we
get a system ofn — 1 equations, now corresponding to
V"V (z) = 0. Again, leta; e = ;.

(dy —di)zy+ -+ (d1 — dp—1)Tp_1

= — (07 + K1)d1 + di, K1

(dp—1 —d1)x1+ -+ (dp—1 — dn—1)Tn-1
= (62 4+ K1)dp_1 + di, Ky

Reorganizing the equations gives the following relatioat th
must be fulfilled for existence of an interior stationary mtoi

n—1 d1 1
() ) —(dTx) =
i=1 dnfl 1
dy 1
—(@F+ Ky | | +de Ky
dp—1 1
Consider first the case when at least ahe# d;, (i,7) €
{1,...,n—1}. Then the coefficients of the vectors must be

no extreme point in the interior, and the maximum must béhe same, giving the conditions

at the boundary. This implies that at least one element of the _;

z-vector must be eithetyax,k; OF Zmin,k, -

2) Second step:Let k; be an index of a variable
at the boundary. Defind<y = a;,e*1, where z;, €
{#Zmax.ky s Pmin,k, }- NoOte thatK; > 0. With the indexk;
taken away, order the remaining variables franto n — 1.
We then study the stationary point of the function

dy = dn_1 = dg
?:ailez1+...+ Tillai,n—162n71+ d;Kl

@it 4+ 1651 57 + Ky

fi(nil)(z) =

Following the same steps as before, we differentiate w.,t.
j € [1,n— 1] and set to zero

afi(”—l)

8zj (Z) -

d; — o _ _
*]aijBZJ (aﬂezl + -+ aivn_lez"—l + 0'2-2 —+ Kl)

di
(@1 + -+ Gip—1"-1 + 5-1,2 + K1)2

_ Cidy = dn_1 = e di
aije* (Fane™ + -+ 2 a;pa e + Ky

i i

(@ + -+ + Qip_1€"n—1 + 522 + K;)?

n—1
~ i —2 _2 | = .
=Y aye = —(0 + K1) = —(7 + arg,e™),
j=1 j=1
and

n—1 n—1

= Z4 - Zk
N diwy =Y djaie” = —di, K1 = —dg, a5, €™,
=1 =1

which cannot be fulfilled for positive;, d. Now consider the
cased; = «,i =1,...,n — 1. We then get

n—1 n—1
« E T, — & E €Z;
i=1 i=1

which reduces to

—a(5? + Ky) + dy, K1,

_dyp K
o2+ Ky
Hence there is a stationary point on the set of measure zero
of thed-space whewr; = «, Vi # k;. However, the condition
on the scalings for the stationary point is independent ef th
values of the remaining powers, which implies that they can
be taken on the boundary.



Assuming the fixed scalings do not fulfill the conditionAgain, consider first the case whetle # «,i = 1,...,1.
for a stationary point, another variable can be fixed to th&hen the coefficients of the vectors must be the same, giving

boundary. the conditions
3) Iith step: In the I:ith step we have the free variables ; n— n
21,...,2 and the fixed variablesy,, ..., zx, , giving sz - Zdijezj — _(53+Z K;) = _(5§+Z G g, €9,
dig es 4. g dig a4 Sl : : : /
Fag €t 4o+ Fraget + K;
) =2 . 2o K and

Gpe? + -+ a; e + 67+ 30| K,

Differentiate w.r.t.z;,j € {1,...,1} and set equal to zero »  djz; = » d;ae™ = (> dp K;) = =Y di,Gik,e™,
we get = = j= =

0 which cannot be fulfilled for positiver, d. Now consider
of; :
(z) = d; =a,i=1,...,1. We then get
6'zj
ﬂ,“ 2i(= =z 2 n—l l l n—I n—I
dialjej(a“el—i— et +o? +lz 1 K5) azxi—azxi:_a(ﬁf"‘ZKj)"‘dejKjv
(dilezl + -+ ag et + O' + Zn K; ) =1 =1 j=1 =1
dijezj(%@“e R TN D - dkl K;) giving
(@ne® + - +ag e + 57+ 31 lK )2 S dy, K
o= ———
=0. 2+ Zn lK
As before, multiply all terms with the denominator add Hence again there is a set of measure zero indtispace,
and divide bya;;e*. We then get given byd; = «,i = 1,...,1, which is a stationary point. As
el before the condition on the scalings for the stationary poin
djane™ + -+ d;a;e” + d;6% + d; ZKJ' ?s independent of the values of the remaining powers, which
= implies that they can be taken on the boundary.

4) Final step: If the scalings are not on the special set
—dyag et — - — dya; e? — Z di, K; = 0. giving a stationary point, we proceed in the same way fixing
the variables on the boundary until the number of free
variables reach one.

This i ivalen
s is equivalent to Forn = 1 we have

d; —dy)ae® +---+(d; —dy)a; e = o n d
(372 ) (J ) ) W %ailel—FE;ll;Jalke’
_(Gi +K1+-~-Kn—l)dj+dk1K1+"'+dkn,lKn—l- fl (Z): - 1+_2+Z .
a;1e* o o alv,k.ve kg
Differentiating w.r.t. allj € {1,...,1} we get the following ) ) ! 1 ’
system of equations, corresponding ®f.” (2) = 0. Again, Differentiate w.rt.z; and set to zero
let a;;e® = ;. f(l (5 — %dﬂem (@je” + 5.1_2 + Z;L:—f i, e™5)
(d1 —dl)itl ++(d1 —dl)l'l 8Zl (6_1‘1621 +5’2+Z?711 aik.ezk-j)z
n—I n—l — ai(dy 2 kj — 2k
—(6’12+ZKJ)d1+deJKJ _O/Lle (dale +Z] 1 dazke )
‘ - _ 2 n—1_ 2
_ P (ailel—i-ai—kzj 1 Qi gy e)
=0.
(dy —dy)xy + -+ (dy — dp)ay This is equivalent to
n— n— n—1
—(5’12 + Z Kj)dl + Z dkj Kj dl(_lilezl + dla'iz =+ dl Z ai,kj ezkj — dldﬂezl
— — j=1
Reorganizing gives ~ .
. T . —
(fo) Pl mda) ] )= which gives the relation
=1 dl 1 _ — 2k

‘n—1

- Z d: = di, G €71 + -+ dy,_Gig,_, €
dl n—l 1 e Ry ... 4@, Zky_1 +—2
ik, € ik, 1€ 9

+ ;Kj) Pt (Zd’” LONENE Note that it is independent of the last free variableand

L di ] =t 1 only fulfilled on a set of measure zero of the d-space. This




implies that almost surely alt; will be on the boundary.
On the set of measure zero, all will be on the boundary,
except possibly one index. For this indé, fi(l)(zkj) has

a stationary point independent of the valuezpf, and hence
we can take any value af,, without changing the function

value offi(l), including the boundary.
|



