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Abstract— This paper provides a procedure for computing
scalar real rational Nevanlinna-Pick interpolants of a bounded
degree. It applies to a wider class of interpolation problems and
seems numerically more reliable than previous, optimization-
based, procedures. It is based on the existence and the unique-
ness of the solution guaranteed by Georgiou’s proof of bijec-
tivity of a map between a class of nonnegative trigonometric
polynomials and a class of numerator/denominator polynomial
pairs of interpolants. Further analysis of this map suggests a
numerical continuation method for determining the interpolant
from a system of nonlinear equations. A numerical example
illustrates the reliability of the proposed procedure.
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I. INTRODUCTION

Nevanlinna-Pick interpolation theory has been recognized
as a tool applicable to various areas in systems and control
[5], [14]. Recent developments of the interpolation theory
with complexity constraint have introduced new approaches
in signal processing, circuit theory and robust control, see
[3] and references therein. To fully exploit the theory in
such applications, it is significant to devise a numerically
efficient algorithm for computing any rational interpolant of
a bounded degree.

The theory in [3] completely characterizes all the strictly
positive real Nevanlinna-Pick interpolants of a bounded de-
gree. More precisely, it shows the diffeomorphism between
a class of positive trigonometric polynomials and a class of
rational strictly positive real interpolants, a stronger assertion
of Georgiou’s conjecture of bijectivity in [7]. The problem
of computing each such interpolant amounts to solving an
optimization problem for which a procedure based on a
continuation method has been developed in [2], [6], [10].

The optimization-based procedure may work even to
determine non-strictly positive real interpolants unless the
interpolant has poles on the unit circle, since that requires
spectral factorization with spectral zeros on the unit circle,
which is numerically infeasible. However, such interpolants
are important in applications; e.g., it corresponds to spectral
lines in spectral estimation. Furthermore, a reliable algorithm
ought to be numerically stable for spectral zeros in the
vicinity of the unit circle. This motivates the present paper.

Recently, Georgiou proved the bijectivity between a class
of numerator/denominator polynomial pairs of (not neces-

sarily strictly) positive real and a class of (not necessarily
strictly) positive real interpolants in [8]. However, the proof
in [8] does not offer any means of actually constructing such
interpolants. In this paper, we solve a system of nonlinear
equations that arises immediately from the bijectivity asser-
tion. To solve the system, we use a continuation method [1]
on a homotopy from the equations for the central solution
and the system of our interest. This is fundamentally different
from the optimization-based approach.

Apart from the reliability of a procedure, its numerical
efficiency is of vital importance for some applications. In
the present paper we will not discuss this issue in detail.
However, at present the problem of computing arbitrary
interpolants of bounded degree seems to require these general
nonlinear methods.

The paper is organized as follows. In Section II, we
will review the Nevanlinna-Pick interpolation problem with
degree constraint while Section III is devoted to an exposition
of properties of a map, which are important for the procedure
proposed in this paper. In Section IV, we derive a system of
nonlinear equation whose solution gives the unique positive
real interpolant of a bounded degree. Section V proposes
a procedure based on a continuation method to solve the
system of nonlinear equations. An example is given in
Section VI to illustrate the reliability of the procedure.

II. THE NEVANLINNA-PICK INTERPOLATION
PROBLEM WITH DEGREE CONSTRAINT

In this section, we will formulate a Nevanlinna-Pick in-
terpolation problem with degree constraint. We will review
Theorem 2 in [8] concerning the complete characterization
of a class of positive real interpolants which is pertinent to
our result.

A. Nevanlinna-Pick interpolation with degree constraint

The core problem considered in this paper is the
Nevanlinna-Pick interpolation problem with degree con-
straint, formulated as follows.

Problem 2.1: Given a set of self-conjugate complex num-
ber pairs {(zj , wj)}

n
j=0 with z0=0 and distinct {zj}

n
j=0 ⊂

D := {z ∈ C : |z| < 1}, determine any function f which
satisfies the following conditions:

• f is positive real, i.e., f is holomorphic in D and maps
D into the closed right half-plane C+,



• f satisfies the interpolation conditions:

f(zj) = wj , j = 0, 1, . . . , n, (1)

• f is real rational of degree at most n.
Remark 2.1: The results in this paper are still valid even in

the case where the interpolation constraints include derivative
constraints. The only difference appears in the matrix K that
will be defined in (5).

The necessary and sufficient condition for the existence
of rational interpolants of degree at most n is well-known
to be expressed as the nonnegativity of the Pick matrix
(see [8, p. 632]), which is the same as the classical result
without degree constraint (see e.g. [13]). If the Pick matrix
is nonnegative definite but singular, there is a unique solution
to this problem. Hereafter, we assume that the Pick matrix is
positive definite, leading to the case where there are infinitely
many rational interpolants of degree at most n.

B. A complete characterization of all the solutions

In [7], for the covariance extension problem (which is
essentially the same problem as the Nevanlinna-Pick interpo-
lation problem), Georgiou conjectured that the class of all the
interpolants of degree at most n is completely characterized
in terms of the class of nonnegative trigonometric polynomi-
als of degree at most n. This conjecture was proven to be true
in [8, Theorem 2]. Even though the theorem in [8] deals with
both complex and real rational interpolants, here, we restrict
ourselves to real rational interpolants which are relevant to
applications. In addition, we remove the normalization that
was taken into account in [8].

Theorem 2.1: [8] For each element in the class of real
nonnegative trigonometric polynomials of degree at most n:

D :=







d(z, z−1) :=

n∑

j=0

dj(z
j + z−j) ≥ 0,∀ |z| = 1

dj ∈ R, j = 0, 1, . . . , n







,

there is a unique pair of real polynomials (α, β) satisfying
the following four conditions:

C1 deg α ≤ n, deg β ≤ n and α(0) > 0,
C2 the rational function f := β/α satisfies the inter-

polation conditions (1),
C3 α and β satisfies

α(z)β∗(z) + β(z)α∗(z) = d(z, z−1), (2)

where α∗(z) := α(z−1),
C4 α+β has all its roots in D

c := {z ∈ C : |z| ≥ 1}.
Note that the combination of two conditions C3 and C4
is equivalent to the condition that a rational f := β/α
is positive real (see [8]), and therefore, that the conditions
C1–C4 are the same as three conditions in Problem 2.1.
Conversely, it is obvious that any Nevanlinna-Pick inter-
polant f = β/α of degree at most n corresponds to some
nonnegative trigonometric polynomial d(z, z−1) with (2).

Consequently, the class D completely characterizes the class
of all the solutions to the Nevanlinna-Pick interpolation
problem with degree constraint.

Now, define the inner-product of the real functions a and
b in L2 space by

〈a, b〉 :=
1

2π

∫ π

−π

a∗(eiθ)b(eiθ)dθ.

Since, as will be shown later, the conditions C1 and C2
give rise to a linear relation between α and β, denoted by
β = κ(α), the above theorem can be restated as follows.

Theorem 2.2: The map G : A → D defined by

G(α) := α∗ [κ(α)] + [κ(α)]
∗
α (3)

is bijective. Here, the domain A is the class of all polynomi-
als α which generate the Nevanlinna-Pick interpolants with
degree constraint, defined as

A := {α : deg α ≤ n, α(0) > 0, κ(α)/α is positive real} .

In fact, the map G has “stronger” properties than the bijec-
tivity. This point will be discussed in the next section.

III. PROPERTIES OF THE MAP G

Now, we will discuss important properties of the map G
in (3). As was stated in Theorem 2.2, the map is a bijection.
However, we can actually show that the map G is a homeo-
morphism. In the region of strictly positive real interpolants,
the corresponding map is even a diffeomorphism, as shown
by Byrnes and Lindquist in [4]. Both of these properties will
turn out to be vital in justifying a numerical continuation
method. First we have the following theorem.

Theorem 3.1: The map G : A → D in (3) is a homeo-
morphism.
To prove this theorem, we show a normalized version of the
theorem.

Lemma 3.1: The map G̃ : Ã → D̃ defined by

G̃(α) := α∗ [κ(α)] + [κ(α)]
∗
α

is a homeomorphism. Here, the domain Ã and the range D̃
are normalized sets of A and D respectively, defined as

Ã := {α ∈ A : 〈α, κ(α)〉 = 1} ,

D̃ := {d ∈ D : d0 = 1} .
Note that the normalization 〈α, κ(α)〉 = 1 is equivalent to

〈

G̃(α), 1
〉

= 2. (4)

Proof: Since G̃ is known to be a bijection due to
Theorem 2.2, it suffices to show that it is continuous and
that the domain Ã is closed and bounded.

First we address the boundedness of Ã. Let us take α ∈ Ã
and form the corresponding positive real function

f(z) :=
κ(α(z))

α(z)
.



Note that the polynomials α and κ(α) can be written re-
spectively as α0α̃ and β0β̃ using polynomials α̃ and β̃ with
constant terms equal one. Also note that we have a relation
β0 = w0α0, since f(z0) = w0 with the assumption z0 = 0.
Hence, f = w0β̃/α̃.

Since f is positive real, the roots of α̃ are in the closed
unit disc. Thus, and since α0 is taken positive, it suffices to
show that α0 is bounded from above. In order to prove the
boundedness of α0, we need to utilize the positivity of the
Pick matrix. To this end, along the same line as in [9], we
introduce the filter bank

H(z) :=






H0(z)
...

Hn(z)




 ,

where Hj(z) := 1/(1 − zjz). Then the Pick matrix can be
represented as

Σ =
1

2π

∫ π

−π

H(f + f∗)H∗dθ

=
w0

2π

∫ π

−π

H

(
α̃

τ

)−1
α̃β̃∗ + β̃α̃∗

ττ∗

(
α̃

τ

)−∗

H∗dθ.

where we have suppressed the evaluation at eiθ, and τ is
defined by τ(z) :=

∏n
j=0(1−zjz). Since α̃/τ ∈ Span{Hj},

there is a vector k ∈ C
n+1 such that α̃/τ = kHH . Therefore,

and since the Pick matrix is positive definite, there is an ε > 0
such that

α2
0ε ≤ α2

0k
HΣk =

1

2π

∫ π

−π

G̃(α)(eiθ)

|τ(eiθ)|
2 dθ

≤
M

2π

∫ π

−π

G̃(α)(eiθ)dθ = 2M,

for some finite number M ≥ maxθ∈[−π,π] 1/
∣
∣τ(eiθ)

∣
∣
2
. Here,

the finiteness of M follows from the assumption that all the
interpolation points are in D, and the last equality follows
from (4). Since ε and M are independent of α0, we have
shown that α0 is bounded from above, and thus Ã is bounded.

Secondly, we deal with the continuity of G̃. For arbitrary
two elements α1 and α2 in Ã, we have

G̃(α1) − G̃(α2)

= (α1 − α2)
∗κ(α1) + α∗

2κ(α1 − α2)

+ [κ(α1)]
∗
(α1 − α2) + [κ(α1 − α2)]

∗
α2.

Therefore, since the linear map κ is bounded and the set Ã
is bounded, it is easy to show that there exists a constant
C > 0 satisfying

‖G̃(α1) − G̃(α2)‖ ≤ C‖α1 − α2‖.

Since α1 and α2 are arbitrary in Ã, we have proven the
continuity of G̃ in Ã.

Finally the closedness of Ã follows immediately by using
the property of continuity and bijectivity of G̃ and the
closedness of D̃ [11, p. 87]. This completes the proof.

Proof: [Proof of Theorem 3.1] The map G can be
written as a composite of three maps:

G = M ◦ G̃ex ◦ N,

where

N : A 7→ Ã × R
+ : N(α) :=

[ α

(〈α, κ(α)〉)1/2

〈α, κ(α)〉

]

,

G̃ex : Ã × R
+ 7→ D̃ × R

+ : G̃(α, r) :=

[

G̃(α)
r

]

,

M : D̃ × R
+ 7→ D : M(d, r) := rd.

The maps N and M play roles of normalization and inverse
scaling, respectively. Due to Lemma 3.1, the map G̃ex is
homeomorphic. Since the maps N and M are also homeo-
morphic, so is the composite map G.

Now we phrase a smoothness result from the theory
developed for strictly positive real interpolants. Here we
consider the subsets of A and D as:

A+ := {α ∈ A : κ(α)/α is strictly positive real},

D+ := {d ∈ D : d(z, z−1) > 0 ∀|z| = 1}.

The following theorem was proven by Byrnes and Lindquist:
Theorem 3.2: [4] The map G+ : A+ → D+, defined by

G+(α) := G(α) for all α ∈ A+, is a diffeomorphism.

IV. DERIVATION OF A SYSTEM OF NONLINEAR
EQUATIONS

In this section we will rewrite the conditions C1–C4 in
terms of coefficient vectors of polynomials α and β. This
will yield a system of nonlinear equations.

First, due to the condition C1, we can parameterize the
polynomials α and β as

α(z) := αT z, β(z) := βT z,

where the vectors α, β and z are defined by

α :=
[
α0 α1 · · · αn

]T
, α0 > 0,

β :=
[
β0 β1 · · · βn

]T
,

z :=
[
1 z · · · zn

]T
.

Next, due to the condition C2, we have a linear relation
between α and β as

β = Kα, (5)

where K := Γ−1WΓ with

Γ :=








1 z0 · · · zn
0

1 z1 · · · zn
1

...
...

...
1 zn · · · zn

n








, W =








w0

w1

. . .
wn








.

Note that the Vandermonde matrix Γ is nonsingular because
of the distinct assumption of {zj}. To express the condition



C3 in terms of α and β, we introduce a Hankel + Toeplitz
operator defined for a vector.

Definition 4.1: For a vector v :=
[

v1 · · · vm

]T
, a

linear continuous operator S : R
m → R

m×m is defined by

S(v) :=






v1 · · · vm

... . .
.

vm




 +






v1 · · · vm

. . .
...

v1




 .

Remark 4.1: The continuity of the linear operator is due
to [12, Lemma 1.20].
With this operator, the relation (2) can be written as
S(α)β = d where d :=

[
2 d1 · · · dn

]T
. The condition

C4 is described by means of the parameter vectors α and β

as α+β ∈ S where the Schur stability region S in R
n+1 is

defined by

S :=
{
v ∈ R

n+1 : vT z 6= 0,∀z ∈ D
}

From the vector expressions of the conditions C1–C4,
Theorem 2.1 can be rephrased as follows.

Corollary 4.1: For each vector d in the region

D̂ :=






d ∈ R

n+1 :

n∑

j=0

dj(z
j + z−j) ∈ D






,

the system of nonlinear equations

g(α) := S(α)Kα − d = 0 (6)

has a unique solution in the region

Â :=
{
α ∈ R

n+1 : α0 > 0, (I + K)α ∈ S
}

.
The remaining issue is, for each specified vector d in

D̂, to find the unique solution to the system of nonlinear
equations (6) in Â. However, because of the nonlinearity
of g, this is a non-trivial issue, and we need in general
to rely on some numerical methods. In order to find the
unique solution, we shall use a continuation method, which
is one of the standard numerical tools for solving a system
of nonlinear equations. The performance of the continuation
method crucially depends on properties of the map G in (3),
which were discussed in Section III.

V. A PROCEDURE BASED ON A CONTINUATION
METHOD

In the following, we will introduce a homotopy that defines
a trajectory to be traced numerically, discuss the properties of
the trajectory crucial for the use of the continuation method,
and explain the numerical method of tracing the trajectory,
that is, the predictor-corrector steps.

A. Construction of a homotopy

To construct a homotopy, we notice that if d is chosen as
τ := [2τ0, τ1, · · · , τn]

T
∈ D̂ which consists of coefficients

of the trigonometric polynomial
n∑

j=0

τj(z
j + z−j) :=

1

M

n∏

j=0

(1 − zjz)(1 − zjz)∗,

where M is a scaling to make τ0 = 1, then the corresponding
system of nonlinear equation

gτ (α) := S(α)Kα − τ = 0

is easy to solve.
We design a convex homotopy h : R

n+1 × [0, 1] → R
n+1

as

h(α, ν) := (1 − ν)gτ (α) + νg(α),

= S(α)Kα − τ + ν (τ − d) , ν ∈ [0, 1] .

Note that h(α, 0) = gτ (α) and h(α, 1) = g(α). Therefore,
h(α, 0) = 0 is easy to solve, while h(α, 1) = 0 is our
problem at hand.

For each ν ∈ [0, 1], the system h(α, ν) = 0 has a unique
solution in Â, due to Corollary 4.1 and the convexity of D̂.
Let us denote the unique solution of the system h(α, ν) = 0
as α̂(ν), and we call the class {α̂(ν)}

1
ν=0 the trajectory.

Our objective is to trace this implicitly defined trajectory
numerically from ν = 0 to ν = 1, and to obtain α̂(1). For
this purpose, we use a numerical continuation method with
predictor-corrector steps. Before proceeding the exposition of
the predictor-corrector steps, we shall analyze the properties
of the trajectory.

B. Properties of the trajectory

To apply a continuation method to a trajectory tracing,
the trajectory should enjoy some favorable properties, since
otherwise, the method is likely to break down or end up
with a wrong solution. For example, the trajectory should
have sufficient smoothness (such as continuity and differen-
tiability), but neither a bifurcation nor a turning point (see
[1]). We shall next study these properties for the trajectory
{α̂(ν)}

1
ν=0.

First, due to Lemma 3.1 and Theorem 3.2, the property of
{α̂(ν)}

1
ν=0 concerning the smoothness follows immediately.

Proposition 5.1: The trajectory {α̂(ν)}
1
ν=0 is continu-

ously differentiable in the interval [0, 1). In addition, it is
continuous at ν = 1.
A direct consequence of Proposition 5.1 is the following.

Corollary 5.1: The trajectory {α̂(ν)}
1
ν=0 does not have

any turning point in [0, 1).
Because of the uniqueness of α̂(ν) for each ν ∈ [0, 1], we

also have that
Corollary 5.2: The trajectory {α̂(ν)}

1
ν=0 does not have

any bifurcation.
The three properties above justify the use of a continuation

method to trace the trajectory numerically.
Owing to the continuous differentiability of the trajectory,

we can express the trajectory as a solution of an ordinary
differential equation with an initial value. When we take a
derivative of h(α̂(ν), ν) = 0 with respect to ν, we have

∂h

∂α
(α̂(ν), ν) ·

dα̂

dν
(ν) +

∂h

∂ν
(α̂(ν), ν) = 0,



or equivalently,

dα̂

dν
(ν) = v(α̂(ν)),

v(α̂(ν)) := −

[
∂h

∂α
(α, ν)

]−1
∂h

∂ν
(α, ν)

∣
∣
∣
∣
∣
α=α̂(ν)

.

The invertibility of the Jacobian ∂h/∂α is guaranteed on the
trajectory in the interval [0, 1) because of the differentiability
of α̂. Since we can easily compute α̂(0), the problem to solve
is the ordinary differential equation with an initial value:

{
dα̂

dν
(ν) = v(α̂(ν)),

α̂(0) : given.

To solve this initial value problem numerically, we use
predictor-corrector steps.

C. The predictor step

In the predictor step, given a point α̂(ν) on the trajectory,
we move the point to a new point as

α(ν + δν) := α̂(ν) + δν · v(α̂(ν)).

This point may not be on the trajectory, and hence we use
the notation α(ν + δν) instead of α̂(ν + δν). To determine
the new point α(ν + δν), we need to compute v(α̂(ν)) and
to provide δν.

The directional vector v(α̂(ν)) consists of two factors:
one is the inverse of ∂h/∂α, which is the Jacobian of g and
can be written explicitly as

∇g(α) = S(α)K +
n∑

j=0

αjS(kj),

where kj is the (j + 1)-th column of the matrix K in (5).
Note that, due to the differentiability of α̂, the Jacobian is
nonsingular for all ν in the interval [0, 1). The other factor
is

∂h

∂ν
= τ − d,

which is independent of both α and ν, and can thus be
computed off-line.

The step size must be chosen in a careful way. This is
because a small step size will cause a long time to arrive
at ν = 1 and to obtain α̂(1), while a large step size might
ruin the convergence of the corrector step that follows the
predictor step. Next, we propose a reasonable way to make
this trade-off.

On the trajectory, we have h(α̂(ν), ν) = 0, and in
particular,

eT
1 h(α̂(ν), ν) = eT

1 S(α̂(ν))Kα̂(ν) − eT
1 τ ,

= 2α̂(ν)T Kα̂(ν) − 2 = 0.

A criterion for not deviating too far from the trajectory is to
require

1 − µ ≤ α(ν + δν)T Kα(ν + δν) ≤ 1 + µ,

for some small number µ > 0. For a given direction v(α̂(ν)),
we can compute the maximal step length δν∗ as

(α̂ + δν∗v(α̂))T K(α̂ + δν∗v(α̂)) = 1 ± µ,

which yields

δν2
∗ + δν∗

v(α̂)T Kα̂ + α̂
T Kv(α̂)

v(α̂)T Kv(α̂)
︸ ︷︷ ︸

=:p

±
−µ

v(α̂)T Kv(α̂)
︸ ︷︷ ︸

=:q

= 0.

We pick the smallest positive solution:

δν∗ =







−p
2 −

√
p2

4 − |q| if p < 0 & p2

4 > |q|,

−p
2 +

√
p2

4 + |q| otherwise.

D. The corrector step

In the corrector step, given a point α(ν + δν) which is
obtained in the predictor step, we pull the point back to the
trajectory by fixing ν-value, and obtain α̂(ν + δν). This is
equivalent to solving the system of nonlinear equations

h̃(α) := h(α, ν + δν) = 0.

We use Newton’s method with an initial point α(ν + δν)
to solve this system numerically. The Newton’s method uses
iterations

αk+1 = αk −∇h̃(αk)−1 · h̃(αk), k = 0, 1, 2, . . . .

The Jacobian ∇h̃(αk) is nonsingular if αk is close enough
to the trajectory, due to the continuity of the Jacobian.

VI. AN ILLUSTRATING EXAMPLE

In this section, we will consider an example which indi-
cates the potential of the proposed procedure for computing
rational Nevanlinna-Pick interpolants. The example is of a
quite academic character but illustrates the ability of the
procedure to compute interpolants with spectral zeros on the
unit circle as well as the continuity of the map G in (3).

Example 6.1: Consider the positive real function

f(z) = 1 +
1 + eiθ0z

1 − eiθ0z
+

1 + e−iθ0z

1 − e−iθ0z
.

The associated spectral density Φ = 2Re f corresponds to a
sinusoid in (Gaussian) white noise. Let us take θ0 = 0.5 and
interpolation points at 0 and 0.5e±iθ0 . We can then compute
the interpolation data {wk}. Now, for various choices of
trigonometric polynomial d(z, z−1), we will recover cor-
responding positive real functions f(z). Associated with
each interpolant is the spectral factorization w(z)w∗(z) :=
f(z) + f∗(z). The zeros of w will also be the zeros of d.
Now we choose a family of these zeros converging to the
true one at eiθ0 . In Fig. 1, the poles and the (chosen) zeros
of the spectral factor are plotted. We see that as the spectral
zeros approach the unit circle, the poles approach the same
points. When the zero is chosen to be exactly eiθ0 , we get a
cancellation in the spectral factor and we have recovered the



true function f . In Fig. 2, the corresponding spectral densities
Φ are plotted. We note that densities gradually tend to the
singular density corresponding to the true f .

Pole−Zero Map
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Fig. 1. The given spectral zeros (o) and corresponding poles (x) of the
positive real functions consistent with the interpolation data in Example 6.1
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Fig. 2. The spectral densities associated with the interpolants in Exam-
ple 6.1

VII. CONCLUSIONS

In this paper, we have developed a procedure to compute
any real rational, positive real Nevanlinna-Pick interpolant
with a degree bound. The new approach, compared to
previously developed solvers based on convex optimization,
enhances the numerical reliability.

Even though we can see experimentally that the developed
procedure converges well, a theoretical proof of the conver-
gence is missing. Besides, real-world engineering problems,
for instance the spectral estimation problem, should be ex-
amined by utilizing the proposed procedure. Furthermore,
it will be important to extend this procedure to the multi-
variable cases, that is, to both matrix-valued and tangential
Nevanlinna-Pick interpolation problems. These will be future
research subjects.
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