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Abstract— Distributed power control problems in wireless
communication can be modeled as a highly nonlinear feedback
system. The nonlinear coupling appear when a large number
of mobile stations interact through interference and it is well
known that this may lead to instabilities. In this paper a
number of results on existence and uniqueness of solution and
boundedness and convergence of the solution are derived for
systems with higher order control loops.

I. I NTRODUCTION

In control of wireless networks it is often desired to use
decentralized control loops. This implies that only local
information is used in a single local control loop. This is
an area where a lot of research has been done, and there are
several proposals of local control algorithms that are proven
stable under certain conditions. A famous example is the
decentralized power control (DPC) algorithm proposed by
Foschini and Miljanic (1993) [3]. It uses the following local
power update algorithm

p̄i(t + 1) =
γ̄T

i (t)

γ̄i(t)
p̄i(t), (1)

whereγ̄i(t) is the signal to interference ratio (SIR),γ̄T
i (t) is

the target SIR and̄pi(t) is the power of useri. The bars of
the variables indicate linear scale, while a variable without
bar denotes logarithmic scale. The SIR can be modeled as

γ̄i(t) =
δ̄iḡiip̄i∑

j 6=i ḡij p̄j + (1 − δ̄i)ḡiip̄i + σ̄2
i

whereδ̄ is a constant modeling auto interference due to im-
perfections in the receiver and phenomena such as scattering,
ḡij is the channel gain from userj to useri, andσ̄2

i is noise.
If the interference function is defined as

Īi(t) =
∑

j 6=i

ḡij p̄j + (1 − δ̄i)ḡiip̄i + σ̄2
i , (2)

then the SIR can be written as

γ̄i(t) =
δ̄iḡiip̄i

Īi(t)
.

Convergence of the basic algorithm by Foschini and Mil-
janic can be established by exploring monotonicity properties
of the basic interference function, see e.g. [9], [6].

The real system is often subject to unmodeled dynamics
such as propagation delay and this motivates the introduction
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of higher order control action [5], [4]. The resulting model
is then of high order and fundamental questions such as
boundedness and convergence of the solution are challenging
to address.

In this paper we use two approaches to analyze the
system. In the first approach we modify the framework
introduced by Yates in [9] to prove global convergence of a
higher dimensional generalization of the basic power control
loop in (1). In the second approach we apply input-output
theory to derive conditions for existence and uniqueness
of a solution in a prescribed set of bounded power levels.
The convergence to the desired equilibrium can also be
established using this method. We show in the example
section that the results successfully predict stability ofthe
delay compensator suggested in [5], [4].

II. M ODEL CLASS

In order to define a generalization of the Foschini and
Miljanic model we introduce the gain matrix

M =





(1 − δ̄1)ḡ11 ḡ12 . . . ḡ1n

ḡ21 (1 − δ̄2)ḡ22 . . . ḡ2n

...
.. .

...
ḡn1 . . . (1 − δ̄n)ḡnn




,

(3)

where all entries are assumed to be nonnegative. Theith row
of M is denotedM i in the following.

We consider the model
m∏

k=0

p̄i(t + m − k)αk =
m−1∏

k=0

(
γ̄T

i (t + m − 1 − k)

γ̄i(t + m − 1 − k)

)βk

,

(4)

for i = 1, . . . , n, where

γ̄i(t) =
γ̄i,G(t)

γ̄i,I(t)

and
l∏

k=0

γ̄i,I(t + l − k)ρk =

l∏

k=0

(σ̄2
i + M ip̄(t + l − k))ηk

r∏

k=0

γ̄i,G(t + r − k)δk =

r∏

k=0

(δ̄iḡiip̄i(t + r − k))ǫk .

We can without loss of generality assume thatα0 = ρ0 =
δ0 = 1. An important aspect is that all components in the
power vectorp̄ =

[
p̄1 . . . p̄n

]T
must be positive in order

for the solution to be feasible.



For the further analysis we define the following discrete
time systems

R(q) =
β0q

m−1 + β1q
m−2 + · · · + βm−1

qm + α1qm−1 + α2qm−2 + · · · + αm

FI(q) =
η0q

l + η1q
l−1 + · · · + ηl

ql + ρ1ql−1 + ρ2ql−2 + · · · + ρl

FG(q) =
ǫ0q

r + ǫ1q
r−1 + · · · + ǫr

qr + δ1qr−1 + δ2qr−2 + · · · + δr
,

whereq is the time-shift operator.
In a receiver the measurements of the SIR are due to

measurement noise, which motivates the use of filters. The
signal and interference part of the signal can in practice be
filtered separately, and these filters are here denoted byFG

andFI , in accordance with [4].
We notice that the model (4) reduces to the Foschini

and Miljanic algorithm in the special case whenFI(q) =
1, FG(q) = 1, andR(q) = 1

q−1 .

III. STEADY STATE ANALYSIS

In this section we show that under certain conditions there
exists a unique equilibrium point to the system defined in (4).

In steady state we consider the system with all variables
constant, e.g.̄γi(t + k) = γ̄i, γ̄T

i (t + k) = γ̄T
i , p̄i(t + k) =

p̄i,∀k. Let the steady state solution be denoted byp̄0 =[
p̄0
1 . . . p̄0

n

]T
. If we plug this into (4), we get

(p̄0
i )

1
R(1) =

γ̄T
i (σ̄2

i + M ip̄0)FI(1)

(δ̄iḡiip̄
0
i )

FG(1)
.

In this paper the special case whenR(1) = ∞ andFI(1) =
FG(1) = 1 is of particular interest. The equilibrium condition
then reduces to

γ̄T
i =

(δ̄iḡiip̄
0
i )

(σ̄2
i + M ip̄0)

=
(δ̄iḡiip̄

0
i )

Īi(p̄0)
, i = 1, . . . , n,

which implies that the target SIR is achieved provided that
these equations are well defined in the sense that there exists
a positive solutionp̄0

i ≥ 0, i = 1, . . . , n. The equation can
be vectorized to

p̄0 = ∆̄−1Γ̄T

(
Mp̄0 + σ̄2

)
,

where

Γ̄T =




γ̄T
1 . . . 0
...

. . .
...

0 . . . γ̄T
n



 , ∆̄ =




δ̄1ḡ11 . . . 0

...
. . .

...
0 . . . δ̄nḡnn





and σ̄2 =
[
σ̄2

1 . . . σ̄2
n

]T
.

If the spectral radius conditionρ(∆̄−1Γ̄T M) < 1 holds,
then it can be shown using the Perron Frobenius theorem that
there exists a unique positive steady state power allocation

p̄0 = (I − ∆̄−1Γ̄T M)−1∆̄−1Γ̄T σ̄2, (5)

see, for example [10], [6] for an early account of such results.
The above condition on the spectral radius is assumed to hold
throughout the paper.

IV. A NALYSIS USING INTERFERENCEFUNCTIONS

In this section we use the framework developed by Yates
in [9] to provide conditions under which the dynamics
in (4) converges. We consider the special case whenγ̄T

i are
constant for alli, FI(q) = 1 and FG(q) = 1. In this case
the model (4) can be reformulated as

p̄i(t + 1) = Ψi(p̄(t), . . . , p̄(t + 1 − m)), i = 1, . . . , n, (6)

where

Ψi(p̄(t), . . . , p̄(t + 1 − m))

=

m−1∏

k=0

(
γ̄T

i Īi(t − k)

δ̄iḡii

)βk

p̄i(t − k)−αk+1−βk (7)

whereĪi is defined as in (2). We assume that the system (6)
is initialized with p̄i(0) = p̄i(−1) = . . . = p̄i(1 − m) =
p̄i,0 > 0, for i = 1, . . . , n.

For the next result on convergence of the model in (6)-(7)
we assume that the feasibility conditionρ(∆̄−1Γ̄T M) < 1
holds.

Proposition 1: Suppose

0 ≤ βk ≤ −αk+1, k = 0, . . . ,m − 1
m−1∑

k=0

βk > 0, and
m∑

k=1

αk = −1
(8)

Then the system in (6)-(7) converges to the equilibriump̄0

in (5).
Remark 1: We may also consider different dynamics for

different users, i.e.

Ψi(p̄(t), . . . , p̄(t + 1 − mi))

=

mi−1∏

k=0

(
γ̄T

i Īi(t − k)

δ̄iḡii

)βi,k

p̄i(t − k)−αi,k+1−βi,k .

The conditions for convergence then becomes

0 ≤ βi,k ≤ −αi,k+1, k = 0, . . . ,mi − 1
mi−1∑

k=0

βi,k > 0, and

mi∑

k=1

αi,k = −1.
(9)

Proof: The proof can be found in the appendix.

V. EQUIVALENT INPUT-OUTPUT MODEL

By taking the logarithm of both sides of equation (4) and
introducing the notation

pi = ln(p̄i), δi = ln(δ̄i), gii = ln(ḡii)

δg(t) =
[
δ1(t) + g11(t) . . . δn(t) + gnn(t)

]T

we get the equivalent system in Figure 1 and Figure 2. Here
the exp(·) andln(·) operators are acting component-wise on
the elements in̄p and Ī(p̄), respectively. For compactness of
notation we write

ln(p̄)
∆
=
[

ln(p̄1) ln(p̄2) . . . ln(p̄n)
]T

(10)

ep ∆
= exp(p) =

[
ep1 ep2 . . . epn

]T
(11)
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Fig. 1. Global control loop. The interference functionI(p) is described
in Figure 2.
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Fig. 2. Interference function

for any n-dimensional vectors̄p andp, respectively.
The same system model was proven locally stable in [4]

using linearization of the interference function. Here the
nonlinear system will be studied. We therefore transform
the system further to the standard form in Figure 3, where
∆p = p − p0 and ∆r = r − r0 are deviations around the
equilibrium point

(p0, r0) =

(
ln(p̄0), ln(Mep0

+ σ̄2) +
1

FI
γT +

FG

FI
δg

)

where we have assumed thatFI has a stable inverse. The
linear and nonlinear subsystem in Figure 3 are defined by
the block diagonal system

H(q) =
R(q)FI(q)

1 + R(q)FG(q)
I (12)

and

Φ(∆p) =





ln

(
σ̄2
1+M1ep0+∆p

σ̄2
1+M1ep0

)

...

ln

(
σ̄2

n+Mnep0+∆p

σ̄2
n+Mnep0

)




, (13)

whereep0+∆p is defined as in (11) andI is the identity. The
nonlinearity in (13) will be calledinterference nonlinearity
in this paper. We note thatΦ(0) = 0 and therefore∆p = 0
is a unique equilibrium point of the system.

The input-output analysis in the next section provides
conditions under which the power distribution remains in

a prescribed neighborhood of the desired equilibrium when
the system is subjected to disturbances. The disturbances are
modeled as the perturbation∆r and could, for example, cor-
respond to noise in the interence measurements or changes
in the target SIR or gain matrix.

+
+ P

H(q)
∆p∆r

Φ(∆p)

Fig. 3. The system on input-output form.

VI. I NPUT-OUTPUT ANALYSIS

The system in Figure 3 can equivalently be represented as
the operator equation

∆p = H(∆r + Φ(∆p)) (14)

where theH in (12) andΦ in (13) are interpreted as operators
on a Banach spaceX. We will address the questions of
existence and uniqueness of solution to (14) as well as the
boundedness of convergence of this solution1 2. The results
obtained are critically dependent on the choice of underlying
space. The following notation will be used for norms and
function spaces:
Finite dimensional vector spaces (spatial dimension)

• Rn
2

∆
= (Rn, | · |2), where|x|2 = (

n∑

k=1

x2
k)1/2

• Rn
∞

∆
= (Rn, | · |∞), where|x|∞ = max

1≤k≤n
|xk|

Matrix norms

• M : Rn
2 → Rn

2 , |M |Rn
2 →Rn

2
= σ̄(M)

• M : Rn
∞ → Rn

∞, |M |Rn
∞

→Rn
∞

= |M |1
where σ̄(M) denotes the largest singular value ofM and

|M |1 = max
1≤i≤n

n∑

j=1

|Mij |.

Signal space (function space)

• ln2 = {z : R → Rn
2 :
∥∥z
∥∥

2
< ∞}

• ln∞ = {z : R → Rn
∞ :

∥∥z
∥∥
∞

< ∞},
• ln2,∞ = {z : R → Rn

∞ :
∥∥z
∥∥

2,∞
< ∞},

where the norms are defined as
∥∥z
∥∥

2
= (
∑∞

k=0 |z[k]|22)1/2,∥∥z
∥∥
∞

= supk |z[k]|∞, and
∥∥z
∥∥

2,∞
= (

∑∞
k=0 |z[k]|2∞)1/2.

In the following the spatial dimension will often be sup-
pressed.

1It is usually necessary to define the system on an extended Banach
space in order to address these questions, see e.g. [2]. We will show that
the operators involved in (14) are Lipschitz continuous. Itis thus sufficient
to apply the Banach fixed point theorem to obtain our main results.

2The operatorΦ is memoryless andG is causal on all spaces considered.
The assumptions of our main result in Theorem 2 imply that the closed
loop system also is causal.



In the next few definitions we consider a nonlinear oper-
ator F : X → X such thatF (0) = 0. The gain of F is
defined as

‖F‖X→X = sup
z∈X;z 6=0

‖F (z)‖X

‖z‖X

where‖ · ‖X denotes the norm onX. A stronger assumption
is Lipschitz continuity. Theglobal Lipschitz constant of the
operatorF is defined as

L[F ;X] = sup
z1,z2∈X,z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X

Notice that‖F‖X→X ≤ L[F ;X]. It will also be useful to
consider the Lipschitz constant defined over the closed ball
B(X, γ) = {z ∈ X : ‖z‖X ≤ γ}. We define

L[F ;B(X, γ)] = sup
z1,z2∈B(X,γ),z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X
.

For linear operators the gain and Lipschitz constants co-
incide. The following gain characterization for the linear
systemH in (12) will be used in the sequel. We assume that
H has the following time domain representation in terms of
the impulse response

(Hu)(k) =

k∑

l=0

h(k − l)u(l), k ≥ 0

and define thel1-norm as

∥∥H
∥∥

1
=

∞∑

k=0

|h(k)|.

Proposition 2: ‖H‖ln2,∞→ln2,∞
≤ ‖H‖ln

∞
→ln

∞

= ‖H‖1.
Proof: It is well known that ‖H‖ln

∞
→ln

∞

= ‖H‖1, see
e.g. [1]. A proof that‖H‖ln2,∞→ln2,∞

≤ ‖H‖1 is given in
the appendix for completeness.

A. Analysis in ln2

It is often advantageous to analyze the system in a Hilbert
space such asln2 . Then the inner product structure and Fourier
domain tools may be used to capture phase information
and frequency domain interpretations. Note also that the
gain ‖H‖ln2 →ln2

= sup
ω∈R

|H(jω)| is less than or equal to

‖H‖1. Despite these potential advantages it turns out that
the interference nonlinearity in (13) has a structure that
appears to be unsuitable forl2-analysis. Our first negative
result shows that its gain and Lipschitz constant grows with
the number of users. The proof follows along the lines of
Theorem 1 below.

Proposition 3:
∥∥Φ
∥∥

l2→l2
= L[Φ; l2] =

√
n.

Our second negative observation shows that the interference
nonlinearity violates the definition of incremental positivity
in [8]. This implies that powerful characterizations of mem-
oryless nonlinearities from the input-output theory cannot be
used, see e.g. [8], [7] and the references therein. The proof
of our claim follows because if

z1 =

[
z11

z12

]
=

[
1
0

]
, z2 =

[
z21

z22

]
=

[
0
1

]
,

and δ̄i = 1, σ̄2
i > 0, i = 1, 2, then one can show that

(z1 − z2)
T (Φ(z1) − Φ(z2))

= ln

(
σ̄2

1 + ḡ12

σ̄2
1 + ḡ12e

)
− ln

(
σ̄2

2 + g21e

σ̄2
2 + ḡ21

)
< 0,

which implies that the interference nonlinearity cannot be
incrementally positive.

B. Main Results

Theorem 1: The interference nonlinearity in (13) has gain
and Lipschitz constants

‖Φ‖l∞→l∞ = L[Φ, l∞] = 1

‖Φ‖l2,∞→l2,∞
= L[Φ, l2,∞] = 1.

Proof: The proof can be found in the appendix.
The next corollary gives the corresponding gain and Lips-
chitz constants over a closed ball.

Corollary 1: In the bounded setsB(l∞, γ) the interfer-
ence nonlinearity in (13) has gain and Lipschitz constants

sup
z∈B(l∞,γ), z 6=0

‖Φ(z)‖l∞

‖z‖l∞

≤ L[Φ, B(l∞, γ)] = K < 1

sup
z∈B(l2,∞,γ), z 6=0

‖Φ(z)‖l2,∞

‖z‖l2,∞

≤ L[Φ, B(l2,∞, γ)] = K < 1

where

K = max
i

(
ηi

σ̄2
i + ηi

)
,

where

ηi = max
|z|∞≤γ

(
M iep0+z

)
= M iep0

eγ

Proof: The proof can be found in the appendix.
Note that the maximization in the definition ofηi always
is achieved byz∗ = γ1 since M i and ep0

has positive
coefficients. Here1 is the all one vector.
Next follows our main result on existence and uniqueness of
a bounded and convergent solution.

Theorem 2: Supposeσ̄i > 0 for all i. Suppose further-
more that we have a desired bound on the power deviation
(in logarithmic scale)

∥∥∆p
∥∥
∞

≤ γ < ∞.

Let

ηi = max
|z|∞≤γ

(
M iep0+z

)
= M iep0

eγ

and let

K = max
i

(
ηi

σ̄2
i + ηi

)
< 1,

sinceηi < ∞. Then if
∥∥H
∥∥

1
< 1

K , there exists a unique
power distribution with

∥∥∆p
∥∥
∞

≤ γ for all

∥∥∆r
∥∥
∞

≤
γ(1 −

∥∥H
∥∥

1
K)∥∥H

∥∥
1

. (15)

Moreover if in addition
∥∥∆r

∥∥
2,∞

< ∞, it follows that
∆pk → 0 ask → ∞.



Proof: Define the saturationsat[−γ1,γ1] : Rn → Rn

whosekth component is

[sat[−γ1,γ1](x)]k =






γ if xk > γ

xk if − γ ≤ xk ≤ γ

−γ if xk < −γ

and let
Φγ(x) = Φ(sat[−γ1,γ1](x)).

DefineF (x) = H(∆r + Φγ(x)), then
∥∥F (x1) − F (x2)

∥∥
∞

=
∥∥H(Φγ(x1) − Φγ(x2))

∥∥
∞

≤
∥∥H
∥∥

1
K

︸ ︷︷ ︸
L<1

∥∥x1 − x2

∥∥
∞

,

where we used Corollary 1. Hence F is a contraction onl∞
and according to the Banach fixed point theorem there exists
a unique solution∆p0 to the fixed point equation∆p0 =
F (∆p0). Assume now that that the bound in (15) holds.
Then the fixed point∆p0 satisfies
∥∥∆p0

∥∥
∞

=
∥∥F (∆p0)

∥∥
∞

≤
∥∥H
∥∥

1

(∥∥∆r
∥∥
∞

+ K
∥∥∆p0

∥∥
∞

)

≤
∥∥H
∥∥

1

γ(1 − K
∥∥H
∥∥

1
)∥∥H

∥∥
1

+
∥∥H
∥∥

1
K
∥∥∆p0

∥∥
∞

which is equivalent to
∥∥∆p0

∥∥
∞

≤ γ. This implies that there
also exists a unique power distribution with‖∆p‖∞ ≤ γ to
the real system because the saturation in the definition ofΦγ

is inactive.
The last statement in the theorem follows from the bound

∥∥∆p0
∥∥

2,∞
≤

∥∥H
∥∥

1

1 − K
∥∥H
∥∥

1

‖∆r‖2,∞

which is derived in the same fashion as the previous bound.

VII. S IMULATION EXAMPLE

Consider a network with three users. Let the gains be

G =




g11 g12 g13

g21 g22 g23

g31 g32 g33



 =




1 0.05 0.01

0.07 1 0.08
0.04 0.06 1





σ̄2
i = 0.05, γ̄i = 9.025 and δ̄i = 1, ∀i. The spectral radius

satisfiesρ(ΓT ∆
−1

M) = 0.93 < 1, and hence the problem
is feasible and the optimal power vector is obtained from

p0 = (I − ΓT ∆
−1

M)−1ΓT ∆
−1

σ2,

which in this case is (note the logarithmic scale)

p0 =




1.57
2.12
1.90



 . (16)

For the following three cases, the initial power states were
set to0 and all filters were set to identity.
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Fig. 4. Simulations of Case 1-3.

A. Case 1

Let all users have the control law

R(q) = R0(q)
∆
=

β

q − 1
.

Note thatβ = 1 corresponds to the power control algorithm
proposed in (1). The convergence criterion in Proposition 1is
clearly satisfied for anyβ > 0. A simulation of Case 1 can be
seen in Figure 4 and it confirms our theoretical conclusions.

To apply Theorem 2 we notice that

H(q) =
β

q − 1 + β
,

and

∥∥H
∥∥

1
=

∞∑

k=0

|h(k)| =

∞∑

k=0

β(1 − β)k =
β

1 − (1 − β)
= 1.

Theorem 2 thus ensures that power configuration remains
bounded and converges when the system is subject to distur-
bances inl2,∞.

Note that if the system was to be analyzed inl2, no
conclusion on stability could be made using the small gain
theorem. This is because‖H‖ln2 →ln2

= sup
ω∈R

|H(jω)| = 1,

and a linear approximation of the nonlinear interference
function ‖∇Φ(p0)‖ has the norm‖∇Φ(p0)‖ln2 →ln2

≈ 1.06,
which gives a round trip gain which is bigger than one. This
shows the inadequacy of thel2-analysis with the small gain
theorem and motivates the use of thel2,∞-signal space.

B. Case 2

Now consider the same system with a single delay. Then

R(q) = q−1R0(q) =
q−1β

q − 1
=

β

q2 − q
,

and

H(q) =
β

q2 − q + β
.



The stability criterion in Proposition 1 is not satisfied since
it would require thatβ1 = β > 0 andα2 = 0 < −β, which
is impossible. To use Theorem 2,

∥∥H
∥∥

1
can be computed

as above, but the result depends on the value ofβ. For
β ∈ (0, 1) the sum is convergent, but

∥∥H
∥∥

1
> 1 for all

β. For example,β = 0.4 gives
∥∥H
∥∥

1
= 4.1773. Even

if we let ∆p = 0, i.e. starting at the equilibrium point,
we get the constraint

∥∥H
∥∥

1
< 1.057 to ensure stability.

Since this is not the case, we can not make any conclusions
on stability for this case. However, a simulation of the
system shows that forβ = 0.4 the system is stable and
converges, see Figure 4. This shows that the stability criterion
is conservative. However, for biggerβ, for exampleβ = 0.9,
the system is unstable, see Figure 4. The fact that stable
systems due to delay may go unstable motivates the use of
higher order control action.

C. Case 3

In order to stabilize systems with delays, delay compen-
sation using a Smith predictor was introduced in [4]. Let

R(q) =
q−1R0(q)

1 + R0(q)(1 − q−1)
=

β

q2 − q + βq − β
,

We can easily concude that the criterion in Proposition 1
is satisfied whenβ ∈ (0, 1], which is consistent with the
simulation of Case 3 in Figure 4.

To apply Theorem 2 we notice that

H(q) =
β

q(q − (1 − β))
.

The derivation of
∥∥H
∥∥

1
is almost identical to that of Case 1,

and gives the same value,
∥∥H
∥∥

1
= 1. Hence by the same

argument as in Case 1, boundedness and convergence under
disturbance of Case 3 can be ensured.

VIII. C ONCLUDING REMARKS

Two approaches for analysis of a class of higher order
power control loops in wireless communication networks
have been considered. In the first approach Yates framework
in [9] was generalized to fit the considered system model.
This approach has the advantage that the case of heteroge-
neous control dynamics among the users can be considered,
e.g. stability can be guaranteed in situations where different
users have different, but known, delays.

In the second approach we used input-output theory to
prove boundedness of the solution when the system is subject
to disturbances. This approach also allow convergence to be
established. It has the advantage that it allows generalization
to the case with time-varying gain matrices and additional
filters can be included in the analysis. However, the case with
heterogeneous user dynamics appears to be harder since it
adds conservatism to our criterion.
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APPENDIX: PROOFS

1) Proof of Proposition 1: The assumptions on theβk and
αk imply thatR(1) = ∞. Hence it follows from the previous
section that̄p0 in (5) is an equilibrium point. To prove that
the equilibrium is unique and that the system converges to
this equilibrium we use the framework in [9]. First to obtain
a compact notation we let

P (t) =




p̄(t)

...
p̄(t + 1 − m)



 , I(P (t)) =





Ψ(P (t))
p̄(t)

...
p̄(t + 2 − m)





where

Ψ(P (t)) =




Ψ1(p̄(t), . . . , p̄(t + 1 − m))

...
Ψn(p̄(t), . . . , p̄(t + 1 − m))





The dynamics in (6)-(7) can now be formulated as

P (t + 1) = I(P (t)), P (0) =
[
p̄0 . . . p̄0

]T
. (17)

The extended interference functionI satisfies the following
properties
(i) I(P ) ≥ 0, ∀P ≥ 0 andI(P ) > 0, ∀P > 0

(ii) If P ′ ≥ P thenI(P ′) ≥ I(P )
(iii) For all θ > 1, θI(P ) ≥ I(θP )

where all inequalities should be interpreted componentwise
and where in(ii) and (iii) P, P ′ ≥ 0. These properties
follow since

̂̄Ii(p̄)
∆
=

γ̄T
i Īi(t − k)

δ̄iḡii

=
γ̄T

i

δ̄iḡii




∑

i6=j

ḡij p̄j + (1 − δ̄i)ḡiip̄i + σ̄2
i





in the definition ofΨi in (7) satisfies(i)−(iii) and since the
βk and αk satisfies (8). We will here also use the stronger
properties that

(i′) ̂̄Ii(p̄) > 0, ∀p̄ ≥ 0,



(ii′) If p̄′ ≥ p̄ thenI(p̄′) ≥ I(p̄)

(iii′) For all θ > 1, θ̂̄Ii(p̄) > ̂̄Ii(θp̄),

which follows sinceσ̄i > 0. We also use the property that if
p̄ ≥ p̄0 then

p̄i ≥ ̂̄Ii(p̄), i = 1, . . . , n (18)

which follows sinceρ(∆̄−1Γ̄T M) < 1 and since we have
equality in (18) when̄p = p̄0 due to (5).

Based on these properties we use a similar proof technique
as in [9] to show that 1)̄p0 is the unique strictly positive
equilibrium of the system, 2) any strictly positive initial
condition of the system converges to the equilibriump̄0.
Uniqueness of the equilibrium: Suppose that there exists
another nonzero equilibrium̄p1 of the system in (6)-(7).
Since both equilibria are strictly positive one can establish
that there either existsθ > 1 such thatθp̄1 ≥ p̄0 and for
some i, θp̄1

i = p̄0
i or that the analogous identity holds in

the case when the roles of̄p1 and p̄0 are interchanged. We
assume without loss of generality that the first alternative
holds. Then

p̄0
i = Ψi(p̄

0, . . . , p̄0) ≤ Ψi(θp̄
1, . . . , θp̄1)

< θΨi(p̄
1, . . . , p̄1) = θp̄1

i

which is a contradiction. The first and second inequalities
follows from (ii′) and (iii′), respectively. For example, the
second inequality follows since

Ψi(θp̄
1, . . . ,θp̄1) = ̂̄I(θp̄1)

Pm−1
k=0 βk(θp̄1

i )
−

Pm−1
k=0 (αk+1+βk)

< (θ̂̄I(p̄1))
Pm−1

k=0 βk(θp̄1
i )

−
Pm−1

k=0 (αk+1+βk)

= θ̂̄I(p̄1)
Pm−1

k=0 βk(p̄1
i )

−
Pm−1

k=0 (αk+1+βk)

= θΨi(p̄
1, . . . , p̄1)

where we used (8).
Convergence to the equilibrium: The idea of the proof is to
use the monotonicity condition in(ii) to sandwich the solu-
tion (17) between an increasing strictly positive lower bound
and a decreasing upper bound. SinceP 0 =

[
p̄0 . . . p̄0

]T
is

the unique equilibrium it follows thatP (t) → P 0.
Let us consider the system in (17) with initial conditions

P̄ (0) = θ1 and P(0) = 1
θ1, respectively. Ifθ is sufficiently

large then it follows thatP̄ (0) ≥ I(P̄ (0)) because each of
the first n components will satisfy such an inequality due
to (18) and the definition ofΨi in (7) while we will have
equality in the remaining components. LetP̄ (t) = It(P̄ (0)).
It follows by induction thatP̄ (t + 1) = It+1(P̄ (0)) =
I(P̄ (t)) ≤ P̄ (t) for all t ≥ 0.

Similarly, if θ is sufficiently large thenI(P(0)) ≥ P(0)
because each of the firstn components will satisfy such
an inequality whenθσ̄2

i >> 1 while the remaining com-
ponents are equal. It follows by induction thatP(t + 1) =
It+1(P(0)) = I(P(t)) ≥ P(t), for all t ≥ 0.

It follows from the monotonicity condition in(ii) that
P (t) = It(P (0)) satisfies

P(t) ≤ P (t) ≤ P̄ (t), ∀t ≥ 0.

SinceP̄ (t) is monotonically decreasing andP(t) is monoton-
ically increasing it follows that all three sequences converges
to the unique equilibriumP 0. This concludes the proof.

Proof of Proposition 2

The first bound can be proven using the following argu-
ments. Using thatH is diagonal, it follows that at any time
instancek

|
k∑

l=0

h(k − l)u(l)|∞ ≤
k∑

l=0

|h(k − l)||u(l)|∞

≤
( k∑

l=0

|h(k − l)||u(l)|2∞
) 1

2
( k∑

l=0

|h(k − l)|
) 1

2

Taking thel2-norm on both sides gives

∥∥Hu
∥∥2

2,∞
≤

∞∑

k=0

k∑

l=0

|h(k − l)||u(l)|2∞
( k∑

l=0

|h(k − l)|
)

≤
∞∑

k=0

k∑

l=0

|h(k − l)||u(l)|2∞‖H‖1

=
∞∑

l=0

[ ∞∑

k=l

|h(k − l)|
︸ ︷︷ ︸

=
∥∥H
∥∥

1

]
|u(l)|2∞

∥∥H
∥∥

1
=
∥∥H
∥∥2

1

∥∥u
∥∥2

2,∞
,

which shows that‖H‖ln2,∞→ln2,∞
≤
∥∥H
∥∥

1
.

Proof of Theorem 1

Let us first consider the interference nonlinearity as a
multivariable functionΦ : Rn

∞ → Rn
∞. It follows that

|Φ(x) − Φ(y)|∞ = |
∫ 1

0

∇Φ(y + θ(x − y))(x − y)dθ|∞

≤
∫ 1

0

|∇Φ(y + θ(x − y))|1dθ|x − y|∞

≤ sup
z∈Rn

|∇Φ(z)|1|x − y|∞

This gives the Lipschitz bound

L[Φ, Rn
∞] ≤ K

∆
= sup

z
|∇Φ(z)|1

= sup
z

∣∣∣∣∣∣∣∣∣





(1−δ1)g11ep0
1+z1

σ̄2
1+M1ep0+z

. . . g1nep0
n+zn

σ̄2
1+M1ep0+z

...
...

gn1ep0
1+z1

σ̄2
n+Mnep0+z

. . .
(1−δn)gnnep0

n+zn

σ̄2
n+Mnep0+z





∣∣∣∣∣∣∣∣∣
1

= sup
z

max
i

(
M iep0+z

σ̄2
i + M iep0+z

)
= 1.



whereM i is the i:th row in (3). We then have

∥∥Φ(z1) − Φ(z2)
∥∥

2,∞
=

√√√√
∞∑

k=0

|Φ(z1[k]) − Φ(z2[k])|2∞

≤ K

√√√√
∞∑

k=0

|z1[k] − z2[k]|2∞

= K
∥∥z1 − z2

∥∥
2,∞

.

which shows thatL[Φ, l2,∞] ≤ K = 1. We will next see that
the bound can be achieved asymptotically by considering the
l2,∞-signal,

z =

{
1, k = 0

0, otherwise.

Let ep0+α1 be defined as in (11). We have

1

α
‖Φ(αz) − Φ(0)‖2,∞ =

(
∞∑

k=0

1

α
|Φ(αzk)|2∞

)1/2

=

∣∣∣∣∣∣∣∣∣∣∣

1

α





ln

(
σ̄2
1+M1ep0+α

σ̄2
1+M1ep0

)

...

ln

(
σ̄2

n+Mnep0+α

σ̄2
n+Mnep0

)





∣∣∣∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣∣∣∣




1
...
1



+





1
α ln

(
σ̄2
1e−α+M1ep0

σ̄2
1+M1ep0

)

...

1
α ln

(
σ̄2

ne−α+Mnep0

σ̄2
n+Mnep0

)





∣∣∣∣∣∣∣∣∣∣∣
∞

→ 1

as α → ∞. It follows that L[Φ, l2,∞] = 1 as well as
‖Φ‖l2,∞→l2,∞

= 1. The case withl∞-space follows using
essentially the same arguments.

Proof of Corollary 1

The proof thatL[Φ, B(l2,∞, γ)] ≤ K is analogous to the
first half of the proof of Theorem 1. To see that equality can
be achieved we assume

K = sup
z

|∇Φ(z)|1 =
ηi∗

σ̄2
i∗ + ηi∗

, ηi∗ = M i∗ep0

eγ ,

i.e. that the maximum definingK is achieved at indexi∗

with z∗ = γ1, the argument that achieves the maximum
defining ηi∗ (this follows sinceM is a positive matrix).
Further, let δz be a unit length vector inRn

∞ such that
|∇Φ(z∗)δz|∞ = |∇Φ(z∗)|1 = K. We note thatδz must
have positive components since∇Φ(z∗) is a positive matrix.

Let y = z∗ andx = z∗ − ǫδz. We get

ǫ−1|Φ(x) − Φ(y)|∞ = |
∫ 1

0

∇Φ(z∗ − ǫθδz)δzdθ|∞

≥ |∇Φ(z∗)|1 − |
∫ 1

0

(∇Φ(z∗) −∇Φ(z∗ − ǫθδz)δzdθ|∞

≥ |∇Φ(z∗)|1 − ǫL[∇Φ;Rn×n
1 ]

where L[∇Φ;Rn×n
1 ] denotes the Lipschitz bound of the

Jacobian∇Φ : Rn
∞ → Rn×n

1 andRn×n
1 is the vector space

of real valuedn×n matrices equipped with the matrix| · |1-
norm.

Hence, if we define thel2,∞-signals,

z1 =

{
z∗ − ǫδz, k = 0

0, otherwise

z2 =

{
z∗, k = 0

0, otherwise

we get

ǫ−1‖Φ(z1) − Φ(z2)‖l2,∞
≥ |∇Φ(z∗)|1 − ǫL[∇Φ;Rn×n

1 ].

Since ǫ is arbitrary it follows thatL[Φ, B(ln2,∞, γ)] ≥ K.
We conclude thatL[Φ, B(ln2,∞, γ)] = K. The proof that
L[Φ, B(ln∞, γ)] = K follows analogously and the two gains
are obviously less than the Lipschitz constants.


