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Abstract. Over the last several years a new theory of Nevanlinna-Pick interpola-
tion with complexity constraint has been developed for scalar interpolants. In this
paper we generalize this theory to the matrix-valued case, also allowing for multiple
interpolation points. We parameterize a class of interpolants consisting of “most
interpolants” of no higher degree than the central solution in terms of spectral zeros.
This is a complete parameterization, and for each choice of interpolant we provide
a convex optimization problem for determining it. This is derived in the context
of duality theory of mathematical programming. To solve the convex optimization
problem, we employ a homotopy continuation technique previously developed for
the scalar case. These results can be applied to many classes of engineering prob-
lems, and, to illustrate this, we provide some examples. In particular, we apply our
method to a benchmark problem in multivariate robust control. By constructing
a controller satisfying all design specifications but having only half the McMillan
degree of conventional H∞ controllers, we demonstrate the efficiency of our method.

1. Introduction

Applications of Nevanlinna-Pick interpolation abound in robust control [15, 21, 23,
28, 32, 33, 46, 47], signal processing [4, 5, 6, 9, 25, 31] and maximal power transfer [50]
in circuit theory, to mention a few. Since the interpolant has a specific interpretation
as a transfer function in all these applications, it is important to restrict its degree,
and at the same time satisfy all design specifications. The lack of insight provided by
the classical techniques of Nevanlinna-Pick interpolation into questions regarding the
degree of various interpolants has therefore been a limiting factor in this approach. In
fact, the designer has generally been confined to the so called central solution, or the
essentially equivalent solution derived by Nehari approach, the only type of solution
for which algorithms have been available.

Over the last several years a new theory of analytic interpolation with complexity
constraint has been developed for scalar interpolants [8, 7, 12, 9, 11, 5]. The basic
idea is to parameterize complete classes of interpolants of at most a given degree
in a smooth fashion, providing tuning parameters for modifying the design without
increasing the complexity. This is done in the context of duality theory of mathe-
matical programming, providing convex optimization problems for determining any
interpolant belonging to such a class. In this context, new paradigms for spectral
estimation [6, 4, 5] and robust controller synthesis [7, 38, 39, 40, 41, 42] have been
developed in the scalar-input/scalar-output case.
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However, all these results are for scalar interpolants, while the multivariable case is
clearly more interesting and important in most of the applications mentioned above.
For example, while our design procedures in robust control [7, 38, 39, 40, 41, 42] com-
pare very favorably to H∞ control methods in the scalar case, it is in the multivariable
case that they have a chance to outperform classical control methods in general.

Motivated by this, in this paper we generalize the theory of [7] to the matrix-
valued case, also allowing for multiple interpolation points. We parameterize a class
of interpolants consisting of “most interpolants” of no higher degree than the central
solution in terms of spectral zeros. This is a complete parameterization, and for each
choice of interpolant we provide a convex optimization problem for determining it.
This is derived in the context of a duality theory, generalizing that of [7, 8]; also
see the survey in [9]. To do this, we regard the Nevanlinna-Pick interpolation as a
generalized moment problem, to proceed along the lines of [11, 10]. However, the
present multivariate case introduces new nontrivial and challenging issues.

The outline of this paper is as follows. In Section 2 we provide some motiva-
tion examples, introducing the reader to matrix interpolation in the context of signal
processing and control. Section 3 is a preliminary in which we formulate the matrix-
valued interpolation problem, first defining a corresponding class of rational strictly
positive real functions with complexity constraint. We reformulate the problem as a
generalized moment problem and provide a necessary and sufficient condition for exis-
tence of solutions, which we then interpret as a generalized Pick condition. The main
theorems are presented in Section 4 and proved in Section 5. Generalizing results in
[8, 7, 9, 11, 10] to matrix-valued analytic interpolation theory, we present a smooth,
complete parameterization of the set of matrix-valued interpolants with complexity
constraint in the context of duality theory of mathematical programming. In fact, to
each choice of parameters, there is a pair of dual optimization problems, the optima of
which uniquely determine the interpolant. The primal problem amounts to maximiz-
ing a generalized entropy gain subject to the interpolation conditions, while the dual
problem is a convex optimization problem with a unique minimum. In Section 6, an
algorithm for solving the dual problem is provided. Here we generalize to the matrix
setting an approach first applied to the covariance extension problem in [22] and then
extended in [40, 2] to Nevanlinna-Pick interpolation. Since the dual problem is ill-
behaved close to the boundary, we reformulate the optimization problem to eliminate
this property. This is done at the expense of global convexity, but the new functional
is still locally strictly convex in a neighborhood of a unique minimizing point so that
we can solve the problem by a homotopy continuation method. In Section 7, finally, a
numerical example in robust control is presented. We consider a popular benchmark
problem and show that our design achieves the design specifications with a controller
of much lower degree than that of the H∞ design with weighting functions.

2. Motivating examples from signal processing and control

To justify the problem formulation of this paper, we begin by briefly considering
some motivating examples.

Example 2.1. Suppose we are given a sequence C0, C1, . . . , Cn of matrix-valued co-
variance lags

Ck = E{yt+ky
∗
t }, k = 0, 1, . . . , n,
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of some real �-dimensional stationary stochastic process {yt; t ∈Z} with the property
that the block Toeplitz matrix




C0 C1
T · · · Cn

T

C1 C0 · · · Cn−1
T

...
...

. . .
...

Cn Cn−1 · · · C0




is positive definite. Such covariance lags can be determined from observations of {yt}
via an ergodic estimate (see, e.g., [45]). The problem is to estimate the spectral
density Φ(eiθ), θ ∈ [−π, π] of {yt} by matching the given covariance sequence:

(2.1)
1

2π

∫ π

−π

eikθΦ(eiθ)dθ = Ck, k = 0, 1, . . . , n.

Often one is more interested in the minimum-phase1 spectral factor of Φ, i.e., a
solution V of

V (z)V (z−1)T = Φ(z)(2.2)

with all its poles and zeros in the complement of the closed unit disc. In fact, V
represents a filter that shapes white noise into a process {yt} with the spectral density
Φ.

The problem of determining a Φ(z) that is positive on the unit circle and satisfies
the finite number of moment equations (2.1) has infinitely many solution. However,
for design purposes, we are interested in solutions that are rational of reasonably low
degree. A favorite solution is the one that maximizes the entropy gain

1

2π

∫ π

−π

log det Φ(eiθ)dθ.

The shaping filter V corresponding to this maximum-entropy solution has the form

V (z) = znR(z)−1,

where R(z) is a matrix polynomial of degree n whose coefficients are the unique
solution of the normal equations, which are linear and can be solved by means of a
matrix-version of the Levinson algorithm [45]; for some earlier papers, see [48, 49, 36].
Clearly this V has degree n� and has n zeros all located at the origin.

As a first step toward generalizing this, one might ask whether there is a solution
of the form

(2.3) V (z) = ρ(z)R(z)−1,

where ρ(z) is an arbitrary scalar stable polynomial of degree n. This is a matrix
version of a question answered in the affirmative in [25], the question of uniqueness
left open and finally settled in [13]. In this paper, we shall prove that, for each ρ(z),

1This is a somewhat nonstandard use of the term minimum-phase caused by having the the unit
disc as the region of analyticity. From a mathematical point of view, the term outer might be more
appropriate.
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Figure 1: Various spectral estimates compared to the true spectral density.

there is one and only one R(z) so that Φ defined by (2.2) and (2.3) satisfies the
moment conditions (2.1), and it is the Φ maximizing the generalized entropy gain

1

2π

∫ π

−π

|ρ(eiθ)|2 log det Φ(eiθ)dθ.

This generalizes the corresponding scalar result in [8]. We shall also prove that this
parameterization is smooth, forming a family of covariance extensions having a com-
plexity no higher than the maximum entropy solution.

This spectral estimation problem can also be formulated as a matrix Nevanlinna-
Pick problem. In fact, as we shall see in Section 3, a strictly positive real �× � matrix
function F satisfies the interpolation condition

F (0) =
1

2
C0,

1

k!
F (k)(0) = Ck, k = 1, 2, . . . , n,

if and only if the spectral density

Φ(z) = F (z) + F (z−1)T

satisfies (2.1).
As an example, consider a two-dimensional stationary stochastic process gener-

ated by passing white noise through a known shaping filter. Observing a sample
sequence of this process, we want to recover the true shaping filter from a finite
window C0, C1, . . . , Cn of 2 × 2 covariance lags obtained from this observed data via
ergodic estimates, while restricting the model order. The singular values of the esti-
mated spectral densities for two different solutions are plotted in Figure 1, together
with those of the true spectral density. The maximum-entropy solution, i.e., the AR-
model determined by the matrix-version of the Levinson algorithm is depicted with
a dotted line. By choosing the tuning-parameter polynomial ρ(z) appropriately, we
obtain instead the ARMA model, depicted with a dashed line. Note that this method
also works for generic data. Hence, the existence of a “true model” is not required.
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Example 2.2. Let P be a linear control system with a vector-valued input u and a
vector-valued output y, having a rational transfer function P (s) with unstable poles
and non-minimum-phase zeros; these are the poles and zeros, including multiplicities,
of P (s) that are located in the right half plane {z : Re z ≥ 0}. We want to design a
compensator C of low complexity so that the closed-loop system depicted in Figure 1
is internally stable, attenuates the effect of the disturbance d, and tracks the reference
signal r.

Figure 2: A feedback system.

This problem is standard in the robust control literature (see, e.g., [23, 21, 51]).
Internal stability is achieved by requiring that the sensitivity function, i.e., the closed-
loop transfer function

(2.4) S(s) =
[
I + P (s)C(s)

]−1

from the disturbance d to the output v, is stable (all poles in the open left half plane)
and satisfies an interpolation condition. Substituting the Youla-parameterization into
(2.4) yields a model matching form:

(2.5) S(s) = T1(s) − T2(s)Q(s)T3(s),

where Tj, j = 1, 2, 3 and Q are stable rational matrices with Q arbitrary. By the
procedure of [16], we can transform this equation into

(2.6) S̃(s) = T̃1(s) − φ(s)Q(s), ‖S‖∞ = ‖S̃‖∞,

where φ is a scalar inner function having zeros at the unstable poles and zeros of P,
and T̃1 can be determined from Tj, j = 1, 2, 3. If these poles and zeros, denoted by
s0, s1, . . . , sn, are distinct, the interpolation condition becomes

(2.7) S̃(sk) = T̃1(sk), k = 0, 1, . . . , n,

whereas any multiple point has to be handled in a separate way. If sk is an interpo-
lation point of multiplicity ν so that sk = sk+1 = · · · = sk+ν−1, then the equations in
(2.7) corresponding to sk+1 = · · · = sk+ν−1 are replaced by

(2.8) S̃(j)(sk) = T̃
(j)
1 (sk), j = 1, . . . , ν − 1.

If P (s) is strictly proper, we also need to add interpolation conditions at infinity to
ensure that the controller is proper. If the first Markov parameter is nonsingular,
we only need one condition, namely S(∞) = I, whereas the interpolation conditions
S ′(∞) = · · · = S(r−1)(∞) = 0 need to be added if P (s) has relative degree r.
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Disturbance attenuation and reference tracking are achieved by bounding the H∞

norm of the sensitivity function, i.e.,

(2.9) ‖S‖∞ = ‖S̃‖∞ < γ.

The lowest such bound, i.e., the infimum of ‖S̃‖∞ over all stable S̃ satisfying (2.7)
and (2.8), will be denoted by γopt. There are optimal solutions achieving this bound,
and their largest singular values are uniform over the spectrum. However, in general
one would like to shape the sensitivity function to obtain low sensitivity in designated
part of the spectrum, which, due to the water-bed effect [44], is done at the expense of
higher sensitivity in some other part of the spectrum. To achieve this, it is customary
to use weighting functions, which however could increase the degree of the sensitivity
function considerably, and hence the compensator.

However, we prefer sensitivity functions of low complexity, and therefore we would
like to avoid weighting functions. To this end and to allow for greater design flexibility,
we consider suboptimal solutions, of which there are infinitely many. Given some
γ > γopt, we consider the whole class of stable S̃ satisfying (2.7) – (2.9) and some
complexity constraint. In this class we would like to choose the one that best satisfies
the additional specifications of sensitivity shaping. In this paper, we shall give a
smooth, complete parameterization of such a class.

To bring this problem in conformity with the problem formulation in Section 3,
we transform first the interpolation points s0, s1, . . . , sn in the right half plane to
z0, z1, . . . , zn in the unit circle, via the linear fractional transformation zk = (1 −
sk)(1 + sk)

−1, and then the function S̃ to

F (z) :=

[
γI − S̃

(
1 − z

1 + z

)] [
γI + S̃

(
1 − z

1 + z

)]−1

.

For each S̃ satisfying (2.9), the new function F is analytic in the unit disc and has the
property that F (eiθ) + F (e−iθ)T > 0 for all θ. Let us call such a function a (matrix-
valued) Carathéodory function. The problem is then reduced to finding a rational
Carathéodory function F that has low complexity and satisfies the corresponding
interpolation condition

(2.10) F (zk) = Wk

for each k such that zk has multiplicity one and

(2.11)
1

j!
F (j)(zk) = Wk+j, j = 0, 1, . . . , ν − 1,

whenever zk has multiplicity ν and zk = zk+1 = · · · = zk+ν−1. It is straight-
forward, but tedious in the multiple-point case, to determine the interpolation values
W0,W1, . . . ,Wn from (2.7) and (2.8).

To illustrate the design flexibility of our approach, we consider an example in con-
trol, namely the double inverted pendulum depicted in Figure 3. The linearized model
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for m = 1 (kg) and l = 1 (m) is given in [17, p. 37] as

ẋ =




0 1 0 0
g 0 −g 0
0 0 0 1

−g 0 3g 0


x +




0 0
1 −2
0 0

−2 5




[
u1

u2

]
,

y =

[
1 0 0 0
0 0 1 0

]
x,

where x :=
[
θ1 θ̇1 θ2 θ̇2

]
T is the state. This is our plant P. The goal is to design

a stabilizing controller C which is robust against constant disturbances d and zero
reference signal (r = 0). The plant transfer function has two unstable real poles and
is of relative degree two, thus yielding four interpolation conditions.

Figure 3: A double inverted pendulum.
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Figure 4: Frequency responses for various tunings of S.

Using the methods of this paper, we can now compute an arbitrary strictly proper
controller in a class of controllers of degree at most eight, satisfying the specifica-
tions, by choosing the tuning parameters appropriately. Figure 4 shows the (singular-
value) frequency responses of two sensitivity functions in this class. One, plotted with
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dashed-dotted lines, gives a small bandwidth but large robustness against noise at the
output, whereas the other, plotted with solid lines, provides a large bandwidth and
lower peak gain but a small robustness to noise. Therefore, using the methods of this
paper, the controller with the appropriate frequency response can be determined by
tuning certain design parameters to satisfy the specifications.

3. The interpolation problem

To formulate the interpolation problem we need first to define a class of positive
real functions of low complexity.

3.1. The class F+(n). An � × � matrix-valued rational function F that is analytic
in the closed unit disc D := {z ∈ C : |z| ≤ 1} is called strictly positive real if the
spectral density function

(3.1) Φ(eiθ) := �{F (eiθ)}
is positive definite for all θ ∈ [−π, π]. Here,

�{F (z)} :=
1

2
[F (z) + F ∗(z)] , where F ∗(z) := F (z̄−1)T,

is the Hermitian generalization of the real part in the scalar case. Let C+ be the class
of all such functions. If F belongs to C+, then so does F−1. In particular, F is outer,
i.e., all its poles and zeros are located in D c, the complement of D .

Strictly positive real functions abound in control, circuit theory and signal process-
ing, where they often represent transfer functions of filters or closed-loop control sys-
tems. Since design limitations require such devises to be of bounded complexity, the
class C+ needs to be restricted to accommodate appropriate complexity constraints.
Typically, the McMillan degree needs to be bounded.

To this end, first note that, to each F ∈ C+, there corresponds an outer � × �
matrix-valued function V such that

(3.2) V (z)V ∗(z) = Φ(z) := �{F (z)},
which is unique modulo an orthogonal transformation. Determining V from F is a
spectral factorization problem, which can be solved by determining the stabilizing
solution of an algebraic Riccati equation (see, e.g., [14]). Conversely, if

(3.3) V (z) = zC(I − zA)−1B + D

is any minimal realization of V , appealing to the equations of the Kalman-Yakubovich-
Popov Lemma, there is a unique F satisfying (3.2), and it is given by

(3.4) F (z) = 2zC(I − zA)−1(AXC∗ + BD∗) + CXC∗ + DD∗,

where X is the unique solution to the Lyapunov equation

(3.5) X = AXA∗ + BB∗.

Moreover, V is a proper rational function of the same McMillan degree as F , and so
is the inverse V −1.

Let the polynomial ρ be the least common denominator of all entries in V −1. Then
there is a matrix polynomial R of the same degree as ρ such that V −1 = R/ρ, and
consequently

(3.6) V (z) = ρ(z)R(z)−1.
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In this representation, the degree r := deg ρ is uniquely determined by F ; to emphasize
this we write r(F ). Now, define the class

(3.7) F+(n) := {F ∈ C+ | r(F ) ≤ n}.
All functions F ∈ F+(n) have McMillan degree at most �n, but, although this is a
nongeneric situation, there are F ∈ C+ of McMillan degree at most �n that do not
belong to F+(n). In fact, the standard observable (standard reachable) realization of
V −1 has dimension �r (see, e.g., [3, p. 106]), and consequently V −1, and hence F , has
McMillan degree at most �r. Moreover, the standard observable realization may not
be minimal, so there is a thin set of F ∈ C+ of McMillan degree at most �n for which
r(F ) > n.

3.2. Problem formulation. Suppose that we are given a set

(3.8) Z := {z0, z1, . . . , zn} ⊂ D
of n + 1 interpolation points in the open unit disc D . These points need not be
distinct, but, if a certain number is repeated, it occurs in sequence. We say that zk
has multiplicity ν if zk = zk+1 = · · · = zk+ν−1 and no other point takes this value.
Moreover, suppose we have a set of n + 1 matrix-valued interpolation values

(3.9) W := {W0,W1, . . . ,Wn} ⊂ C �×�.

We assume for convenience that z0 = 0 and that W0 is real and symmetric.
Now, consider the problem to find a function F ∈ F+(n) that satisfies the interpo-

lation condition

(3.10) F (zk) = Wk

for each k such that zk has multiplicity one and

(3.11)
1

j!
F (j)(zk) = Wk+j, j = 0, 1, . . . , ν − 1,

whenever zk has multiplicity ν and zk = zk+1 = · · · = zk+ν−1.
This is a matrix-valued Nevanlinna-Pick interpolation problem with a nonclassical

complexity constraint, namely the condition that the interpolant F must belong to
the set F+(n). In the scalar case � = 1, this is a degree constraint, and the problem
has been studied in [6, 7, 11, 12, 26, 27]. In the present multivariable setting, this
complexity constraint is not merely a degree constraint, as pointed out above. In
fact, although all F ∈ F+(n) have degree at most �n, F+(n) does not contain all such
functions.

This problem could be reformulated as a generalized moment problem. To see this,
note that, by the matrix version of the Herglotz Theorem [18], any F ∈ F+(n) could
be represented as

(3.12) F (z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
Φ(eiθ)dθ,

where Φ is given by (3.1). Since therefore

1

j!
F (j)(z) =

1

2π

∫ π

−π

2eiθ

(eiθ − z)j+1
Φ(eiθ)dθ, j = 1, 2, . . . ,
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the interpolation conditions (3.10) and (3.11) can be combined to

(3.13)
1

2π

∫ π

−π

αk(e
iθ)Φ(eiθ)dθ = Wk, k = 0, 1, . . . , n,

where αk is defined as

(3.14) αk(z) =
z + zk
z − zk

when zk has multiplicity one, and as

(3.15) αk(z) =
z + zk
z − zk

, αk+j(z) =
2z

(z − zk)j+1
, j = 1, 2, . . . , ν − 1,

when zk has multiplicity ν and zk = zk+1 = · · · = zk+ν−1. In particular, since z0 = 0,
α0 = 1. Consequently, the Nevanlinna-Pick interpolation problem with complexity
constraint formulated above is equivalent to finding an F ∈ F+(n) satisfying (3.13).

3.3. A necessary and sufficient condition for existence of solutions. Clearly
the problem posed above does not have a solution for all choices of W . Next, we shall
therefore determine what conditions need to be imposed on the interpolation values
W0,W1, . . . ,Wn. To this end, we first introduce the class Q(�, n) of �×� matrix-valued
generalized pseudo-polynomials

(3.16) Q(z) = �
{

n∑
k=0

Qkαk(z)

}

with coefficients Qk ∈ C �×� and Q0 real and symmetric, and then we define the subset

(3.17) Q+(�, n) :=
{
Q ∈ Q(�, n) | Q(eiθ) > 0 for all θ ∈ [−π, π]

}

consisting of those Q ∈ Q(�, n) that are positive on the unit circle.

Definition 3.1. Given the interpolation points Z, the sequence W of interpolation
values is positive if

(3.18) Re

{
n∑

k=0

tr(QkWk)

}
> 0,

for all matrix sequences Q0, Q1, . . . , Qn such that the pseudo-polynomial Q defined by
(3.16) belongs to Q+(�, n). Let W+(�, n) be the class of all such positive sequences.
Here tr{A} denotes the trace of the square matrix A.

Theorem 3.1. There exists an F ∈ F+(n) satisfying the interpolation condition
(3.13) if and only if W is positive.

The proof that positivity of W is necessary is classical. To see this, just note that
(3.13) implies that

(3.19) Re

{
n∑

k=0

tr(QkWk)

}
=

1

2π

∫ π

−π

tr{Q(eiθ)Φ(eiθ)}dθ,

which is positive whenever Q ∈ Q+(�, n). In Section 5 we shall prove that this
condition is also sufficient.
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Now, it will be useful to represent (3.18) in terms of the inner product

(3.20) 〈A,B〉 :=
1

2π

∫ π

−π

trA∗(eiθ)B(eiθ)dθ

between two �× � matrix-valued L2 functions A and B.

Proposition 3.2. Let W+ : D → C �×� be an arbitrary analytic function satisfying
the interpolation condition

(3.21)
1

2π

∫ π

−π

αk(e
iθ)W (eiθ)dθ = Wk, k = 0, 1, . . . , n

with W := �{W+}. Then

(3.22) Re

{
n∑

k=0

tr(QkWk)

}
= 〈Q,W 〉.

Proof. Given any W defined as in the proposition, we obtain

〈Q,W 〉 =
1

2π

∫ π

−π

tr(Q(eiθ)W (eiθ))dθ

= Re
n∑

k=0

tr

(
Qk

1

2π

∫ π

−π

αk(e
iθ)W (eiθ)dθ

)

= Re

{
n∑

k=0

tr(QkWk)

}
,

which establishes (3.22).

Note that W+ need not be in F+(n) and that such a function is easy to compute.
However, in this paper W is merely a notational device and will never have to be
determined.

3.4. The generalized Pick condition. The positivity condition in Theorem 3.1 is
a generalized Pick condition. To see this, let Γ(z) be any minimum-phase solution of
the spectral factorization problem

(3.23) Γ(z)Γ∗(z) = Q(z).

Then, introducing the vector of Cauchy type kernels

(3.24) G(z) :=
[
g∗0(z) g∗1(z) · · · g∗n(z)

]
,

where

gk(z) =
1

2

(
αk(z) + 1

)

for those k for which αk is given by (3.14) and

gk(z) =
1

2
αk(z)

for all other k, Γ(z) has a representation

(3.25) Γ(z) =
(
G(z) ⊗ I�

)
Γ
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for some matrix Γ ∈ C �(n+1)×�. Now, let W be defined as in Proposition 3.2. Then
(3.23) yields

(3.26) 〈Q,W 〉 = 〈Γ,WΓ〉 = tr{Γ∗ΠΓ},
where Π is the generalized Pick matrix

(3.27) Π :=
1

2π

∫ π

−π

(
G∗(eiθ) ⊗ I�

)
W (eiθ)

(
G(eiθ) ⊗ I�

)
dθ,

where A⊗B is the Kronecker product of A and B.
Hence we have the following corollary of Theorem 3.1.

Corollary 3.3. The sequence W is positive if and only if the Pick matrix (3.27) is
positive definite.

When zk has multiplicity ν and zk = zk+1 = · · · = zk+ν−1, we have

1

j!
F (j)(zk) =

1

2π

∫ π

−π

gk+j(e
iθ)F (eiθ)dθ, j = 0, 1, . . . , ν − 1,

for any function F that is analytic in the unit disc D . Using this Cauchy integral
formula, a straight-forward, but tedious, calculation yields

(3.28) Π =
1

2
[W (S ⊗ I�) + (S ⊗ I�)W

∗] ,

where S is the Gramian

(3.29) S :=
1

2π

∫ π

−π

G∗(eiθ)G(eiθ)dθ,

and W is a block diagonal matrix consisting of one block



Wk
...

. . .
Wk+ν−1 · · · Wk




for each distinct point in Z taken in order. The Gramian (3.29) can be determined
by solving the Lyapunov equation

(3.30) S −ASA∗ = bbT,

where A is a block diagonal matrix formed from the ν × ν blocks

Ak :=




zk
1 zk

. . . . . .
1 zk


 ,

and b is a column vector of ones and zeros in which the ones occur for those k for
which (3.14) holds.

Specializing to the case when all interpolation points have multiplicity one, we
obtain the classical Pick matrix

Π =
1

2

[
Wi + W ∗

j

1 − ziz̄j

]n

i,j=0

.



MATRIX-VALUED ANALYTIC INTERPOLATION WITH COMPLEXITY CONSTRAINT 13

On the other hand, when there is only one interpolation point with multiplicity n+1
located at the origin, as in the classical Carathéodory extension problem, the Pick
matrix is the block Toeplitz matrix

Π =
1

2




W0 + W ∗
0 W ∗

1 · · · W ∗
n

W1 W0 + W ∗
0 · · · W ∗

n−1
...

...
. . .

...
Wn Wn−1 · · · W0 + W ∗

0


 .

See, e.g., [19, 20].

4. Main theorems

To motivate the approach taken in this paper, we first consider the special case
when z0 = z1 = · · · = zn = 0, i.e.,

α0(z) = 1, αk(z) = 2z−k, k = 1, . . . , n,

which is of particular interest in signal processing and identification. In this case the
generalized Pick condition reduces to a Toeplitz condition, as described above. In
particular, the interpolant that maximizes the entropy gain

(4.1)
1

2π

∫ π

−π

log det Φ(eiθ)dθ,

is the maximum entropy solution discussed in Section 2. Like W, the cepstral coeffi-
cients [43],

(4.2) ck :=
1

2π

∫ π

−π

αk(e
iθ) log det Φ(eiθ)dθ, k = 0, 1, . . . , n,

can be observed. In the scalar case � = 1, it was noted in [4, 5] that the entropy gain
(4.1) is precisely the zeroth cepstral coefficient c0 and that the cepstral coefficients
(4.2) together with the covariance data W form local coordinates of F+(n). This
observation led to maximizing linear combinations of the cepstral coefficients instead.

In this paper we shall apply the same strategy to the multivariable Nevanlinna-Pick
problem when α0, α1, . . . , αn are given by (3.14) and (3.15). Accordingly, we consider
the problem of maximizing some linear combination

(4.3) Re

{
n∑

k=0

pkck

}

of the coefficients (4.2), which, in this more general setting, will be referred to as the
generalized cepstral coefficients. Introducing the generalized pseudo-polynomial

(4.4) P (z) := Re

{
n∑

k=0

pkαk(z)

}
,

(4.3) can be written as the generalized entropy gain

(4.5) IP (Φ) :=
1

2π

∫ π

−π

P (eiθ) log det Φ(eiθ)dθ,

which we want to maximize over the class S�×�
+ of (not necessarily rational) bounded,

coercive spectral densities Φ, i.e., bounded Φ such that Φ−1 is also bounded. Just as



14 A. BLOMQVIST, A. LINDQUIST, AND R. NAGAMUNE

in [4, 5] we must require P (z) to be positive on the unit circle, i.e., P ∈ Q+(1, n), in
order for a maximum of IP (Φ) to exist. In fact, the following theorem establishes a
complete parameterization of all interpolants F ∈ F+(n) in terms of the generalized
pseudo-polynomial P ∈ Q+(1, n).

Theorem 4.1. Let P ∈ Q+(1, n), and suppose that the positivity condition (3.18)
holds. Then the maximization problem

(4.6) max
Φ∈S�×�

+

IP (Φ) subject to
1

2π

∫ π

−π

αk(e
iθ)Φ(eiθ)dθ = Wk, k = 0, 1, . . . , n,

has a unique optimal solution, and it takes the form

(4.7) Φ(z) = P (z)Q(z)−1,

where Q ∈ Q+(�, n). Via (3.12) this establishes a one-one correspondence between
interpolants F ∈ F+(n) and P ∈ Q+(1, n).

This is a constrained optimization problem over the infinite-dimensional space S�×�
+ ,

but with finitely many constraints. In analogy with [7] we shall demonstrate in
Section 5 that there is a dual optimization problem over a finite-dimensional space,
namely the problem to find a Q ∈ Q+(�, n) that minimizes the functional

(4.8) JP (Q) = 〈Q,W 〉 − 1

2π

∫ π

−π

P (eiθ) log detQ(eiθ)dθ.

From Definition 3.1 and Theorem 3.1 we recall that the sequence W of interpolation
values is positive if and only if

(4.9) 〈Q,W 〉 > 0 for all Q ∈ Q+(�, n).

Theorem 4.2. Let P ∈ Q+(1, n), and suppose that the positivity condition (4.9)
holds. Then the minimization problem

(4.10) min
Q∈Q+(�,n)

JP (Q)

has a unique optimal solution. For the optimal solution Q̂, the interpolant F ∈ F+(n)
corresponding to P is given by

(4.11) F (z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
P (eiθ)Q̂(eiθ)−1dθ.

The optimal solution Q̂ depends smoothly on the interpolation data W and on P . In
particular, the map I : Q+(�, n) →W+(�, n) with components

(4.12) Ik(Q) :=
1

2π

∫ π

−π

αk(e
iθ)P (eiθ)Q(eiθ)−1dθ, k = 0, 1, . . . , n,

is a diffeomorphism.

It is easy to see that any P ∈ Q+(1, n) has a unique representation of the form

(4.13) P (z) =
ρ(z)ρ∗(z)

τ(z)τ ∗(z)
,
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where

(4.14) τ(z) :=
n∏

k=1

(1 − z̄kz)

belongs to the class S+ of polynominals with all roots in D c, and where

(4.15) ρ(z) = ρ0 + ρ1z + · · · + ρnz
n

is an arbitrary polynomial in S+. Hence, there is a one-to-one correspondence be-
tween interpolant F ∈ F+(n) and ρ ∈ S+, and this parameterization is smooth, in
fact a diffeomorphism. The parameters ρ0, ρ1, . . . , ρn can therefore serve as “tuning
parameters” in robust control and other applications. The interpolant F can be de-
termined from the solution to the dual optimization problem (4.10) in a fashion to be
described in Section 6.

Similarly, any Q ∈ Q+(�, n) has a representation (3.23), i.e. Q(z) = Γ(z)Γ∗(z),
unique up to an orthogonal transformation, where

(4.16) Γ(z) = τ(z)−1R(z)

and the �× � matrix polynomial

(4.17) R(z) = R0 + R1z + · · · + Rnz
n

are outer. In Section 6 we assume that the interpolation data Z, W is self-conjugate,
and the matrix coefficients are real. We also show that the dual optimization problem
can be reformulated in terms of R(z) so that, in particular, the spectral factorization
step and complex number calculations are avoided.

Consequently, for each choice of tuning parameters ρ0, ρ1, . . . , ρn, the dual opti-
mization problem provides an essentially unique matrix polynomial (4.17) so that

(4.18) V (z) := ρ(z)R(z)−1

is an outer spectral factor of Φ = PQ−1. Forming a minimal realization (3.3) of
(4.18), the corresponding interpolant F ∈ F+(n) is given by (3.4).

5. Proofs in the context of duality theory

To solve the problem (4.6), we form the Lagrangian

L(Φ, Q) := IP (Φ) + Re

{
n∑

k=0

�∑
i=1

�∑
j=1

qjik

[
wij

k − 1

2π

∫ π

−π

αk(e
iθ)Φij(e

iθ)dθ

]}
,

where wij
k and Φij are the matrix components of Wk and Φ respectively, and then

solve the dual problem to minimize

sup
Φ∈S�×�

+

L(Φ, Q)

with respect to the Lagrange multipliers qijk , which are complex numbers except when

k = 0 when they are real and qji0 = qij0 . For each k = 0, 1, . . . , n, let Qk be the � × �
matrix [qijk ]�i,j=1, and form the generalized pseudo-polynomial (3.16). Then, using the
identity (3.22), the Lagrangian can be written by

(5.1) L(Φ, Q) =
1

2π

∫ π

−π

P (eiθ) log det Φ(eiθ)dθ+〈Q,W 〉− 1

2π

∫ π

−π

tr{Q(eiθ)Φ(eiθ)}dθ.
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Clearly, the Lagrangian will be unbounded if Q is allowed to take negative values on
the unit circle. Hence, we determine the supremum for each Q ∈ Q+(�,N). To this
end, we want to determine a Φ such that the directional derivative

δL(Φ, Q; δΦ) := lim
ε→0

L(Φ + εδΦ, Q) − L(Φ, Q)

ε

=
1

2π

∫ π

−π

P (eiθ) lim
ε→0

1

ε
log

[
det(Φ + εδΦ)

det Φ

]
dθ − 1

2π

∫ π

−π

tr{QδΦ}dθ

equals zero in all directions δΦ such that Φ + εδΦ ∈ S�×�
+ for some ε > 0. However,

log

[
det(Φ + εδΦ)

det Φ

]
= log det(I + εΦ−1δΦ) = log

�∏
j=1

µj =
�∑

j=1

log µj,

where µj(e
iθ), j = 1, 2, . . . , �, are the eigenvalues of [I + εΦ(eiθ)−1δΦ(eiθ)]. Since

µj = 1 + ελj, j = 1, 2, . . . , �, where λ1(e
iθ), λ2(e

iθ), . . . , λ�(e
iθ) are the eigenvalues of

Φ(eiθ)−1δΦ(eiθ), and log(1 + ελj) = ελj + O(ε2), we have

(5.2) lim
ε→0

1

ε
log

[
det(Φ + εδΦ)

det Φ

]
=

�∑
j=1

λj = tr(Φ−1δΦ).

Consequently, in terms of the inner product the directional derivative can be written
as

(5.3) δL(Φ, Q; δΦ) = 〈δΦ, PΦ−1 −Q〉,
which equals zero for all δΦ if and only if

(5.4) Φ = PQ−1.

Inserting this into (5.1) we obtain

JP (Q) +
�

2π

∫ π

−π

P (eiθ)
(
logP (eiθ) − 1

)
dθ,

where

(5.5) JP (Q) = 〈Q,W 〉 − 1

2π

∫ π

−π

P (eiθ) log detQ(eiθ)dθ.

Hence, modulo an additive constant, JP is precisely the dual function.
We want to show that this functional is strictly convex and that it has a unique

minimum in Q+(�, n). To this end, we form the directional derivative

δJP (Q; δQ) := lim
ε→0

JP (Q + εδQ) − JP (Q)

ε

= 〈δQ,W 〉 − 1

2π

∫ π

−π

P (eiθ) lim
ε→0

1

ε
log

[
det(Q + εδQ)

detQ

]
dθ

= 〈δQ,W − PQ−1〉,(5.6)

where we have performed the same calculation as in (5.2). We need to determine a
Q ∈ Q+(�, n) such that

(5.7) δJP (Q; δQ) = 0
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for all δQ of the form

(5.8) δQ(eiθ) = �
{

n∑
k=0

δQkαk(e
iθ)

}
,

where δQk, k = 0, 1, . . . , n, are arbitrary complex �× � matrices, except for δQ0 that
is real and symmetric. Inserting (5.8) into (5.6), we obtain

δJP (Q; δQ) = Re

{
n∑

k=0

tr

(
δQk

1

2π

∫ π

−π

αk(e
iθ)

[
W (eiθ) − P (eiθ)Q(eiθ)−1

]
dθ

)}

= Re

{
n∑

k=0

tr
(
δQk

[
Wk − Ik(Q)

])
}

where I0(Q), I1(Q), . . . , In(Q) are defined as in (4.12). Hence (5.7) cannot hold for all
δQ unless Ik(Q) = Wk, k = 0, 1, . . . , n, that is, unless (5.4) satisfies the interpolation
condition (3.13). To see this, for an arbitrary (k, i, j) with k = 0, take all components
of δQ0, δQ1, . . . , δQn equal to zero except δqijk , which we take to be λ + iµ with λ

and µ arbitrary. Then, letting uij
k be the real part and vijk the imaginary part of

wij
k − I

ij
k (Q), we obtain

δJP (Q; δQ) = Re{(λ + iµ)(uij
k + ivijk )} = λuij

k − µvijk ,

and hence wij
k = I

ij
k (Q), as claimed. If k = 0, µ and vijk equal to zero, so the same

conclusion follows. It remains to show that there is a Q ∈ Q+(�, n) such that (5.7)
holds.

Theorem 5.1. Let P ∈ Q+(1, n), and suppose that the positivity condition (3.18)
holds. The dual functional JP : Q+(�, n) → R is strictly convex and has a unique

minimum Q̂. Moreover,

(5.9)
1

2π

∫ π

−π

αk(e
iθ)P (eiθ)Q̂(eiθ)−1dθ = Wk, k = 0, 1, . . . , n.

Proof. To prove that JP is strictly convex we form

δ2JP (Q; δQ) := lim
ε→0

δJP (Q + εδQ; δQ) − δJP (Q; δQ)

ε

= − lim
ε→0

1

ε

〈
δQ, P

[
(Q + εδQ)−1 −Q−1

]〉

= lim
ε→0

1

ε

〈
δQ, P

[
I − (I + εQ−1δQ)−1

]
Q−1

〉

However,
(I + εQ−1δQ)−1 = I − εQ−1δQ + O(ε2)

for sufficiently small ε > 0, and hence

δ2JP (Q; δQ) = 〈δQ, PQ−1δQQ−1〉.
Now, since Q ∈ Q+(�, n) is positive definite on the unit circle, there is a nonsingular
matrix function S such that Q−1 = SS∗. Then, using the commuting property of the
trace, we have

tr(δQQ−1δQQ−1) = tr(S∗δQSS∗δQS),
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and hence
δ2JP (Q; δQ) = 〈S∗δQS, P (S∗δQS)〉 ≥ 0,

taking the value zero if and only if S∗δQS = 0 or, equivalently, δQ = 0. Consequently,
the Hessian of JP (Q) is positive definite for all Q ∈ Q+(�, n), implying that JP is
strictly convex, as claimed.

The rest of the proof is the same mutatis mutandis as the one in [8]. (Also see
[7, 9, 11].) Since the linear term 〈Q,W 〉 is positive and linear growth is faster than
logarithmic, the function JP is proper, i.e., the inverse images of compact sets are
compact. In particular, if we extend the function JP to the boundary of Q+(�, n), it

has compact sublevel sets. Consequently, JP has a minimum, Q̂, which is unique by
strict convexity. We need to rule out that Q̂ lies on the boundary. To this end, note
that the boundary of Q+(�, n) consists of the Q for which detQ has a zero on the unit
circle, and for which the directional derivative δJP (Q; δQ) = −∞ for all δQ pointing
into Q+(�, n). See [9, Section 4] for details.

Therefore, since Q+(�, n) is an open set, δJP (Q̂; δQ) = 0 for all δQ of the form
(5.8), and therefore (5.9) follows.

Theorem 5.2. Let P ∈ Q+(1, n), and suppose that the positivity condition (3.18)
holds. The primal functional IP : S�×�

+ → R is strictly concave, and there is a unique

optimal solution Φ̂ ∈ S�×�
+ → R to the problem (4.6). The maximum Φ̂ takes the form

Φ̂ = PQ̂−1,

where Q̂ ∈ Q+(�, n) is the optimal solution of the dual problem.

Proof. To show that IP is strictly concave, we proceed as above. The calculation
leading to (5.3) yields

δIP (Φ; δΦ) = 〈δΦ, PΦ−1〉,
and, following the lines of the corresponding proof in Theorem 5.1,

δ2IP (Φ; δΦ) ≤ 0

with equality if and only if δΦ = 0. Hence IP is strictly concave, as claimed.
Let Q̂ be the optimal solution of the dual problem. Then, since IP is strictly

concave, then so is Φ �→ L(Φ, Q̂). Clearly Φ̂ := PQ̂−1 belongs to S�×�
+ , and, by (5.3),

it is a stationary point of the map Φ �→ L(Φ, Q̂). Hence

(5.10) L(Φ̂, Q̂) ≥ L(Φ, Q̂), for all Φ ∈ S�×�
+ .

However, by Theorem 5.1, Φ̂ satisfies the interpolation condition (3.13), and conse-
quently

L(Φ̂, Q̂) = IP (Φ̂).

Therefore, it follows from (5.10) that

IP (Φ) ≤ IP (Φ̂)

for all Φ ∈ S�×�
+ that satisfies the interpolation condition (3.13), establishing optimality

of Φ̂.
Consequently, we have proved Theorem 4.1. To finish the proof of Theorem 4.2

it remains to establish that the map I : Q+(�, n) → W+(�, n) is a diffeomorphism.
To this end, first note that Q+(�, n) and W+(�, n) are both convex, open sets in
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R2n�2+ 1
2
�(�+1) and hence diffeomorphic to R2n�2+ 1

2
�(�+1). Moreover, the Jacobian of I

is the Hessian of JP , which is positive definite on Q+(�, n), as shown in the proof
of Theorem 5.1. Hence, by Hadamard’s global inverse function theorem [30], I is a
diffeomorphism.

Finally, Theorem 3.1 is an immediate consequence of Theorem 4.1.

6. Solving the dual optimization problem

Recall that, by Theorem 4.2, for each choice of P ∈ Q+(1, n), there is a unique
solution to the basic interpolation problem of this paper, and this solution is obtained
by determining the unique minimizer over Q+(�, n) of the dual functional

(6.1) JP (Q) := 〈Q,W 〉 − 〈log detQ,P 〉 .
This functional has the property that its gradient is infinite on the boundary of
Q+(�, n). This is precisely the property that buys us properness of the functional
(4.12), and therefore it is essential in the proof of Theorem 4.2. However, from a
computational point of view, this property is undesirable, especially if the minimum
is close to the boundary. In fact, it adversely affects the accuracy of any Newton-type
algorithm. For this reason, following [22, 40], we first reformulate the optimization
problem to eliminate this property. This is done at the expense of global convexity,
but the new functional is still locally strictly convex in a neighborhood of a unique
minimizing point. Thus, if we were able to choose the initial point in the convexity
region, a Newton method would work well. However, finding such an initial point is
a highly nontrivial matter. Therefore, again following [22, 40], we want to design a
homotopy continuation method that determines a sequence of points converging to
the minimizing point.

6.1. Reformulating the optimization problem. In Section 2 we replaced the
first term in (6.1) with a quadratic form by first defining the spectral factor Γ(z)
satisfying (3.23). Consequently, for each Q = ΓΓ∗, the right hand side of (6.1) can
also be written as

trΓ∗ΠΓ − 〈log det ΓΓ∗, P 〉 ,
where Π is the generalized Pick matrix defined by (3.27) or, alternatively, by (3.28).
Let us now assume that the interpolation data (Z, W) is self-conjugate so that space
Q+(�, n) has dimension �2n + 1

2
�(� + 1) and the matrix coefficients R0, R1, . . . , Rn in

(6.2) R(z) := τ(z)Γ(z) = R0 + R1z + · · · + Rnz
n

are real. We also assume that R0 is upper triangular. Then, the space R+(�, n) of all

R :=




R0
...
Rn


 ∈ R�(n+1)×�

such that (6.2) is outer and R(eiθ)R(eiθ)∗ > 0 for all θ ∈ [−π, π] also has dimension
�2n + 1

2
�(� + 1). In view of (3.25),

(6.3) R(z) = τ(z)G(z)Γ,

which defines a nonsingular linear transformation T such that

(6.4) Γ = TR.
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Under this change of coordinates, the Pick matrix becomes

(6.5) K = T ∗ΠT,

and, since arg detR(e−iθ) = − arg detR(eiθ), (6.1) can be written

(6.6) JP (Q) = JP (R) − 2 〈log τ, P 〉 ,

where the new cost functional

(6.7) JP (R) = trRTKR− 2 〈log detR,P 〉

is defined on the space R+(�, n).

Proposition 6.1. The functional JP : R+(�, n) → R has a unique stationary point
and is locally strictly convex about this point.

Proof. Since Γ(z) := R(z)/τ(z) is a uniquely defined (outer) spectral factor of Q(z),
the map Ψ : R+(�, n) → Q+(�, n) sending R to Q(z) = Θ(z)RR∗Θ∗(z), where

Θ(z) :=
1

τ(z)

[
I� zI� · · · znI�

]
,

is a bijection with first and second directional derivatives

δΨ(R; δR) = Θ(z)
(
R(δR)∗ + (δR)R∗)Θ∗(z)

δ2Ψ(R; δR) = 2Θ(z)
(
(δR)(δR)∗

)
Θ∗(z).

Now, δR �→ δΨ(R; δR) is an injective linear map between Euclidean spaces of the
same dimension, and hence it is bijective. In fact, since detR(z) has all its roots in
the complement of the closed unit disc, the homogeneous equation

R(z)∆∗(z) + ∆(z)R∗(z) ≡ 0, ∆(z) := Θ(z)δR,

has a unique solution ∆(z) ≡ 0. (See Lemma A.1 in Appendix A.) Therefore, since

JP (R) = JP (Ψ(R)) + 2〈log τ, P 〉,

the directional derivative

δJP (R; δR) = δJP (Ψ(R); δΨ(R; δR))

is zero for all δR if and only if δJP (Q; δQ) = 〈δQ,W − PQ−1〉 is zero for all δQ.

Consequently, JP has a stationary point at R̂ if and only if JP has a stationary
point at Ψ(R̂). However, JP has exactly one such point, and hence the same holds
for JP . Moreover, since δ2JP (Q; δQ) = 〈δQ, PQ−1δQQ−1〉 > 0 for all δQ = 0 and

δJP (Q̂; δQ) = 0 at the minimum Q̂, the second directional derivative

δ2JP (R̂; δR) = δ2JP (Ψ(R̂); δΨ(R̂; δR)) + δJP (Ψ(R̂); δ2Ψ(R̂; δR))

is positive for sufficiently small δR = 0. Therefore, JP is strictly convex in some
neighborhood of R̂.
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6.2. The gradient and the Hessian of the new functional. In order to use
Newton’s method to solve the new optimization problem, we need to determine the
gradient and the Hessian of JP . We begin with the gradient.

Proposition 6.2. Given the real �× � matrix-valued Fourier coefficients

(6.8) Ck =
1

2π

∫ π

−π

eikθP (eiθ)
(
R∗(eiθ)R(eiθ)

)−1
dθ, k = 0, 1, . . . , n,

and the modified Pick matrix K, given by (6.5), the gradient of JP is given by

(6.9)
∂JP

∂R
(R) = 2

(
K − C(R)

)
R,

where the (n + 1)�× (n + 1)� matrix C(R) is the Toeplitz matrix

C(R) :=




C0 C1 · · · Cn

C1
T C0

. . .
...

...
. . . . . . C1

Cn
T · · · C1

T C0


 .(6.10)

The proof of Proposition 6.2 is given in Appendix B, while the proof of the following
proposition, describing the Hessian of JP , is given in Appendix C.

Proposition 6.3. The Hessian of JP is given by

(6.11)
∂2

(∂ vecR)2
JP (R) = 2(I� ⊗K) − 2

∂2

(∂ vecR)2
〈log detR,P 〉 .

Here the component of the second term are obtained by rearranging the elements in

(6.12)

(
∂

∂Rj

⊗ ∂

∂Rk

)
〈log detR,P 〉 = −Sj+k

T, j, k = 0, 1, . . . , n,

where S0, S1, . . . , S2n are defined via the expansion

(6.13) P (z)
(
vecR(z)−1

) (
vecR(z)−T

)
T =

∞∑
−∞

Skz
−k.

Remark 6.4. Since the left hand side of (6.13) is the product of three factors, two
of which have Laurent expansions with infinitely many terms, one might wonder how
to determine the coefficients S0, S1, . . . , S2n in a finite number of operations. As we
shall see in Appendix C, this can be achieved by observing that P (z)

(
R(z)T⊗R(z)−1

)
has the same elements as (6.13), appropriately rearranged, and can be factored as the
product of two finite and one infinite Laurent expansion.

6.3. The central solution. The optimization problem to minimize JP is particu-
larly simple if P = 1. In this case, and only in this case, the problem can be reduced
to one of solving a system of linear equations. This solution is generally called the
central solution. In fact, since detR(z) has no zeros in D , by the mean-value theorem
of harmonic functions,

1

2π

∫ π

−π

log | detR(eiθ)|dθ = log | detR(0)|.
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Consequently, since arg detR(e−iθ) = − arg detR(eiθ),

J1(R) = trRTKR− 2 log detR0.

Since detR(z) has no zeros in the unit disc, R0 is nonsingular. Therefore, setting the
gradient of J1(R) equal to zero, we obtain

(6.14) KR = ER0
-T, E =

[
I� 0 · · · 0

]
T,

and therefore R0 = ETR = ETK−1ER0
-T, which yields

(6.15) R0R0
T = ETK−1E.

First solving (6.15) for the unique Cholesky factor and inserting into (6.14), (6.14)
reduces to a linear system of equations that has a unique solution R since K is
positive definite.

6.4. The continuation method. Now, we would like to find the minimizer of JP

for an arbitrary P ∈ Q+(1, n). To this end, we construct a homotopy between the
gradient of J1 and the gradient of JP along the lines of [22, 40], allowing us to pass
from the central solution to the solution of interest.

Now, for any λ ∈ [0, 1], define

Pλ(z) := 1 + λ
(
P (z) − 1

)
.

Then, since Q+(1, n) is convex, Pλ ∈ Q+(1, n). By Proposition 6.1, the functional

JPλ
(R) = trRTKR− 2 〈log detR,Pλ〉

has a unique minimum at R̂(λ) and is locally strictly convex in some neighborhood

of R̂(λ). This point is the unique solution in R+(�, n) of the nonlinear equation

h(R, λ) :=
∂JPλ

(R)

∂ vecR
= 0.

Then the function h : R+(�, n) × [0, 1] → R(n+1)�2 is a homotopy from the gradient

of J1 to the gradient of JP . In particular, R̂(0) is the central solution.

In view of the strict local convexity of JPλ
in a neighborhood of R̂(λ), the Jacobian

of h(R, λ) is positive definite at R̂(λ). Consequently, by the implicit function theorem,

the function λ → R̂(λ) is continuously differentiable on the interval [0, 1], and

d

dλ
vec R̂(λ) = −

(
∂h

∂ vecR
(R, λ)

)−1 (
∂h

∂λ
(R, λ)

)∣∣∣∣∣
R= ˆR(λ)

,

where the inverted matrix is the Hessian of JPλ
that can be determined as in Propo-

sition 6.3. We want to follow the trajectory R̂(λ) defined by the solution of this
differential equation with the central solution as the initial condition.

To this end, we construct an increasing sequence of numbers λ0, λ1, . . . , λN on
the interval [0, 1] with λ0 = 0 and λN = 1. Then, for k = 1, 2, . . . , N , we solve

the nonlinear equation h(R, λk) = 0 for vec R̂(λk) by Newton’s method with initial
condition

vecR0(λk) = vec R̂(λk−1) +
d

dλ
vec R̂(λk)(λk − λk−1).
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The numbers λ0, λ1, . . . , λN have to be chosen close enough so that, for each k =
1, 2, . . . , N , R0(λk) lies in the local convexity region of JPλk

, guaranteeing that New-

ton’s method converges to R̂(λk). Strategies for choosing λ0, λ1, . . . , λN are given in
[40].

Remark 6.5. A matlab implementation of this algorithm is available [1].

7. An application to a benchmark problem in robust control

During the last two decades it has been discovered that analytic interpolation the-
ory is closely related to several robust control problems, for example, the gain-margin
maximization problem [46, 47, 32], the robust stabilization problem [33], sensitiv-
ity shaping in feedback control, simultaneous stabilization [28], the robust regulation
problem [15], the general H∞ control problem [23], and, more generally, the model
matching problem. In this section we apply the theory of this paper to a benchmark
problem in sensitivity shaping for a MIMO plant from a popular textbook on multi-
variable control by Maciejowski [37]. We refer the reader to Example 2.2 in Section 2
for notation.

The control system in [37] describes the vertical-plane dynamics of an airplane and
can be linearized to yield a linear system P with three inputs, three outputs and five
states, namely

ẋ = Ax + Bu

y = Cx + Du,

where

A =




0 0 1.1320 0 −1.000
0 −0.0538 −0.1712 0 0.0705
0 0 0 1.0000 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859




C =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




B =




0 0 0
−0.12 1.0000 0

0 0 0
4.4190 0 −1.665
1.5750 0 −0.0732




D =




0 0 0
0 0 0
0 0 0




This system is not asymptotically stable due to the pole at the origin. It is strictly
proper (D = 0) and the first Markov coefficient

CB =




0 0 0
−0.12 1 0

0 0 0




is rank deficient.
We want to design a controller C as in Figure 2 in Section 2 that renders the closed-

loop system robust against various disturbances. More precisely, the specifications are

• Bandwidth about 10 rad/s
• Integral action in each loop
• Well-damped step responses
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By exploiting the design freedom offered by choosing the design parameters, namely
an upper limit γ of the gain, the tuning parameters ρ0, ρ1, . . . , ρn, and additional
interpolation constraints, we shape the sensitivity function to meet the specifications,
while limiting the degree of the controller.

First we deal with the pole at origin. By perturbing the A matrix we move the pole
into the right half-plane, generating an interpolation point as described in Section 2.
More precisely, we move the pole to 10−6 by increasing A11 to 10−6. This will ensure
integral action in each loop by bringing the sensitivity to zero near zero frequency.
Since the plant is strictly proper, we also add an interpolation point of multiplicity
three at the very high frequency 108, which forces the controller to be strictly proper
and creates a steep “roll-off” of the complementary sensitivity function. Then the
class of interpolants becomes

{
S ∈ RH∞ :

S(108) = I, S ′(108) = S ′′(108) = 0,
S(10−6) = 0, ‖S‖∞ ≤ γ, degS ≤ 9

}
,

where γ is a bound to be selected in the design. By means of a linear fractional
transformation and an appropriate scaling, we transform the problem to the form
considered in this paper, yielding the family

{
F ∈ F+(3) : F (0) = 1.2222I, F ′(0) = F ′′(0) = 0, F (0.9995) = I

}
.

Next, we tune the design parameters to meet the design specs. First we pick
the upper bound γ = 10. However, the actual maximal norm of the sensitivity
will be considerably smaller. Furthermore, we want to peak the sensitivity function
slightly above 10 rad/s. We can achieve this by choosing spectral zeros close to the
imaginary axis in the corresponding region. Here, we first pick the points {12,±18i}
and transform them to the unit disc by the same linear fractional transformation as for
the interpolation points. By rescaling each resulting point to have absolute value less
than 0.8, if necessary, we avoid numerical difficulties and prevent the peak of |S| from
becoming too high. In this way, we obtain the spectral zeros {0.7320, 0.7015±0.3845i},
which we use in the algorithm of Section 6 to determine the corresponding unique
interpolant F . Then we transform back to S and calculate C(s) = P (s)−1

(
S(s)−1−I

)
.

In Table 1 we compare our control design with an optimal H∞ design using the
weighting functions of [37]. In Figure 5 the (singular-value) frequency responses of
the sensitivity and the complementary sensitivity of both designs are plotted, and
in Figure 6 the step responses are depicted. Clearly, both designs meet the design
specifications. We emphasize that although our design meets the specifications at
least as well as does the H∞ design, the McMillan degree of our controller is only half
of that of the H∞ controller.

Method of Optimal
this paper H∞ design

Controller degree 8 17
Peak ‖S‖∞ (dB) 1.3849 1.3910
Peak ‖T‖∞ (dB) 1.0000 1.2565
Bandwidth S (rad/s) 4.0050 3.7720
Bandwidth T (rad/s) 9.1825 10.6913

Table 1. Summary of the designs.
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Figure 5: Singular value plots of the sensitivity and the complementary sensitivity.
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Figure 6: The step responses for the H∞-design and our design.

8. Conclusions

In this paper we have developed a theory for matrix-valued Nevanlinna-Pick inter-
polation with complexity constraint. We have shown that the spectral zeros charac-
terize completely a class of interpolants of a bounded complexity. We have devised a
numerically stable algorithm based on homotopy continuation to compute any such
interpolants. The potential advantage of the theory and the algorithm was illustrated
by a benchmark multivariable control example.

The standard H∞ control problem can be reduced to not only matrix-valued in-
terpolation but also tangential interpolation. We expect that the reduction to the
tangential Nevanlinna-Pick interpolation problem will be more natural in the sense
that the degree bound can be much lower than the one in this paper (see [34, 35]).
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Therefore, it will be important to modify our theory to tangential Nevanlinna-Pick
interpolation. This is the subject of future study.

Appendix A. Nonsingularity of the Jacobian matrix δΨ

To show that the Jacobian matrix of Ψ in Proposition 6.1 is bijective, we prove a
somewhat more general statement.

Lemma A.1. Let V(�, n) be the class of real �× � matrix polynomials

V (z) = V0 + V1z + · · · + Vnz
n

such that V0 is upper triangular, and let R ∈ V(�, n) have the properties that the
constant term R0 is nonsingular and that detR and detR∗ have no roots in common.
Then, the linear map S(R) sending V ∈ V(�, n) to

S(R)V := R(z)V ∗(z) + V (z)R∗(z)

is nonsingular.

Proof. Since S(R) is a linear map between Euclidean spaces of the same dimension,
it suffices to prove that S(R) is injective. Without restriction we may assume that
R(z) is upper triangular. In fact, let T (z) be a unimodular matrix polynomial with
T (0) upper triangular such that T (z)R(z) is upper triangular. Such a T indeed exists
due to the procedure deriving the Smith form [24]. Then

TS(R)V T ∗ = (TR)(TV )∗ + (TV )(TR)∗ = 0

if and only if S(R)V = 0. Moreover, the new V0, i.e., T (0)V (0), is still upper trian-
gular. In this formulation

detR(z) = r11(z)r22(z) · · · r��(z),

where r11, r22, · · · , r�� are the diagonal elements in R. In particular, by assumption,
no rii can have zeros in common with any r∗jj. It then remains to prove that

(A.1) RV ∗ + V R∗ = 0

implies V = 0.
The proof is by induction. The statement clearly holds for � = 1. In fact, if R(zj) =

0, then, by assumption, R∗(zj) = 0, and hence, by (A.1), V (zj) = 0. Consequently,
we must have V (z) = λ(z)R(z) for some real polynomial λ, which inserted into (A.1)
yields

(λ + λ∗)RR∗ = 0.

This implies that λ = 0 and hence that V = 0, as claimed.



MATRIX-VALUED ANALYTIC INTERPOLATION WITH COMPLEXITY CONSTRAINT 27

Now, suppose that (A.1) implies V = 0 for � = k − 1. Then, for � = k, (A.1) can
be written




r11 r12 · · · r1k

0
...
0

R̂







v∗11 v∗21 · · · v∗k1

v∗12
...
v∗1k

V̂ ∗




+




v11 v12 · · · v1k

v21
...
vk1

V̂







r∗11 0 · · · 0 0
r∗12
...
r∗1k

R̂∗


 = 0,(A.2)

which, in particular, contains the (k − 1) × (k − 1) matrix relation R̂V̂ ∗ + V̂ R̂∗ = 0

of type (A.1). Consequently, by the induction assumption, V̂ = 0, so, to prove that
V = 0, it just remain to show that the border elements v11, v12, . . . , v1k, v21, . . . , vk1

are all zero. To this end, let us begin with the corner elements v1k and vk1. From the
(1, k) and (k, 1) elements in (A.2), we have

r11v
∗
k1 + v1kr

∗
kk = 0(A.3)

v∗1krkk + vk1r
∗
11 = 0.(A.4)

In the same way as in the case � = 1, (A.3) implies that v1k = λ1kr11 for some real
polynomial λ1k, and (A.4) implies that vk1 = λk1rkk for some real polynomial λk1,
which inserted into (A.3) yields

(λk1 + λ∗
1k)r11r

∗
kk = 0.

This implies that λk1 and λ1k are real numbers such that λ1k = −λk1. However, by
assumption, V (0) is upper triangular, and R(0) is upper triangular and nonsingu-
lar. Hence vk1(0) = 0 and rkk(0) = 0, implying that λk1 = vk1(0)/rkk(0) = 0 and,
consequently, λ1k = 0. Since, therefore, v1k = 0 and vk1 = 0, (A.2) now takes the
form [

R̃ ∗
0 ∗

] [
Ṽ ∗ 0
0 0

]
+

[
Ṽ 0
0 0

] [
R̃∗ 0
∗ ∗

]
= 0,

which only yields the (k− 1)× (k− 1) matrix relation R̃Ṽ ∗ + Ṽ R̃∗ = 0 of type (A.1).
However, by the induction assumption, Ṽ = 0. Therefore, V = 0 in the case � = k
also, so, by induction, V = 0 for all k.

Appendix B. Computing the gradient

To establish the expression (6.9) in Proposition 6.2 for the gradient

(B.1)
∂JP

∂R
(R) = 2

(
KR− ∂

∂R
〈log detR,P 〉

)
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of (6.7), we need to determine

∂

∂Rk

〈log detR,P 〉 =
1

2π

∫ π

−π

∂

∂Rk

log detR∗(eiθ)P (eiθ)dθ

=
1

2π

∫ π

−π

e−ikθR∗(eiθ)-TP (eiθ)dθ

=
1

2π

∫ π

−π

P (eiθ)
(
R∗(eiθ)R(eiθ)

)-TRT(eiθ)e−ikθdθ

=
[
Ck

T · · · C0 · · · Cn−k

]
R

where Ck is defined by (6.8). This completes the proof of Proposition 6.2.
Next, we explain how to actually compute C0, C1, . . . , Cn. In view of (4.13),

P
(
R∗R

)−1
= ρρ∗

[
(τR)∗(τR)

]−1

.

We can determine Ĉ0, Ĉ1, . . . , Ĉ2n in the expansion
[
(τR)∗(τR)

]−1

= Ĉ0 + Ĉ1z + Ĉ1
Tz−1 + · · · + Ĉ2nz

2n + Ĉ2n
Tz−2n + · · · .

by solving a system of linear equations. Now, defining

µ(z) := µ0 +
n∑

s=1

µ�(z
s + z−s) = ρ(z)ρ∗(z),

we can identify matrix coefficients of equal powers in z in

µ
[
(τR)∗(τR)

]−1

= C0 + C1z + C1
Tz−1 + · · · + Cnz

n + Cn
Tz−n + · · · ,

to obtain


C0

C1
...
Cn


 =







Ĉ0 Ĉ1 · · · Ĉn

Ĉ1 Ĉ0 · · · Ĉn−1
...

...
. . .

...
Ĉn Ĉn−1 · · · Ĉ0


 +




Ĉ0 Ĉ1 · · · Ĉn

Ĉ1 Ĉ2 · · · Ĉn+1
...

... . . .
...

Ĉn Ĉn+1 · · · Ĉ2n










µ0I/2
µ1I
...

µnI


 .

Appendix C. Computing the Hessian

We begin by proving Proposition 6.3. Since

∂2
(
trRTKR

)

∂ vecR2 = 2(I� ⊗K),

it remains to establish (6.12). Since

∂

∂Rj

⊗ ∂

∂Rk

〈log detR,P 〉 =
1

2π

∫ π

−π

∂

∂Rj

⊗R∗(eiθ)-TP (eiθ)e−ikθdθ,

(6.12) would follow if we could show that

(C.1)
∂

∂Rj

⊗R∗(z)-T = −z−j vec(R∗)-T(vecR−∗)T.
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Since R−∗(z)TR∗(z)T≡ I, denoting the (s, t) element of Rj by Rst
j we obtain

∂

∂Rst
j

R∗(z)-T = −(R∗)-T
∂(R∗)T

∂Rst
j

(R∗)-T = −z−j(R∗)-Teset
T(R∗)-T,

and therefore

∂

∂Rj

⊗R∗(z)-T :=




∂
∂R11

j
R∗(z)-T · · · ∂

∂R1�
j
R∗(z)-T

...
. . .

...
∂

∂R�1
j
R∗(z)-T · · · ∂

∂R��
j
R∗(z)-T




= −z−j vec(R∗)-T(vecR−∗)T,

establishing (C.1), and hence proving Proposition 6.3.
Next, we answer the question in Remark 6.4. To compute S0, S1, . . . , S2n, we first

expand

P (z)(R-T(z) ⊗R−1(z)) = · · · + S̃2nz
−2n + · · · + S̃1z

−1 + S̃0 + · · · ,
and transform S̃k to the coefficient matrices of P (vecR−1)(vecR-T)T by comparing
the elements of R-T⊗R−1 with those of (vecR−1)(vecR-T)T. The computation of S̃k

can be done by first observing that

R-T⊗R−1 = (R∗)T(R−∗)TR-T⊗(R∗R−∗R−1)

= (R∗)T(R∗R)-T⊗(R∗(RR∗)−1)

= ((R∗)T⊗R∗)((R∗R)-T⊗(RR∗)−1)

= ((R∗)T⊗R∗)((R∗R)T⊗(RR∗))−1

= ((R∗)T⊗R∗)((RT⊗R)((R∗)T⊗R∗))−1

= ((R∗)T⊗R∗)((RT⊗R)(RT⊗R)∗)−1,

where we have used properties of the Kronecker product that may be found in, e.g.,
[29]. Multiplying this by P then yields

P (R-T⊗R−1) = µ
(
(R∗)T⊗R∗)((τRT⊗R)(τRT⊗R)∗

)−1

= (µ0 + µ1(z + z−1) + · · · + µn(z
n + z−n))︸ ︷︷ ︸

µ

× (U0 + U1z
−1 + · · · + U2nz

−2n)︸ ︷︷ ︸
(R∗)T⊗R∗

(T0 + T1z + T1
Tz−1 + · · · )︸ ︷︷ ︸(

(τRT⊗R)(τRT⊗R)∗
)−1

,

from which we can compute S̃k.
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[11] C. I. Byrnes and A. Lindquist. Interior point solutions of variational problems and global inverse
function theorems. Preprint.

[12] C. I. Byrnes and A. Lindquist. On the duality between filtering and Nevanlinna-Pick interpola-
tion. SIAM J. Contr. and Optimiz., 39(3):757–775, 2000.

[13] C. I. Byrnes, A. Lindquist, S. V. Gusev, and A. S. Matveev. A Complete Parameterization
of All Positive Rational Extensions of a Covariance Sequence. IEEE Trans. Automat. Control,
40(11):1841–1857, November 1995.

[14] P. E. Caines. Linear Stochastic Systems. John Wiley & Sons, New York, 1988.
[15] M. K. K. Cevik and J. M. Schumacher. The Robust Regulation Problem with Robust Stability.

Technical Report MAS-R9827, CWI, Amsterdam, 1999.
[16] B.-C. Chang and J. B. Pearson. Optimal Disturbance Reduction in Linear Multivariable Sys-

tems. IEEE Trans. Automat. Control, 29(10):880–887, October 1984.
[17] E. J. Davison, editor. Benchmark problems for control system design, May 1990. Report of the

IFAC theory committee.
[18] Ph. Delsarte, Y. Genin, and Y. Kamp. Orthogonal Polynomial Matrices on the Unit Circle.

IEEE Trans. Circuits and Systems, 25(3):149–160, March 1978.
[19] Ph. Delsarte, Y. Genin, and Y. Kamp. The Nevanlinna-Pick Problem for Matrix-valued Func-

tions. SIAM J. Appl. and Math., 36:47–61, Feb 1979.
[20] Ph. Delsarte, Y. Genin, and Y. Kamp. Schur Parametrization of Positive Definite Block-Toeplitz

Systems. SIAM J. Appl. and Math., 36:34–46, Feb 1979.
[21] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Macmillan Pub-

lishing Company, New York, 1992.
[22] P. Enqvist. A homotopy approach to rational covariance extension with degree constraint. Int.

J. Applied Mathematics and Computer Science, 11(5):1173–1201, 2001.
[23] B. A. Francis. A Course in H∞ Control Theory. Lecture Notes in Control and Information

Sciences. Springer-Verlag, 1987.
[24] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1959.
[25] T. T. Georgiou. Realization of power spectra from partial covariance sequences. IEEE Trans.

Acoustics, Speech and Signal Processing, 35:438–449, 1987.
[26] T. T. Georgiou. A Topological Approach to Nevanlinna-Pick Interpolation. SIAM J. Math. and

Anal., 18(5):1248–1260, 1987.
[27] T. T. Georgiou. The Interplation Problem with a Degree Constraint. IEEE Trans. Automat.

Control, 44(3):631–635, March 1999.
[28] B. K. Ghosh. Transcendental and interpolation methods in simultaneous stabilization and si-

multaneous partial pole placement problems. SIAM J. Contr. and Optimiz., 24:1091–1109, 1986.
[29] A. Graham. Kronecker products and matrix calculus with applications. John Wiley & Sons, 1981.
[30] J. Hadamard. Sur les correspondances ponctuelles. In Oeuvres, Editions du Centre Nationale

de la Researche Scientifique, pages 383–384. Paris, 1968.



MATRIX-VALUED ANALYTIC INTERPOLATION WITH COMPLEXITY CONSTRAINT 31

[31] R. E. Kalman. Realization of covariance sequences. In Proc. Toeplitz Memorial Conference, Tel
Aviv, Israel, 1981.

[32] P. P. Khargonekar and A. Tannenbaum. Non-Euclidian Metrics and the Robust Stabilization
of Systems with Parameter Uncertainty. IEEE Trans. Automat. Control, 30(10):1005–1013,
October 1985.

[33] H. Kimura. Robust stabilizability for a class of transfer functions. IEEE Trans. Automat. Con-
trol, 29(10):788–793, October 1984.

[34] H. Kimura. Conjugation, interpolation and model-matching in H∞. Int. J. Control, 49:269–307,
1989.

[35] D. J. N. Limebeer and B. D. O. Anderson. An Interpolation Theory Approach to H∞ Controller
Degree Bounds. Linear Algebra and Its Application, 98:347–386, 1988.

[36] A. Lindquist. A new algorithm for optimal filtering of discrete-time stationary processes. SIAM
J. Control, 12(4):736–746, 1974.

[37] J. M. Maciejowski. Multivariable Feedback Design. Addison-Wesley, Wokingham U.K., 1989.
[38] R. Nagamune. All controllers to robust regulation with robust stability and performance en-

hancement with a degree bound. Preprint.
[39] R. Nagamune. Closed-loop shaping based on the Nevanlinna-Pick interpolation with a degree

bound. submitted to IEEE Trans. Automatic Control.
[40] R. Nagamune. A robust solver using a continuation method for nevanlinna-pick interpolation

with degree constraint. submitted to IEEE Trans. Automatic Control.
[41] R. Nagamune. Sensitivity reduction for SISO systems using the Nevanlinna-Pick interpolation

with degree constraint. In Proceedings of 14th International Symposium of Mathematical Theory
of Networks and Systems, Perpignan, France, 2000.

[42] R. Nagamune and A. Lindquist. Sensitivity shaping in feedback control and analytic interpola-
tion theory. In J.L. Medaldi et al, editor, Optimal Control and Partial Differential Equations,
pages 404–413. IOS Press, Amsterdam, 2001.

[43] A. V. Oppenheim and R. W. Shafer. Digital Signal Processing. Prentice Hall, London, 1975.
[44] M. M. Seron, J. H. Braslavsky, and G. C. Goodwin. Fundamental Limitations in Filtering and

Control. Springer-Verlag, 1997.
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