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Abstract

This paper extends a previously proposed solver for
scalar Nevanlinna-Pick interpolation problems with de-
gree constraint to the ones including derivative con-
straints. The solver computes any real rational inter-
polant with a degree bound by solving an optimization
problem of the same type as encountered in the prob-
lem without derivative constraint. A robust homotopy
continuation method, previously devised by the second
author for the problem without derivative constraint,
can be applied to solve the new optimization problem.

1 Introduction

The main purpose of this paper is to develop a solver for
the scalar Nevanlinna-Pick interpolation problem with
degree constraint (we write NPDC for short), allowing
for derivative constraints, formulated as follows. Sup-
pose that two sets of complex numbers are given:

Z := {zj : j = 0, 1, . . . , n, zi 6= zj if i 6= j} ,

W := {wjk : j = 0, 1, . . . , n, k = 0, 1, . . . ,mj − 1} ,

where Z ⊂ D := {z : |z| < 1}. The problem is to
determine any function f that satisfies the following:

C1 f fulfills the interpolation constraints:

f (k)(zj)

k!
= wjk,

j = 0, 1, . . . , n,
k = 0, 1, . . . ,mj − 1,

(1)

C2 f is strictly positive real, i.e., f is analytic in an
open region containing the closed unit disc D and
Re f(z) > 0 for all z ∈ D,

C3 f is rational and deg f ≤ m :=
∑n

j=0 mj − 1.

We stress that this problem is different from the classi-
cal analytic interpolation problems because of C3. In
applications the degree restriction is important since
it corresponds to a low degree of dynamical systems.
To handle degree of interpolants, the analytic inter-
polation theory with degree constraint that has been
developed in recent years is most powerful and promis-
ing (see the survey in [7] and references therein). The
theory gives a complete parameterization of the set

SNPDC := {f : f satisfies C1, C2 and C3} ,

whose elements smoothly depend on spectral zeros of
the interpolant. It turned out that the problem of com-
puting any function in SNPDC amounts to solving a
convex optimization problem. To solve the optimiza-
tion problem in a numerically robust way, algorithms
based on a homotopy continuation approach have been
devised for two special cases; one presented in [11] is
for Carathéodory extension with interpolation condi-
tions f (k)(0)/k! = wk, k = 0, 1, . . . ,m − 1, and the
other in [17] is for Nevanlinna-Pick interpolation with
interpolation conditions f(zj) = wj , j = 0, 1, . . . , n.

The goal of this paper is to extend the algorithms in [11,
17] to the one that can treat more general interpolation
conditions (1) directly. This extension is important
since it enables us to smoothly handle the H∞ control
problem with multiple unstable poles and/or zeros in
the plant, which the classical interpolation approach
cannot (see [15, p. 18]).

The paper is organized as follows. In Section 2, we
discuss the solvability condition for NPDC including
derivative constraints by introducing a generalized Pick
matrix. Section 3 briefly reviews the theory on NPDC
presented in [4, 5, 8] and state a convex optimization
problem for computing each interpolant. Section 4 re-
duces the convex optimization problem, which is diffi-
cult to solve accurately, to a non-convex optimization
problem that has attractive properties. We apply the
same homotopy continuation method as in [11, 17] to
solve it in a numerically robust way. We give an exam-
ple from the control literature to illustrate the efficiency
of our solver in Section 5. Appendix explains bilinear
transformations of the domain and range.

2 Solvability and a generalized Pick matrix

The classical Nevanlinna-Pick interpolation problem
including derivative constraints considers interpolation
conditions C1 and a condition

C2’ f is positive real, i.e., f is analytic in the open
unit disc D and Re f(z) ≥ 0 for all z ∈ D.

This problem is a generalization of both the classical
Carathéodory extension and the classical Nevanlinna-
Pick interpolation problem [18, Section 2.6],[12, p. 298].



We refer to Theorem 1 and Theorem 2 in [14] for a use-
ful formulation of the necessary and sufficient condition
for the existence of a positive real interpolant.

To present this condition, we introduce some notation.
First, from the data set Z, we construct a block diag-
onal matrix

A :=







A0

. . .

An






, Aj :=











zj

1 zj

. . .
. . .

1 zj











,

where each block Aj is of size mj × mj . In addition,
we define a vector as

b := [em0

1 , em1

1 , · · · , emn

1 ]
T

, e
mj

1 := [1, 0, · · · , 0] ,

where e
mj

1 is of size 1 × mj . Next, from the data set
W, introduce another block diagonal matrix

W :=











W0

W1

. . .

Wn











,

Wj :=











wj0

wj1 wj0

.

.

.
. . .

. . .

wj,mj−1 · · · wj1 wj0











.

Theorem 2.1 There exists an interpolant for the
Nevanlinna-Pick interpolation problem including
derivative constraints if and only if a Hermitian
matrix

P := WE + EW H (2)

is nonnegative definite. Here, the matrix E is a unique
positive definite solution to the Lyapunov equation:

E − AEAH = bbT . (3)

The matrix P in (2) is called a generalized Pick ma-
trix. If P is nonnegative definite but singular, the in-
terpolant is unique and it is not strictly positive real.
On the other hand, if P is positive definite, there ex-
ist infinitely many interpolants. The class of these
interpolants can be represented in a linear fractional
transformation form with a free H∞ function whose
H∞ norm is bounded by one [19]. In particular, this
class contains strictly positive real functions of degree
at most m whenever P is positive definite. One of such
functions is the so-called central solution which can be
obtained by setting the free H∞ function equal zero.
Consequently, we have the following fact.

Corollary 2.2 NPDC including derivative constraints
is solvable if and only if P is positive definite.

3 Review of the theory for NPDC

In this section, we will briefly review the theory for
NPDC [5, 4, 8]. In particular, we follow the approach
by Byrnes and Lindquist in [8], where the interpola-
tion problem was seen as a generalized moment prob-
lem. The main results there are that the set SNPDC

is completely parameterized in terms of spectral zeros
of the interpolant, and that the computation of each
interpolant amounts to solving a convex optimization
problem. We will present these results next.

Hereafter, we assume that (A1) P is positive definite,
(A2) z0 = 0 and (A3) (z̄j , w̄jk) is in Z ×W whenever
(zj , wjk) is. (A1) guarantees that the set SNPDC is
nonempty, due to Corollary 2.2, (A2) is for mathemat-
ical convenience, and (A3) is assumed since it leads to
real interpolants which are relevant to applications.

The complete parameterization of the set SNPDC in
the generality of the present paper was given by Byrnes
and Lindquist in [8] as follows.

Theorem 3.1 [9, 13, 5, 4, 8] There is a bijective map
between the set of pairs of real polynomials
{

(α, β) :
deg α ≤ m, deg β ≤ m,
α(0) 6= 0, β(0) 6= 0,

f :=
β

α
∈ SNPDC

}

,

and the set of real Schur polynomials

{ρ : deg ρ = m, ρ(z) 6= 0,∀ |z| ≥ 1} .

The bijectivity implies that the Schur polynomials are
the characterizing factor of the set SNPDC . The com-
putation of an interpolant f from ρ amounts to an op-
timization problem minq∈Q+

Jρ(q), where

Jρ(q) := 〈q + q∗, w + w∗〉 −

〈

log(q + q∗),
ρρ∗

ττ∗

〉

. (4)

Here, w is an arbitrary function in H2 that satisfies
interpolation conditions (1), τ :=

∏n
j=1(1 − z̄jz)mj is

a fixed polynomial depending on the data Z, and the
domain Q+ is defined by

Q+ :=

{

q :
real rational, q ∈ span

{

Gzj ,k

}

j,k

q(z) + q(z−1) > 0, ∀ |z| = 1

}

,

where Gpk(z) := zk/(1 − p̄z)k+1. For two functions f
and g in L2, the inner product is defined by 〈f, g〉 :=
∫ π

−π
f∗(eiθ)g(eiθ)dθ/2π, where f∗(z) := f(z̄−1).

This optimization problem is convex, that is, the do-
main Q+ is a convex region and the objective function
Jρ is a strictly convex function. After obtaining the
minimizer q in Q+, the real polynomials α and β can
be calculated respectively by spectral factorization:

q(z) + q(z−1) = a(z)a(z−1), a(z) :=
α(z)

τ(z)
, (5)



and by solving a system of linear equations:

α(z)β(z−1) + α(z−1)β(z) = ρ(z)ρ(z−1). (6)

The first breakthrough about the same type of con-
vex optimization to (4) was done by Byrnes, Gusev
and Lindquist in [6] (see also [7]) for the Carathéodory
(covariance) extension problem with degree constraint,
followed by the work for the Nevanlinna-Pick interpola-
tion problem with degree constraint in [4, 5]. However,
optimization solvers proposed there were not quite ro-
bust numerically. Especially, the solvers are not able
to obtain interpolants with poles in close vicinity of the
unit circle accurately. Such interpolants are often re-
quired in applications, and hence the solvers needed to
be modified. To remove the drawback, the solvers have
been modified with a homotopy continuation method
by Enqvist for Carathéodory extension in [11], followed
by the second author for Nevanlinna-Pick interpolation
in [17]. We will take the same approach as these results.

4 A new optimization problem for NPDC
including derivative constraints

The approach taken in [11, 17] first translates the op-
timization problem (4) with respect to q into an op-
timization problem with respect to α by substituting
the relation (5) into the objective function in (4). By
using the same idea, we will transform the optimiza-
tion problem minq∈Q+

Jρ(q) into another optimization
problem with respect to a real vector

α := [α0, α1, · · · , αm]
T
∈ R

m+1, (7)

which consists of coefficients of a polynomial α(z) =:
α0 + α1z + · · · + αmzm. When we substitute (5) into
the function Jρ(q) in (4), we obtain a function of α as

Ĵρ(α) := 〈aa∗, w + w∗〉 −

〈

log aa∗,
ρρ∗

ττ∗

〉

, (8)

where a(z) := α(z)/τ(z).

The first term in (8) can be written as a quadratic
form of α containing the generalized Pick matrix. To
prove this, we first state the following proposition that
represents the first term of Ĵρ as a function of a complex
vector γ ∈ Cm+1, where

γ :=
[

γ
T
0 , · · · ,γT

n

]T
, γj =

[

γj0, · · · , γj,mj−1

]T
,

and the scalars γjk are defined by

a(z) =:

n
∑

j=0

mj−1
∑

k=0

γjkGzj ,k(z). (9)

In addition, this proposition implies that Ĵρ is indepen-
dent of the choice of w.

Proposition 4.1 For any w ∈ H2 which satisfies the
interpolation constraints, the following holds:

〈aa∗, w + w∗〉 = γ
HPγ, (10)

where the matrix P is the generalized Pick matrix de-
fined in (2), and the vector γ is defined in (9).

Proof: Since 〈aa∗, w + w∗〉 = 〈a, aw〉 + 〈a, aw〉, we
examine only the term 〈a, aw〉. Using the expression
(9), this term is transformed as

〈a, aw〉 =
n
∑

j=0

mj−1
∑

k=0

n
∑

p=0

mp−1
∑

q=0

γ̄jkγpq

〈

Gzj ,k, wGzp,q

〉

.

Using the relation 〈Gpk, f〉 = f (k)(p)/k!, we have

〈

Gzk,j , wGzp,q

〉

= [wkj , · · · , wk0]







〈

Gzk,0, Gzp,q

〉

...
〈

Gzk,j , Gzp,q

〉






.

By using this equation, we can derive 〈a, aw〉 =
γ

HWEγ, where

E :=

(

1

2π

∫ π

−π

G(eiθ)G∗(eiθ)dθ

)T

,

and G(z) := (I − zĀ)−1b. The matrix E is the control-
lability Gramian that is a positive definite solution of
the Lyapunov equation E − AEAH = bbT . The other
half becomes 〈a, aw〉 = γ

HEWH
γ.

Now, we clarify the relation between vectors γ and α in
(7) in order to transform (10) into a function of α. To
this end, we express τ by τ(z) =: 1+ τ1z + · · ·+ τmzm,
with τk = 0 for all k ≥ m − m0 + 2. By the similar
arguments to [17, Lemma 3.1], we can derive the linear
relation between γ and α as

α = LmV γ. (11)

Here, the (m + 1) × (m + 1) nonsingular matrices Lm

and V are written as

Lm :=











1
τ1 1
...

. . .
. . .

τm · · · τ1 1











, V := [V0 V1 · · · Vn] ,

where the (m+1)×mk block matrices Vk is defined by

Vk :=







































1
z̄k 1

z̄2
k

(2

1

)

z̄k

. . .

.

..
.
..

. . . 1
..
.

..

.
(mk

1

)

z̄k

.

.

.
.
.
.

.

.

.

z̄m
k

( m

m − 1

)

z̄m−1
k

( m

m + 1 − mk

)

z̄
m+1−mk
k







































.



The notation
(

n
k

)

means the binomial coefficients.

Due to Proposition 4.1 and the relation (11), the first
term of Ĵρ has a representation with the vector α as

〈aa∗, w + w∗〉 = α
T Kα,

where K := L−T
m V −HPV −1L−1

m . Note that K is posi-
tive definite due to the assumption (A1) and the non-
singularity of Lm and V .

Since α and τ are real polynomials, the second term of
Ĵρ in (8) becomes

〈

log aa∗,
ρρ∗

ττ∗

〉

=

〈

2 log α,
ρρ∗

ττ∗

〉

−

〈

2 log τ,
ρρ∗

ττ∗

〉

.

Hence, the function Ĵρ in (8) can be written by

Ĵρ(α) = α
T Kα − 2

〈

log α,
ρρ∗

ττ∗

〉

+ 2

〈

log τ,
ρρ∗

ττ∗

〉

,

where α should be in the region:

Sm :=

{

α :
α0 + α1z + · · · + αmzm 6= 0,∀z ∈ D

α0 > 0

}

.

Since the last term does not contain α, the new opti-
mization problem equivalent to the original one is

min
α∈Sm

Jρ(α), Jρ(α) := α
T Kα − 2

〈

log α,
ρρ∗

ττ∗

〉

.

Since K is positive definite, this is exactly the same
kind of problem that has appeared in [11, 17]. More
precisely, the function Jρ has a unique stationary point
in the open region Sm, and it is locally strictly convex
around the unique stationary point. Thus, we can use
the same homotopy continuation method (see [1]) as in
[11, 17] to solve this optimization problem. The details
of the optimization has been presented in [17]. With
the optimal α, the interpolant f is calculated by solving
the system of linear equations (6) with respect to β.

5 A control example

This example is taken from a book written by Doyle,
Francis & Tannenbaum (DFT) [10, Section 10.3 &
12.4]. A plant is given as

P (s) =
−6.4750s2 + 4.0302s + 175.7700

s(5s3 + 3.5682s2 + 139.5021s + 0.0929)
,

that is, it has one unstable pole at the origin and unsta-
ble zeros at infinity (multiplicity 2) and 5.5308. For this
plant, our goal is to design a strictly proper controller
C(s) in the feedback structure of Figure 1, fulfilling in-
ternal stability and, for a step reference r(t), settling
time of at most 8 seconds, overshoot of at most 10 %
and control signal u(t) of at most magnitude 0.5. Our
approach is to find an appropriate sensitivity function

PSfrag replacements

r e y

−

u P (s)C(s)

Figure 1: The closed-loop system

S := 1/(1 + PC) so that the closed-loop system ful-
fills all the specifications. Afterwards, we calculate the
corresponding controller C.

For internal stability, S must be in RH∞ (the set of
real rational proper stable functions) and satisfy the
interpolation conditions:

S(0) = 0, S(∞) = 1, S′(∞) = 0, S(5.5308) = 1.

In order to design a strictly proper controller, we re-
quire PC to have another zero at infinity. This is
achieved by imposing another constraint S ′′(∞) = 0.
We note that this derivative constraint can easily be
incorporated in our procedure. In addition, our proce-
dure requires an upper bound of the H∞ norm.

An admissible set of degree-bounded interpolants is

SNPDC :=















S ∈ RH∞ :

S(0) = 0, S(∞) = 1,
S′(∞) = S′′(∞) = 0,
S(5.5308) = 1,
‖S‖

∞
< γ, deg S ≤ 4















.

The degree bound of S is a consequence of having
the total number of interpolation constraints as five.
This corresponds to a controller degree of at most
deg P − 1 = 4 (see [16, Proposition 4.1]). This also
implies that we get four spectral zeros as design pa-
rameters. Note that this set of constraints includes
derivative constraints, and hence we cannot use the
solver in [17] directly. In addition, we apply bilinear
transformations to both domain and range of S in or-
der for the interpolation problem to become the form
in this paper. See Appendix A.

In the frequency domain, time domain specifications
correspond to the sensitivity function (see [10, p. 181]):

Sideal(s) :=
s(s + 1.2)

s2 + 1.2s + 1
. (12)

Therefore, we will aim at obtaining an interpolant in
the set SNPDC which has similar frequency domain
characteristics to that of Sideal, by tuning the spec-
tral zeros. We choose the value γ comparable to that
of Sideal.

We choose the design parameters based on the follow
reasoning. We set an H∞ norm γ = 1.8 causing the
peak of the sensitivity function to be slightly lower than
that of the DFT-design. We put two spectral zeros at
s = ±1.7i since we want the peak of the magnitude of
the sensitivity at that frequency (see [16] for the shap-
ing technique). We place the remaining two spectral



zeros at s = 7 and s = ∞, bringing the magnitude of
u down. However, it should be noted that the effect
of spectral zeros away from the imaginary axis is quite
unclear. The resulting controller is

CNPDC(s) =
12.63s3 + 9.016s2 + 352.5s + 0.2347

s4 + 20.15s3 + 139.2s2 + 448.8s + 650.7
.

We compare the closed-loop performance of the con-
troller CNPDC with that of the controller in [10, Sec-
tion 12.4]. The performance of the different designs,
both in the frequency and time domain, is summarized
in Table 1 and Figure 2. We have clearly found an at
least as good design but of the half degree compared
with the DFT-design.

Table 1: The time and frequency domain performance.

DFT NPDC

Controller degree 8 4
Peak Gain 1.56 1.55
Bandwidth (Hz) 0.48 0.52
Rise Time (sec) 1.55 1.46
Overshoot 1.11 1.02
Settling Time (sec) 5.41 2.49
Max |u| 0.48 0.48

6 Conclusions

In this paper, we have shown that the Nevanlinna-
Pick interpolation problem with degree constraint
including derivative constraints can be treated in the
same framework as the problem without derivative
constraint. We can obtain each rational strictly
positive real interpolant by solving the same kind
of optimization problem as the one that appears
in the plain Nevanlinna-Pick interpolation, as well
as Carathéodory extension, with degree constraint.
The major difference is in the construction of a
positive definite matrix in the objective function,
which contains the generalized Pick matrix. We
have demonstrated that the solver is quite conve-
nient for a sensitivity shaping in control when a
plant has multiple unstable poles/zeros, yielding
derivative constraints, as well as when we want to
design a strictly proper controller of low degree. A
matlab implementation of the solver is available at
http://www.math.kth.se/~andersb/software.html.

The solver developed in this paper is applicable only
for scalar problems. However, to treat multivariable
control problems by a similar interpolation approach,
it is important to consider the problem dealing with the
classical multivariable (matrix-valued or bitangential)
analytic interpolation (see e.g. [2, 12, 18]) plus certain
complexity constraint. One such generalization will be
presented in a forthcoming paper [3].
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Figure 2: DFT-design and our design.

A Transformation of domain and range

The Nevanlinna-Pick problem considered in this paper
is assumed to find the mapping f from the unit disc
into the right half-plane, even though problems orig-
inating from applications may have different domain
and/or range. In addition, the first interpolation point
is assumed to be origin in our formulation, which might
not always be the case. However, these assumptions are
without loss of generality, since the linear fractional (bi-
linear) transformation u = (az+b)/(cz+d), ad−bc 6= 0,
can be applied to both the variable and the function in
order for domain and range to have the desired form.



Furthermore, one of the interpolation points can always
be transformed to the origin. The next two lemmas
provide formula of the interpolation constraints after
bilinear transformations of domain and range.

Lemma A.1 Under the bilinear transformation
u(z) := (az + b)/(cz +d), ad− bc 6= 0, the interpolation
constraints (1) of f transform to those for the function
g(u) := f(z(u)) with z(u) = (−du + b)/(cu − a) as

g(k)(uj)

k!
= vjk,

j = 0, 1, . . . , n,
k = 0, 1, . . . ,mj − 1,

where for each j, uj = (azj + b)/(czj + d) and

vjk =



















wj0,

1

k!

k
∑

l=1

s
l
kwj,k−l+1(k − l + 1)!(z′)k−l

z
(l)

∣

∣

∣

∣

∣

z=z(uj)

,

k = 1, 2, . . . , mj − 1.

The coefficients sl
k fulfills the recursive formula: s1

k =
sk

k = 1, k = 1, . . . ,mj − 1, and

sl
k+1 =

2k − l + 2

l
sl−1

k + sl
k, l = 2, . . . , k.

The term z(l)(uj) is obtained by

z(l)(uj) = (−1)l+1l!cl−1 ad − bc

(cuj − a)l+1
, l = 1, . . . , k.

Lemma A.2 Under the bilinear transformation
g(z) := (af(z) + b)/(cf(z) + d), ad − bc 6= 0, the
interpolation constraints (1) of f transform to those
of the function g as

g(k)(zj)

k!
= vjk,

j = 0, 1, . . . , n,
k = 0, 1, . . . ,mj − 1,

where for each j = 0, 1, . . . n,

vjk :=



























awj0 + b

cwj0 + d
,

1

k!

1

cwj0 + d

(

ak!wjk −

k−1
∑

l=0

(k

l

)

cl!(k − l)!vjlwj,k−l

)

,

k = 1, 2, . . . , mj − 1.
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