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Abstract: This paper gives an algorithm for identifying spectral densities using orthonormal
basis functions. Mathematically, this amounts to identifying a time-invariant linear SISO sys-
tem with the additional constraint that the transfer function should be positive-real. Thus, we
solve the long-standing problem of how to incorporate this positivity constraint while using
orthonormal basis functions. The procedure is a variant of the THREE algorithm introduced
by Byrnes, Georgiou and Lindquist. The relation between and numerical properties of the
proposed and the THREE algorithms are discussed. The orthonormal basis functions are
better scaled for a concentrated pole selection in the basis, which increases the accuracy
of the estimates. A numerical example which highlights this phenomenon and illustrates the
algorithm is given.
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1. INTRODUCTION

Estimating rational spectral densities is equivalent to
identifying time-invariant linear spectral factors under
the additional constraint that spectral density should
be real and positive on the unit circle. Then the spec-
tral density can be written as the real part of a positive-
real function. Therefore, the identification problem is
an instance of identification of passive systems (see
Caines (1988)). The nontrivial positivity constraint
has (so far) not been possible to include in the iden-
tification procedures of Ho-Kalman type.

Different types of orthonormal basis functions for
identification of general time-invariant linear systems
have been thoroughly studied. They provide the means
to incorporate a priori information of the system dy-
namics in the basis. But they also have advantages
in terms of computational complexity and numerical
conditioning. de Hoog et al. (2002) considers basis
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functions similar to the ones here for identifying gen-
eral time-invariant linear systems; also see Ninness
and Gustafsson (1997). These also give an introduc-
tion to orthonormal basis functions and their use in
system identification.

Here the problem is treated from a quite different
starting point leading up to an analytic interpolation
problem. The algorithm uses the framework of Geor-
giou (2001) and is therefore closely related to the
THREE algorithm proposed in Byrnes et al. (2000).
The mathematical foundation is given in Georgiou
and Lindquist (2002). The main contribution is the
demonstration of how to identify passive systems us-
ing orthonormal basis functions. Furthermore, the pa-
per contains a comparison to THREE basis functions,
in particular for concentrated pole sets.

First the algorithm is described, then a comparison to
the THREE algorithm is made and finally a numerical
example is given. The notation is standard.



2. IDENTIFICATION ALGORITHM

The proposed identification procedure has four com-
ponents: an orthonormal basis, a filter bank, an an-
alytic interpolation problem and a homotopy contin-
uation method. In the following each component is
discussed and it is shown how to bring the components
together.

2.1 The Generalized Orthonormal Basis

The orthonormal basis considered in this paper is gen-
erated from a finite set of points in the open unit disc.
These points will be the poles of the basis functions.
The basis is generalized in the sense that Laguerre,
Kautz and other bases are special cases.

Let {ξk}
n

k=1
⊂ D be given. Then define the functions

Gk(z) :=

√

1 − |ξk|2

z − ξk

k−1
∏

j=1

(

1 − ξ∗j z

z − ξj

)

∀k. (1)

These basis functions date back to early work in
the 1920’s by Takenaka and Malmquist. They are
constructed by all-pass factors with the balanced state-
space realization:

1 − ξ∗kz

z − ξk

∼

[

ξk

√

1 − |ξk|2
√

1 − |ξk|2 −ξk

]

, (2)

Due to the well-known recursive relationship between
two such function Gk(z) and Gl(z):

Gk(z)Gl(z) ∼
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 , (3)

the finite product of all-pass functions allows a bal-
anced, minimal state-space realization. This will prove
to be very useful in the filter bank construction in the
next section.

Remark 1. If the poles are complex-conjugated, i.e.,
ξ̄k is in the pole set whenever ξk 6∈ R is, we can
get a real-valued state-space realization using e.g. a
2-parameter Kautz model.

2.2 The Filter Bank Construction

A filter bank constituted of the basis functions will put
the problem into the desired form. Define the (n+1)×
1 vector-valued analytic function

G(z) :=











G0(z)
G1(z)

...
Gn(z)











, (4)

where G0(z) ≡ 1. It can be viewed as a bank of filters
as showed in Figure 1. Now, construct a minimal
balanced state-space realization {A,B,C,D} as in

Section 2.1 for the last basis function, Gn(z). Then, a
minimal, i.e., (n+1)-dimensional, Input-to-State (IS)
realization, {A,B}, for the filter bank is given by the
same A and B. The pair (A,B) will be a controllable
pair.

PSfrag replacements
G0(z)

G1(z)

...

Gn(z)

x0

x1

y(t)

xn

Fig. 1. The filter bank

The Linear Predictive Filter, a maximum entropy fil-
ter, is one example that falls under this framework.
As pointed out in Georgiou (2001) the corresponding
basis functions are {z−k}n

k=0
. Thus, they can be inter-

preted as being generated as in (1) from a set with all
poles at origin.

2.3 The Analytic Interpolation Problem

Given the IS realization of the filter bank, the identi-
fication problem can be stated as an analytic interpo-
lation problem; see Georgiou (2001). The interpolant
whose spectral density is closest to an a priori esti-
mate Ψ(z) in terms of the Kullback-Leibler distance
is given by Georgiou and Lindquist (2002) and is
shown to be the unique minimizer of a certain convex
optimization problem.

The analytic interpolation problem is derived in Geor-
giou (2001). First, a characterization of the state-
covariance matrices P := ε{xkxk∗} (where ε denotes
the expectation) for an IS filter is given. A state-
covariance matrix should be positive definite and ful-
fill the algebraic condition

P =
1

2
(WE + EW ∗), (5)

where E is the reachability Gramian and thus the
unique positive definite solution to the Lyaponov
equation E − AEA∗ = BB∗. For the orthonormal
basis, E is the identity matrix, so P is a Toeplitz ma-
trix. Furthermore, W and A commutes and W admits
the representation

W = w(A) = w0I + w1A + · · · + wnAn. (6)

With this notation, the positive-real part of the spectral
density, fy(z) : Φ(z) = fy(z) + f∗

y (z), should fulfill
the interpolation condition

fy(A∗) = W ∗. (7)

This leads to a generalization of the Nevanlinna-Pick
interpolation problem. The state covariance matrix
plays the role of a generalized Pick matrix.



Now assume that given data we estimate W consistent
with (5) and want to minimize the so-called Kullback-
Leibler distance to a given spectral density while
meeting the interpolation condition (7). The solution
is given by the following theorem of Georgiou and
Lindquist (2002):

Theorem 2. Given P � 0 and (A,B) as earlier and
a spectral density Ψ(z), there is a unique Φ(z) =
fy(z) + f∗

y (z) that minimizes Kullback-Leibler dis-
tance

S(Ψ‖Φ) :=

∫

Ψ log
Ψ

Φ
(8)

subjected to fy(A∗) = W ∗. The minimizer takes the
form

Φ̂ =
Ψ

G∗Λ̂G

where Λ̂ is the unique interior minimizer to the convex
functional

JΨ(Λ) := trace(ΛP ) −

∫

Ψ log(G∗ΛG). (9)

Here and later the integration limits and variables are
suppressed:

∫

g :=
1

2π

∫ π

−π

g(eiθ)dθ.

If Ψ(z) ≡ 1, that is white noise with unit covariance,
the solution is called the maximum entropy solution.

Remark 3. In de Hoog et al. (2002) a corresponding
interpolation problem is also derived. That interpola-
tion problem apparently look the same as the one of
Theorem 2 but they are fundamentally different: here
the interpolant is the positive-real part of the spectral
density while it is the spectral factor itself in de Hoog
et al. (2002).

2.4 The Homotopy Continuation Method

The optimization problem (9) in Theorem 2 may suf-
fer from numerical problems, as pointed out in Geor-
giou and Lindquist (2002). In Blomqvist and Naga-
mune (2002) a numerical algorithm which seems to
have better numerical properties is developed along
the lines of Nagamune (2001).

The original, convex, functional JΨ(Λ) has the prop-
erty that the gradient is infinite on the boundary of
the feasible region. This causes numerical problems
when the minimizer is close to the boundary. To avoid
this, change variables to α(z) := C(z)τ(z), where
C∗G∗(z)G(z)C = G∗(z)ΛG(z), and let α be a vec-
tor with the n coefficients of α(z). The functional can
then be written

JΨ(α) = α
T Kα − 2

∫

Ψ log α, (10)

where
K := L−T

n Γ−1PΓ−T L−1

n , (11)

with Ln nonsingular and given from the poles along
with Γ as the controllability matrix of the IS realiza-
tion of the filter bank. Thus, the problem is of the type
in Nagamune (2001) and the same homotopy continu-
ation method can be applied. The condition number
of the matrix K will be of importance and will be
discussed in Section 4.

3. ESTIMATING P AND W FROM DATA

The state covariance matrix from an IS filter as in
Section 2.2 is necessarily positive semi-definite but
it also fulfills the algebraic condition (5). However,
experimental data typically does not. This section
deals with the problem how to enforce the algebraic
condition.

Given measurements {xk}N
k=1

(each xk is a vector
with components xk

0
. . . xk

n) an estimate of the state
covariance matrix P can be computed, e.g., as

P̂ =
1

N

N
∑

k=1

xkxk∗.

For this estimate there is typically no solution to (5).
Georgiou proposes a least-squares solution in terms of
the coefficients {wk}

n

k=0
in (6). However, this will not

guarantee the modified P to be positive semi-definite.

To circumvent the problem of non-positive semi-
definite state covariances, the least-squares program
can be stated as a semi-definite program. This will
guarantee the modified P to be positive at the cost of
computational effort. More precisely, P is taken to be
the solution of

(P )

min ‖P̂ − P‖Frob

s.t. P =
1

2
(WE + EW ) � 0

AW = WA

, (12)

where E is as in (5). This can be rewritten as the semi-
definite program

(SDP )

min t

s.t. ‖Vec(P̂ ) − Vec(P )‖2 ≤ t

−P � 0
, (13)

where feasible matrices are parameterized by (5) and
(6). The program (SDP) is on standard form and there
are several software packages available.

Remark 4. The program (SDP) is computationally
considerably more expensive than a least-squares so-
lution. Thus, an implementation should first compute
the least-squares solution and check the positivity be-
fore proceeding to solve the (SDP).

Remark 5. This also allows the possibility, by requir-
ing P � εI for some ε, to avoid a high condition
number in the optimization problem (10) caused by
inverting a nearly singular matrix.



4. COMPARISON TO THE THREE ALGORITHM

The proposed algorithm resembles the THREE algo-
rithm of Byrnes et al. (2000) and they will be com-
pared in the subsequent. Firstly, the convergence rate
of the expansion coefficients is discussed. Secondly,
the numerical properties of the optimization problem
(10) are analyzed. They turn out to be essentially the
same, even though the orthonormal approach is inter-
nally better scaled. Finally, the accuracies of the state
covariance estimates are considered. Generally, the
orthonormal construction will be less noise-sensitive
when the poles are concentrated, which is an interest-
ing case when the system dynamics is concentrated
to one frequency region. This will cause the main
difference in the performance for the methods.

4.1 Convergence rate of expansion coefficients

A fast rate of convergence in terms of the expansion
coefficients for the system to be identified has been
a major reason for using orthonormal basis functions
in identification, see for instance Wahlberg (1991).
The same arguments can be used for the subclass
of systems studied in this paper. If the poles of the
basis functions are close to the dominant ones of the
spectral density to be identified, it will require fewer
coefficients to catch most of the dynamics. Thus this
motivates both algorithms.

4.2 Numerical properties of the optimization problem

The THREE and orthonormal basis functions span
the same space, so there is a non-singular coordinate
transformation, T , between the basis functions:

GTHREE(z) = TGOrth(z).

This gives a relation between the IS realizations

GTHREE(z) = T (I − zAOrth)−1BOrth,

= (I − zTAOrthT−1)−1TBOrth,

= (I − zATHREE)−1BTHREE,

which in turn gives relations between the controlla-
bility matrices and the true state covariances matrices
respectively:

ΓTHREE = TΓOrth, (14)

P THREE =

∫

GTHREEΦGTHREE ∗,

=

∫

TGOrthΦGOrth ∗TT ,

= TP OrthTT . (15)

In particular the accuracy of the estimates and condi-
tion number of the matrix K in (11) are important; for

the maximum entropy solution the K matrix is actu-
ally inverted. For the true state covariance matrices,
i.e., not noise-corrupt, (15) hold. Then K is invariant
under coordinate changes:

KTHREE = L−T
n ΓTHREE−1P THREEΓTHREE−T L−1

n ,

= L−T
n ΓOrth−1TT−1P OrthT−T TT ΓOrth−T L−1

n ,

= KOrth := K.

Therefore the matrices K, and thus the optimization
problems, will converge when the data sequence goes
to infinity.

Thus we can conclude that for reasonably long data
sequences the numerical properties are essentially the
same for the two problems. Even so, it is instructive to
consider the internal conditioning of the K matrices.
Firstly, consider the controllability matrix Γ. If the
pole set is concentrated, i.e., if many poles are closely
located, the condition number of Γ will be higher for
the THREE filter bank. A two-pole example illustrates
this:

Example 6. Given the poles {a, a + ε} the IS realiza-
tion of the filter banks for the THREE algorithm and
the orthonormal basis functions are easily determined.
The corresponding controllability matrices are

ΓTHREE =

[

1 a

1 a + ε

]

,

ΓOrth =

[

b̃ ab̃

−ab̂ b̂(1 − |a|2 − a2 − εa)

]

,

respectively and where b̂ =
√

1 − |a + ε|2 and b̃ =
√

1 − |a|2. If the absolute value of ε is small com-
pared to a, the condition numbers under the Euclidean
norm can be computed as

κ2(Γ
THREE) = κ2

([

1 0
1 1

] [

1 a

0 ε

])

,

= κ2

([

1 a

0 ε

])

=
1

ε
,

κ2(Γ
Orth) = κ2

([

b̃ 0

−ab̂ b̂(1 − |a|2 − εa)

] [

1 a

0 1

])

,

= κ2

([

b̃ 0

−ab̂ b̂(1 − |a|2 − εa)

])

,

=

√

1 − |a|2
√

1 − |a + ε|2(1 − |a|2 − εa)
,

respectively. Here the condition number for the THREE
controllability matrix is considerably larger. Having
several poles close to each other enforces this behav-
ior.

Secondly, consider state covariance estimate P̂ . Its
condition number will depend on the condition num-



ber of the corresponding controllability matrix. For
infinite data sequences we have the bounds:

1

κ2(Γ)2
≤

κ2(P )

κ2(LT
nKLn)

≤ κ2(Γ)2. (16)

This gives a relation for the condition number of the
state-covariance matrices:

κ2(P
Orth) ≤

κ2(Γ
Orth)2

κ2(ΓTHREE)2
κ2(P

THREE). (17)

Thus the condition number of the state covariance ma-
trix will generally be higher when the corresponding
controllability matrix is. The conclusion is that the op-
timization problem (10) will have approximately the
same conditioning for the two sets of basis functions.
However, will the problem with the orthonormal basis
function be internally better scaled.

Here it is interesting to consider the basis functions
z−k. They are generically well-scaled since the corre-
sponding controllability matrix is the identity matrix.

4.3 Accuracy in estimating the state covariance

For relatively short data sequences there are two ef-
fects that will determine the accuracy. Firstly, the or-
thonormal basis functions span the space so that each
state contain information that is not in the prior states.
From (17) we see that this will reduce the condition
number of the state covariance matrix. This makes it
less sensitive to noise. Secondly, the time lags in the
filter banks will decrease the accuracy. As pointed out
in Byrnes et al. (2000) one of the merits of the THREE
algorithm is the time lag is one for all filters in the filter
bank. These two effects work in different directions
and which that is dominant will depend on the choice
of poles for the filter banks.

5. A NUMERICAL EXAMPLE

Consider the shaping filter

W (z) =
z − 0.9

z − 0.8
.

Driven by Gaussian white noise, the output of the
system is measured as depicted in Figure 2. The task
is to recover the original system as accurately as
possible. The shaping filter W (z) is chosen to a simple
first order filter. The zero relatively close to the pole
will make it fairly hard to identify.PSfrag replacements

white
noise W (z) {yk}

N
k=1

Fig. 2. The shaping filter in the numerical example

Given the artificial measurements {yk}
N
k=1

, the shap-
ing filter (and correspondingly the spectral density)
is identified using a Linear Prediction Filter (LPC),

the THREE algorithm (THREE) and the orthonormal
basis function procedure of this paper (Orth). The
poles are chosen to be the same for the THREE and
orthonormal algorithms and they are chosen to be in
the vicinity of the pole at 0.80, but not necessarily
identically to it. Since the THREE algorithm does not
allow for repeated poles in the basis the case of distinct
poles is consider. Also note that since the proposed
algorithm is developed in the same framework as the
THREE, the optimization problem (10) is also solved
using the THREE algorithm.

In order to compare two estimates of the shaping fil-
ters, we compute the Kullback-Leibler distance, de-
fined in (8), between the true and the estimated nor-
malized spectral densities: S(Φ̂true‖Φ̂estimate). The
normalization guarantees that the distance will be non-
negative and that it is zero exactly when the normal-
ized densities coincide.

The system is driven for a while so that the stationary
assumption of the filter is at least approximatively
valid. For each parameter set the 100 Monte Carlo
simulations are performed and the average Kullback-
Leibler distance is computed. Here the maximum en-
tropy solution is computed, for simpler comparison.
This means that the accuracy of the estimates can
be significantly increased if a good initial estimate is
given.

As discussed in Section 4 both the number of basis
functions in the filter bank, this is the order of the
identified system, and the length of the data sequence
affects procedure differently. In the Table 1 the results
are given for all combinations of the data length N =
20, 200 & 2000 and the number of basis functions n =
1, 3 & 5. In addition a few estimate for the case n = 1
and N = 2000 is plotted in Figure 3. The basis func-
tion poles are chose to be {0.75}, {0.75, 0.70 & 0.80},
and {0.75, 0.70, 0.80, 0.72 & 0.78} for the different
values of n. Note that for the orthonormal basis func-
tions the ordering of the poles is vital (see Bodin et al.
(2000) for a discussion in the case without positivity
constraint).
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Fig. 3. The true and some identified spectral density
for n = 1 and N = 2000



Table 1. Kullback-Leibler distances between true and estimated spectral densities

N 20 200 2000
n LPC THREE Orth LPC THREE Orth LPC THREE Orth
1 0.0633 0.0350 0.0392 0.0189 0.0052 0.0053 0.0153 0.0032 0.0032
3 0.1779 0.0354 0.1367 0.0235 0.0311 0.0097 0.0099 0.0288 0.0010
5 0.2704 0.0308 0.2136 0.0300 0.0324 0.0177 0.0076 0.0321 0.0025

The results are as expected from the discussion in Sec-
tion 4. It is clear that the non-default basis choice can
increase the accuracy in the estimates. The THREE
algorithm gets problems in estimating the state co-
variance matrix in more cases than the orthonormal
algorithm. For very short data sequences the THREE
algorithm produces a better result when i works. Both
the THREE and the orthonormal algorithms seem to
perform worse when the number of basis functions in-
creases. Thus, they are better suited for directly iden-
tifying a low-order model rather than first identifying
a high-order model that is to be model-order reduced.

Remark 7. There is no comparison to the approxima-
tive identification algorithm of de Hoog et al. (2002)
made since that algorithm is designed for determin-
istic identification, that is when the input signal is
available. However, it would be possible to replace the
least square estimates of Van den Hof et al. (1995)
with estimate given from the interpolation problem
and translated to the spectral factor. Applying the
method directly to the transfer function fy(z) would
not guarantee positive-realness.

Remark 8. In Byrnes et al. (2000) and Georgiou
(2001) the increased precision in certain frequency
ranges is emphasized, but in this example the whole
frequency region is considered.

6. CONCLUSIONS

This paper provides a procedure for spectral estima-
tion using orthonormal basis functions. The filter bank
framework allow for combination of different types
of basis functions including the orthonormal of this
paper. It is discussed and illustrated how the orthonor-
mality in the basis can be important; in particular this
seems to be important for concentrated poles in the
basis. An extension to vector processes seems fairly
straight forward in the light of Blomqvist et al. (2002).
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