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Abstract— Distributed power control problems in wireless  of higher order control action [5], [4]. The resulting model
communication can be modeled as a highly nonlinear feedback is then of high order and fundamental questions such as

system. The nonlinear coupling appear when a large number . nqedness and convergence of the solution are chalgengin
of mobile stations interact through interference and it is well to address

known that this may lead to instabilities. In this paper a -
number of results on existence and uniqueness of solution and  In this paper we use two approaches to analyze the
boundedness and convergence of the solution are derived for system. In the first approach we modify the framework

systems with higher order control loops. introduced by Yates in [9] to prove global convergence of a
higher dimensional generalization of the basic power @bntr
loop in (1). In the second approach we apply input-output
In control of wireless networks it is often desired to Usgheory to derive conditions for existence and uniqueness
decentralized control loops. This implies that only locabf 5 solution in a prescribed set of bounded power levels.
information is used in a single local control loop. This isThe convergence to the desired equilibrium can also be
an area where a lot of research has been done, and there @gplished using this method. We show in the example

several proposals of local control algorithms that are @nov section that the results successfully predict stabilitythaf
stable under certain conditions. A famous example is thgelay compensator suggested in [5], [4].

decentralized power control (DPC) algorithm proposed by

I. INTRODUCTION

Foschini and Miljanic (1993) [3]. It uses the following ldca Il. MoDEL CLASS
power update algorithm In order to define a generalization of the Foschini and
Miljanic model we introduce the gain matrix
_T —
_ i (1) (1-141)g g g
Bt +1) = T2pi(1), (1) A Jin
( ) i (t) Q g21 (1—102)g22 .. Gon
where®;(t) is the signal to interference ratio (SIR)! (¢) is B : - : ’
the target SIR ang;(¢) is the power of uset. The bars of Gn1 coo (1 =0,)Gnn
the variables indicate linear scale, while a variable witho 3)

bar denotes logarithmic scale. The SIR can be modeled as ) o
o where all entries are assumed to be nonnegative ;'hew
5i(t) = 0iGiiDi _ of M is denotedM’ in the following.

' 321 9iPj + (1 = 8:)guipi + 07 We consider the model

where§ is a constant modeling auto interference due to im- ﬁ it -+ m — k) = ”ﬁl (%;T(t +m-—-1- k))ﬁk
perfections in the receiver and phenomena such as scagtterin - bi LA\ At+m—1-k) ’
gi; is the channel gain from usgrto useri, anda? is noise. h=0 w0 (4)
If the interference function is defined as

- ~ fori=1,...,n, where
Ii(t) = Zf]ijﬁj + (1= 8)gupi + 77, 2 5 a(t)
- MO 5w
then the SIR can be written as ’
- and
o GiGiiDi ! !
’Yi(t) -7 . B _9 .
i(t) [T 7 +1— k) =T[ @7+ Mpt +1— k)™
Convergence of the basic algorithm by Foschini and Mil- k=0 k=0
janic can be established by exploring monotonicity prapsrt r s ro
of the basic interference function, see e.g. [9], [6]. [ 7 +r =k =T (6igipi(t +r — k).
The real system is often subject to unmodeled dynamics k=0 k=0

such as propagation delay and this motivates the intranlucti We can without loss of generality assume that= p, =
o _ ~ dp = 1. An important aspect is that all components in the
Anders Mller is supported by the Center for Industrial and Applied - _ 1T b L d
Mathematics (CIAM). U. 8nsson is supported by the Swedish Researci OWer VeCtOF’p - [pl _p"} must be positive in order
Council (VR) and the ACCESS Linnaeus Centre at KTH. for the solution to be feasible.



For the further analysis we define the following discrete 1V. ANALYSIS USING INTERFERENCEFUNCTIONS

time systems In this section we use the framework developed by Yates
Bla) — Bog™ L 4 Big™ 2+ + Bs ?n [9] to provide conditiqns under which the dynamics
(q) = 4"+ 1g™ L+ g™ 2t -+ o in (4) converges. We consider the special case wiferare

constant for alli, Fr(q) = 1 and Fg(¢) = 1. In this case

l —
Fi(q) = 24 3L e e the model (4) can be reformulated as

T e
€0q" +e1q" T+ e pi(t+1)=9;(p@),....p(t +1-m)), i=1,...,n, (6)

FG((]) = r—1 r—2 ’

q +51q +52q +"’+6T
wheregq is the time-shift operator.

In a receiver the measurements of the SIR are due to¥:(p(t),...,p(t+1—m))
measurement noise, which motivates the use of filters. The m—1 <'_yTI-(t k)

k=0

where

Bk
signal and interference part of the signal can in practice be ) pit — k)1 =P (7)

filtered separately, and these filters are here denotefi by 0:is
and 7, in accordance with [4]. _wherel; is defined as in (2). We assume that the system (6)
We notice that the model (4) reduces to the Foschink initialized with p;(0) = ps(—1) = ... — ps(1 — m) —
and Miljanic algorithm in the special case whéfi(q) = 5 >0, fori=1,...,n.
1, Fa(q) = 1, and R(q) = qT11 For the next result on convergence of the model in (6)-(7)
1. STEADY STATE ANALYSIS \r/]vc()aldasssume that the feasibility conditigtA—'T'rM) < 1

In this section we show that under certain conditions there propogition 1: Suppose
exists a unique equilibrium point to the system defined in (4)

In steady state we consider the system with all variables 0<fr<—0p41, k=0,....,m—1
constant, e.gy;(t + k) = %, 1 (t + k) =45, pi(t + k) = m_1 m 8)
pi, Vk. Let the steady state solution be denoted iy = > Be>0, and > ap=-1
k=0 k=1

Iz ...ﬁ?L]T. If we plug this into (4), we get
Then the system in (6)-(7) converges to the equilibrigin

Nl P 2

(p7) = R Ty in (5).
(0:giip?) e ) Remark 1: We may also consider different dynamics for
In this paper the special case wh&l) = oo and F;(1) =  different users, i.e.
F¢(1) = 1is of particular interest. The equilibrium condition _ B
then reduces to Wi(p(t), -, p(t+ 1 —mi))
- - mi—1 7§, Bik
5T — (6:giip?) _ ((%%P?) 1 n _ <W> Pt — k)~ Cintr =Bk
t(of+ M) Li(p%) Y paiird 0:Gii

which implies that the target SIR is achieved provided thafhe conditions for convergence then becomes

these equations are well defined in the sense that theres exist
q Ogﬂi,kg_a@k‘%lukzou"wmi_l

a positive solutionp) > 0, i = 1,...,n. The equation can
be vectorized to "ilﬁ 0. and i ) 9)
ik , an Q= —1L
P’ =A""Tp (Mp° +5?%), k=0 k=1 _
Proof: The proof can be found in the appendix. ®
where
o 0 5o 0 V. EQUIVALENT INPUT-OUTPUT MODEL
_ ’y.l o _ 1?11 _ By taking the logarithm of both sides of equation (4) and
Tr = oo ], A= : o introducing the notation
0 ... 3F 0 ... 6u0nn B _ B
. pi =In(p;), 0 =1m(d), gii=In(gi)
=2 __ [=2 =2 T
ando® = [of ... o] Sg(t) = [00() + g11(t) .. Gu(t) + gun(D)]

If the spectral radius conditiop(A~'I'+M) < 1 holds, _ o '
then it can be shown using the Perron Frobenius theorem th# get the equivalent system in Figure 1 and Figure 2. Here

there exists a unique positive steady state power allatatiothe exp(-) andln(-) operators are acting component-wise on
o I o x1m o the elements ip andI(p), respectively. For compactness of
pr=I-A"TrM)" A" T'r57, (5)  notation we write

see, for example [10], [6] for an early account of such result In(p) A [ (@) (@) ... IWn(pn) ]T (10)
The above condition on the spectral radius is assumed to hold

A T
throughout the paper. e’ Sexp(p) =[ el e ... ePn ] (11)



Fr(q) a prescribed neighborhood of the desired equilibrium when

the system is subjected to disturbances. The disturbamees a
Ip) = modeled as the perturbatiakr and could, for example, cor-
Fr(q) respond to noise in the interence measurements or changes
in the target SIR or gain matrix.
g
R @(Ap)
R RO o] o
=& {2
R(q) .
A + Ap
k (Z) H(q)

Fa(q)

Fig. 3. The system on input-output form.

Fa(q)

VI. INPUT-OUTPUT ANALYSIS
Fig. 1. Global control loop. The interference functid is described . . .
ingFigure 2. P ®) The system in Figure 3 can equivalently be represented as
the operator equation

52

Ap = H(Ar + ®(Ap)) (14)

3
=

I@L In(-) %;\ M exp(-) where theH in (12) and® in (13) are interpreted as operators
on a Banach spac&. We will address the questions of
existence and uniqueness of solution to (14) as well as the
boundedness of convergence of this solufich The results
obtained are critically dependent on the choice of undeglyi
space. The following notation will be used for norms and
nction spaces:

inite dimensional vector spaces (spatial dimension)

Fig. 2. Interference function

for any n-dimensional vectorg and p, respectively.

The same system model was proven locally stable in [
using linearization of the interference function. Here the "
nonlinear system will be studied. We therefore transform , pn 2 (pn |.|,), where|z|, = (Z 22)1/2
the system further to the standard form in Figure 3, where 1
Ap = p —p® and Ar = r — 0 are deviations around the | pn 2 (R™,| - |o0), Where|z|o = max |z
equilibrium point > e 0 1<k<n

1 I Matrix norms
(p(J’TO) — <1H(ﬁ0),1n(MeP0 +52) —+ I 'Y + ;59) e M : Rg — Rg, |M|R£L‘>R’él = 6(M)
g o M: Ry, — Ry, [M|py,~rr, =M
where we have assumed thBf has a stable inverse. The where #(M) denotes the largest singular value &f and
linear and nonlinear subsystem in Figure 3 are defined by

the block diagonal system |M|; = max Z | M.
R( )F ( ) 1<i<n
H(q) = DIG) g (12) Signal space (functlon space)

1+ R(q)Fa(q)

o I ={2:R— Ry :|z]|, < oo}

and . &:{Z:RHR&:Hzﬂ < oo},
n () e = {2 R B < ool
' where the norms are defined ﬁsH (300 2[K]13)1/2,
d(Ap) = : , 13 2 k=0 2
) » A3 )| . = sup 2lhloc, and 2], = (S H2) 2.
In (W) In the following the spatial dimension will often be sup-
ThMrer pressed.

(0]
PO+ Ap . . . . .
wheree is defined as in (11) anllis the Idemlty’ The it is usually necessary to define the system on an extendedcBan

nonlinearity in (13) will be callednterference nonlinearity  space in order to address these questions, see e.g. [2]. Wehaiv that
in this paper. We note tham(()) = 0 and thereforeAp = 0  the operators involved in (14) are Lipschitz continuouss lthus sufficient
is a unique equilibrium point of the system. to 2apply the Bana_ch fixed point theorgm to obtain our main tesul_
. . . . The operatord is memoryless andr is causal on all spaces considered.
The Input-output analy5|s in the next section pI’OVIdE$he assumptions of our main result in Theorem 2 imply that theetlo
conditions under which the power distribution remains inoop system also is causal.



In the next few definitions we consider a nonlinear operandd; = 1, 2 >0, i = 1,2, then one can show that
ator F : X — X such thatF(0) = 0. The gain of F is

defined as (21 — 22)T (®(21) — D(22))
~2 | - ~2
|F|lx—x = sup 1£G)x =In (-021 912 ) —In (0_22+ 9_21€> <0,
- 2€X;27£0 ||Z||X g1 + gi2€ D) + 921

which implies that the interference nonlinearity cannot be

where|| - || x denotes the norm oX . A stronger assumption -
incrementally positive.

is Lipschitz continuity. Theglobal Lipschitz constant of the

operatorF’ is defined as B. Main Results
LIF:X]=  su | F(21) — F(22)|lx Theorem 1: The interference nonlinearity in (13) has gain
e Z17Z2€XI7)Z1¢Z2 |21 — 22|l x and Lipschitz constants
Notice that||F||x_x < L[F;X]. It will also be useful to 1Pl =1, = L[P,loc] =1
consider the Lipschitz constant defined over the closed ball @11, 1y . = L[®,15.00] = 1.

B(X,7) = {z € X : ||z]|x <~}. We define _ |
Proof: The proof can be found in the appendix. ®

L[F;B(X,7)] = sup £ z1) - F(ZZ)HX. The next corollary gives the corresponding gain and Lips-
s,zEB(X)mrn 1721~ 22llx chitz constants over a closed ball.

For linear operators the gain and Lipschitz constants co- Corollary 1: In the bounded set$(l.., ) the interfer-
incide. The following gain characterization for the linear€nce nonlinearity in (13) has gain and Lipschitz constants

systemH in (12) will be used in the sequel. We assume that 12(2)]i
H has the following time domain representation in terms of __ *'P © "L < L[®, B(leo,7)] = K < 1
the impulse response = 19(2)] h
k lex < L[(I)vB(lz,oov’Y)] =K <1
(Hu)(k) = > h(k = Ou(l), k>0 B lla0on), 70 [Zllace
1=0 where
and define thé;-norm as K = max i
0o 7 5’% + ;i ’
[ H]], :Z‘h(k”' where
k=0 i po—i-z i po v
Proposition 2: |[Hly iz < [|H|lim -1 = |[H]h. = max (M e ) =M'e" e
Proof: It is well known that | H||;z, iz, = ||H]|1. see Proof: The proof can be found in the appendix.
€.g. [1]. A proof that|[Hl;; iy < |[H]1 is given in Note that the maximization in the definition aof always
the appendix for completeness. |

is achieved byz* = ~1 since M? and e’ has positive
A. Analysisin [% coefficients. Herd is the all one vector. ]

It is often advantageous to analyze the system in a Hilbeext follows our main result on existence and uniqueness of
space such @§. Then the inner product structure and Fourie Pounded and convergent solution.
domain tools may be used to capture phase information Theorem 2: Supposes; > 0 for all 7. Suppose further-
and frequency domain interpretations. Note also that tHBOre that we have a desired bound on the power deviation
gain [|Hllip—p = su%|H(jw)| is less than or equal to (in logarithmic scale)

we
||H|.. Despite these potential advantages it turns out that HAPHDO < v < oo.
the interference nonlinearity in (13) has a structure thagty,

appears to be unsuitable fér-analysis. Our first negative . .
pp d-analy g = max <M16p0+z) M

result shows that its gain and Lipschitz constant grows with 2] mo <7
the number of users. The proof follows along the lines 0£
nd let
Theorem 1 below. i
Proposition 3: ||<I>||l2_>l2 = L[®;15] = /n. K = max 52+ <1

Our second negative observation shows that the interferenc _ . ) )
nonlinearity violates the definition of incremental pastii ~ SiNcen < oo. Then if ||H||, < %, there exists a unique
in [8]. This implies that powerful characterizations of mem Power distribution with||Ap|[_ < for all

oryless nonlinearities from the input-output theor_y cérire ~(1— ||H|| K)
used, see e.g. [8], [7] and the references therein. The proof |ar] < L7, (15)
of our claim follows because if HHH1

o [211 ] _ [1} Y |:2’21:| _ {O} Moreover if in addition ||Ar||, < oo, it follows that
1= = , k2= = ) ’

212 0 292 1 Apk — 0 ask — oo.



Proof: Define the saturatioBat|_.; ,q) : R" — R" | | _ Case18=09

whosek'* component is o o]
T ]
~ if x>~ ST ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
[sati—y1 (@) = 2 if —y<ap <vy . case2B=04
=y ifzp < —vy =T - R T
st i
and let S
B, (z) = B(satp_1,41)(2)). " case2ld=o9
Define F(z) = H(Ar + . (x)), then =
IF () - Pl = [[H(® (o) - & (@) =
< HILE o1~ ]| s I
—— 2“:”7/,,
L<1 L L L L |

where we used Corollary 1. Hence F is a contractiori gn

and according to the Banach fixed point theorem there exists

a unique solutionAp® to the fixed point equatiol\p’ = Fig. 4. Simulations of Case 1-3.
F(Ap®). Assume now that that the bound in (15) holds.

Then the fixed pointAp° satisfies

12l = [F@)l, A Casel
| H|| (HA I+ K[| ap°| Let all users have the control law
< L ||+ Pl e
R(q) = Ro(q) & 2.
1- K| H]},) . (@ = Ro0) = =
< HHulw + HHHlKHAp Hoo Note that3 = 1 corresponds to the power control algorithm

proposed in (1). The convergence criterion in Propositids 1
which is equivalent td|Ap°[| < ~. This implies that there clearly satisfied for any > 0. A simulation of Case 1 can be
also exists a unique power distribution wif\p||.. <~ t0  seen in Figure 4 and it confirms our theoretical conclusions.
the real system because the saturation in the definitish,of  To apply Theorem 2 we notice that
is inactive.

The last statement in the theorem follows from the bound H(q) = ﬁ,

1],

0 < and
bsoo < 5]

12

p
which is derived in the same fashion as the previous bound|.|H||1 = Z |h(k)| = Zﬁ(l - Bk = 1—-(1-5) =1
u k=0 k=0
Theorem 2 thus ensures that power configuration remains
VII. SIMULATION EXAMPLE bounded and converges when the system is subject to distur-

Consider a network with three users. Let the gains be bances inz .
Note that if the system was to be analyzedlin no

Jir g1z 9is 1005 001 conclusion on stability could be made using the small gain
G=|g21 g22 g23 | =007 1 0.08 theorem. This is becausi | ;; _i; — sup H(jw) = 1,
931 932 933 0.04 0.06 1

and a linear apprOX|mat|0n of the nonllnear interference
a2 =0.05,7; = 9 025 andé; = 1, Vi. The spectral radius function |V®(p°)|| has the norm|Va®(p Nz -1z ~ 1.06,
satisfiesp(TrA M) = 0.93 < 1, and hence the problem which gives a round trip gain which is bigger than one. This
is feasible and the optimal power vector is obtained from shows the inadequacy of tlig-analysis with the small gain
o _ 1 theorem and motivates the use of the,-signal space.
P’ =T -TrA M) 'TrA 72,

B. Case 2
which in this case is (note the logarithmic scale) Now consider the same system with a single delay. Then
1.57 -1
0= |212]. 16 =q! _Lb_ B
p (16) R(q) = ¢ Ro(q) it

1.90

: I an
For the following three cases, the initial power states were
set to0 and all filters were set to identity.



The stability criterion in Proposition 1 is not satisfiede@n [3] G. J. Foschini and Z. Miljanic. Distributed autonomousreléss

it would require that3; = 3 > 0 anday = 0 < —/3, which channel assignment algorithm with power conti®EE Transactions

. . on \ehicular Technology, 44(3):420-429, 1995.

is impossible. To use Theorem gHH1 can be computed [4] F. Gunnarsson.Power Control in Cellular Radio Systems: Analysis,

as above, but the result depends on the values.ofor Design and Estimation. PhD thesis, Linkping University, Linkping,
i Sweden, 2000.

b e (0’1) the sum is Convgrgent’ bl#HHl > 1 for all [5] F. Gunnarsson and F. Gustafsson. Control theory asm#cp®wer

3. For example,3 = 0.4 gives HHH1 = 4.1773. Even control in UMTS. Control Engineering Practice, 11(10):1113-1125,

if we let Ap = 0, i.e. starting at the equilibrium point, 2003.

W h nstraintl & 1. nsur ility. [6] S. V. Hanly and D. N. Tse. Power control and capacity ofespr
.e get t e constra H Hl < L057 to ensure stab ty. spectrum wireless network#utomatica, 35(12):1987-2012, 1999.
Since this is not the case, we can not make any conclusiong; u. . safonov and V. Kulkarni. Zames-falb multipliers for mo

on stability for this case. However, a simulation of the  nonlinearitiesInternational Journal of Robust and Nonlinear Control,
_ i 10(11-12):1025 — 1038, 2000.

system shows that fop .0'4 the system is St.afble. ?‘nd [8] J.C. Willems. The Analysis of Feedback Systems. MIT Press,

converges, see Figure 4. This shows that the stabilityriite Cambridge, Massachusetts, 1971.

is conservative. However, for bigggr for examplesg = 0.9, [9] R.D. Yates. A framework for uplink power control in celul

; ; radio systems.|EEE Journal on selected areas in communications,
the system is unstable, see Figure 4. The fact that stable 13(7):1341.1347 1995,

systems due to delay may go unstable motivates the use[ef] 3. zander. Performance of optimum transmitter power coritr
higher order control action. cellular radiosystems.|EEE Transactions on Vehicular Technology,
41(1):57-62, 1992.
C. Case 3
In order to stabilize systems with delays, delay compen-
sation using a Smith predictor was introduced in [4]. Let

APPENDIX: PROOFS

1) Proof of Proposition 1: The assumptions on th#, and
ag imply that R(1) = oo. Hence it follows from the previous
R(g) q 'Ro(q) B section thap? in (5) is an equilibrium point. To prove that

V=97 Ro(q) (1 —qY) q2—q+pBq—03 the equilibrium is unique and that the system converges to
this equilibrium we use the framework in [9]. First to obtain

We can easily concude that the criterion in Proposition |
a compact notation we let

is satisfied when3 € (0,1], which is consistent with the

simulation of Case 3 in Figure 4. _ U(P(t))
To apply Theorem 2 we notice that p(t) (t)
5 Pi=| i | T(P@)=|
Hqg=——"—"F—-—. 5 _ :
D= a—a-p plt+1—m) pt+2—m)

The derivation of| H |, is almost identical to that of Case 1, where
and gives the same valugH||, = 1. Hence by the same UL (p(t), ..., p(t+1—m))
argument as in Case 1, boundedness and convergence under ) = )
disturbance of Case 3 can be ensured. (P(1)) =

U, (p(t),...,p(t+1—m))
, i The dynamics in (6)-(7) can now be formulated as

Two approaches for analysis of a class of higher order
power control loops in wireless communication networks P(t+ 1) =Z(P(t)), P(0)=[po ... Do
ir:]a\[/gl tzs:: ngzgleirzeeo(lj. Itg t;ltetﬂgstczars)irg:::ehdY:;:tsezamg\:jvgfhe exFended interference functi@nsatisfies the following
This approach has the advantage that the case of heteroafaqpemeS
neous control dynamics among the users can be considerdd) Z(P) =0, VP >0 andZ(P)>0,VP >0
e.g. stability can be guaranteed in situations where eiffer (¢4) If P'> P thenZ(P’) > 7(P)
users have different, but known, delays. (i¢i) Foralld > 1, 0Z(P) > Z(0P)

In the second approach we used input-output theory there all inequalities should be interpreted compone®twis
prove boundedness of the solution when the system is subj@&d where in(ii) and (iii) P, P’ > 0. These properties
to disturbances. This approach also allow convergence to fsdlow since
established. It has the advantage that it allows genetializa ~ A L (t — k)

VIII. CONCLUDING REMARKS

1@

to the case with time-varying gain matrices and additional 1i(p) 3:Gis

filters can be included in the analysis. However, the cade wit .

heterogeneous user dynamics appears to be harder since it Vi - SV~ = o =2

adds conservatism to our criterion. 8:Gii ;g”p] ( i)9ibi + 0
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(4') If p' > pthenZ(p’) > Z(p) SinceP(t) is monotonically decreasing am{t) is monoton-
(ii7') For all@ > 1, 01;(p) > I;(6p), ically increasing it follows that all three sequences coges
which follows sinces; > 0. We also use the property that if to the unique equilibriumP?. This concludes the proof.

p > p° then
Di > i(p), i=1,....n (18) Proof of Proposition 2

which follows sincep(A~'T'+M) < 1 and since we have The first bound can be proven using the following argu-

equality in (18) wherp = 3° due to (5). ments. Using tha#{ is diagonal, it follows that at any time
Based on these properties we use a similar proof techniglf$tancek

as in [9] to show that 1} is the unique strictly positive

equilibrium of the system, 2) any strictly positive initial k

condition of the system converges to the equilibrign |Z h(k = Du(l)]o < Z Ak = Dllu()]s
Uniqueness of the equilibrium: Suppose that there exists  '=°

another nonzero equilibriunp! of the system in (6)-(7). 9 3
Since both equilibria are strictly positive one can essbli (ZVL — Dlle(®l5 ) (ZVL — 0l )

that there either exist8 > 1 such thatdp' > p° and for

somei, Op} = p? or that the analogous |dent|ty holds in Taking thel,-norm on both sides gives
the case when the roles pf andp® are interchanged. We

assume without loss of generality that the first alternative

oo k
holds. Then Hul? <S5 Ik - )2 (Z\h(k—l)l)

o

P =00, B0 < (0. .., 0pY) Lo =0
< 0V;(p',...,p") = 0p; ZZ\h = D[|u() 2% H]lx
which is a contradiction. The first and second inequalities kfoOl o
follows from (ii’) and (iii'), respectively. For example, the ~ _ Z{Z \h(k — z)} @ ZH |, = || |l
second inequality follows since =0 Lk ! ' 2o
=~ m—1 m—1
Wi(0p",...0p") = 1(Op") == Pr (0p} )~ Zi=o (orsr ) =[],

)
< (OI(p")) =0 P (9p}) Zio (i)

WIS B (ph) = 05 (@) which shows thafH iy  —i;.., < [|H]];-

|
> D
20
- ’B\

Proof of Theorem 1

where we used (8).
Convergence to the equilibrium: The idea of the proof is to  Let us first consider the interference nonlinearity as a
use the monotonicity condition ifii) to sandwich the solu- Mmultivariable function® : R7, — R . It follows that
tion (17) between an increasing strictly positive lower tu
and a decreasing upper bound. Sid¢e= [p° ...ﬁO]T is
the unique equilibrium it follows thaP(t) — P°.

Let us consider the system in (17) with initial conditions 1
P(0) = 61 andP(0) = 51, respectively. If¢ is sufficiently < /0 V@ (y + 0(z — y))[1d0|z — ylo
large then it follows thatP?(0) > Z(P(0)) because each of
the firstn components will satisfy such an inequality due = zseué)n Ve(2)hlz = yloe
to (18) and the definition oft; in (7) while we will have
equality in the remaining components. Létt) = Z¢(P(0)).  This gives the Lipschitz bound
It follows by induction thatP(t + 1) = Z'**(P(0)) =

B(2) — D)oo = | / VB(y + 0z — ) (x — y)d6]

I(P(t)) < P(t) for all t > 0. L[CD,RZO]SKésuMV(I)(z)h
Similarly, if 6 is sufficiently large therZ (P(0)) > P(0) z
because each of the first components will satisfy such (1=81)gireri+= GincPatin
an inequality whergs? >> 1 while the remaining com- oF+Mlert+s T 72+ M1er’+=
ponents are equal. It follows by induction th@gt + 1) = = sup : :
T (P(0)) = Z(P(t)) > P(t), for all t > 0. i gurePS o1 (162 ) gnmePo o
It follows from the monotonicity condition in(i:) that F24Mrer’t=: T T azpMrertte g

_ =Ssupmax | —5s— o0,
P o2 4+ Mier'+»

P(t) =I'(P(0)) satisfies Miep+2
P(t) < P(t) < P(t), Vt>0. e ( ) N



where M is the i:th row in (3). We then have where L[V®; R7*"] denotes the Lipschitz bound of the
Jacobianv® : R — R}*™ and R}™*" is the vector space
of real valuedn x n matrices equipped with the matrjx|;-

[©(21) = @(22) |50, = 4| D_ |B(z1[K]) — D(2a[k])IZ,
k=0

norm.
Hence, if we define thé, .-signals,
_ 2 *_ ez, k=0
<K Z|Z1[k] z9[k]|2, o = z" — €0z, .
k=0 0, otherwise
= K|z — 2|, .- 2 k=0
zZo =
which shows thaL[®, [ ..] < K = 1. We will next see that 7)o, otherwise
the bound can be achieved asymptotically by considering tl{ﬁe get
l2 so-Signal,
L or—o e H®(21) = ®(22) [l > [VR(2)|1 — eL[VE; R
z=q 0 Sincee is arbitrary it follows thatL[®, B(l3 ,v)] > K.
h Se. ) 2,009
{O’ otherwise We conclude thatl[®, B(I5 ,,,v)] = K. The proof that
Let e?°+o1 be defined as in (11). We have L[®,B(I%,~)] = K follows analogously and the two gains

are obviously less than the Lipschitz constants.

© 4 1/2
2,00 = <Z ai)(azk)|§o>

k=0

W ((Ferter e
524 Mter’

In g2Mmer’te
24 Mner®
[e.9]
1y ((oe e’
1 a 524 M1ter’
=+ 5 —1
1 1 In E'ie_”Jr]W"epo
a 52+ Mner’
oo
as o — oo. It follows that L[®,ls ] = 1 as well as

@1, oo —1o... = 1. The case with-space follows using
essentially the same arguments.

~J@(a2) - ®(0)

1
«

Proof of Corollary 1

The proof thatL[®, B(l2 ~,7)] < K is analogous to the
first half of the proof of Theorem 1. To see that equality can
be achieved we assume
Mix

ok 0
J— _ 7
‘1_ — ) n’L*_M ef 677
O =+ M

K =sup |VO(z)
i.e. that the maximum defining< is achieved at index*
with z* = ~1, the argument that achieves the maximum
defining n;- (this follows since M is a positive matrix).
Further, letéz be a unit length vector inRY, such that
IV®(z*)iz|e = |VP(z*)]1 = K. We note thatdz must
have positive components sin&b(z*) is a positive matrix.

Lety = z* andx = z* — ¢dz. We get

1
e P(z) — P(Y)]|oo = |/ Vo(z" — €002)dzdl)|
0

1

> |VO(2")|1 — \/ (VO(2") = VO(2" — €6d2)d2d0)|
0

> V0 (") — eL[VE; <)



