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Abstract. Simultaneous cepstral and covariance matching provides a paradigm for ARMA
estimation with attractive features: the estimates are unique and depend smoothly on the time
series. In fact, it corresponds to a well-posed mathematical problem in the sense of Hadamard.
A major drawback, however, is that simulations show that the estimates are not asymptotically
efficient. Here we shall present a development of the paradigm based on whitening. We show
that the uniqueness and smoothness are preserved while the statistically properties are potentially
improved. A simulation study indicates that the estimates are asymptotically efficient.
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1. Introduction. Cepstral coefficients were introduced in [6] and have since
mainly been used in signal processing, and speech processing in particular, for an
alternative representation of AR models. Recently, Byrnes, Enqvist, and Lindquist
in [10] proved the remarkable result that the combined window of covariances and
cepstral coefficients provides a global parameterization of ARMA models. Moreover,
they showed that the problem of going from these coefficients to the ARMA param-
eters is well-posed in the sense of Hadamard. Since both covariances and cepstral
coefficients are directly computable from times series data this provided a well-posed
approach to ARMA modeling which is in sharp contrast to the, for low-variance es-
timation, predominant maximum-likelihood methods. At that point the variance of
the estimates was not studied.

As a prelude we shall consider a trivial example illustrating the Cepstral Covari-
ance Matching (CCM) of [10, 15] while also revealing a shortcoming of the method.

Example 1.1 (ARMA estimation). Consider Figure 1.1. We assume, for the
time being, that the measured scalar data {xt}

N
t=1 is generated by feeding white noise,

say Gaussian, with variance λ2 through a stable, causal, minimum-phase linear filter
of some known degree. That implies that we should model the normalized transfer
function of the shaping filter as:

w(z) =
σ(z)

a(z)
,

where a and σ are monic stable polynomials of some degree. Given the measurement
we want to determine the best possible model of the filter according to some criterion.

Let us consider the very simple example a(z) ≡ 1, σ(z) = 1−σ−1
1 z for −1 < σ1 <

1, and λ = 1. This corresponds to a Moving Average process of order one, MA(1).
In statistics the Maximum Likelihood (ML) is probably the most widely used

estimator, see for instance [8]. It is the best possible estimator with respect to the
statistical criteria. The counterpart in the engineering literature is the Prediction
Error Method (PEM), which minimizes the prediction error and is widely used for off-
line estimation, [25]. The PEM and the ML methods are equivalent when the driving
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Fig. 1.1. The shaping filter producing an ARMA process
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Fig. 1.2. The estimated relative efficiency of the estimated zero of an MA(1) model using the
ML and CCM estimators.

white noise is Gaussian. These estimators are based on nonconvex optimization and
therefore typically computationally demanding. Also they need to treat failure modes
caused by the nonconvexity.

Now, for 0 ≤ σ1 ≤ 0.9 we generate a long data set, say N = 1000, and apply
both the ML estimator armax in [24] and the CCM method of [15] with biased sample
covariances and cepstral estimates based on a long AR model (length L = 20). The
Cramér-Rao bound is known to be N−1(1−σ2

1), see for instance [28, Chapter 5.2]. In
Figure 1.2, the estimated relative efficiency, which is the ratio between the Cramér-
Rao bound and the estimated variances, is plotted for each method based on a Monte
Carlo simulation with 1000 realizations. The ML estimator is approximately effi-
cient, that is, it has approximately relative efficiency 1, as expected from the theory.
The CCM estimator seems to be efficient for a zero location close to origin but not
otherwise, in that the relative efficiency is significantly less than one.

The main contribution of the paper is to generalize the CCM method to allow
for frequency weighting/prefiltering. Thereby we can lower to the variance of the
estimtes; in fact, a simulation example indicates that this might enable an asymptot-
ically efficient estimator while maintaining the well-posedness.

The paper is organized as follows: in Section 2 we introduce the notation and
define some smooth manifolds. In Section 3 we generalize the uniqueness result to
our setting and in Section 4 we prove the smoothness of the parameterization. In
Section 5 we construct an algorithm for solving the generalized problem which we in
Section 6 apply to an example. Finally we give some concluding remarks.

2. Notation. In this section we shall give the main notation and define some
manifold that will be used later. Denote the unit circle by T. Let C be the set of
not necessarily positive, continuous, real-valued functions on T and C+ the subset of
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positive functions. We will consider functions in the usual L2 Hilbert space with the
inner-product

〈f, g〉 =
1

2π

∫ π

−π

f(e−iθ)g(eiθ)dθ.

Now, restrict the consideration to finite degree real rational functions:

w(z) = λ
σ(z)

a(z)
= λ

zm + σ1z
m−1 + . . . σm

zn + a1zn−1 + · · ·+ an

. (2.1)

In particular we will be interested in rational functions with all poles and zeros outside
the unit circle. Let the Schur region Sn be the n-dimensional smooth manifold of
monic polynomials with all roots outside the unit disc. For simplicity of notation we
will identify this function space with the space of coefficients:

Sn =
{
a ∈ R

n : zn + a1z
n−1 + · · ·+ an 6= 0 ∀z ∈ D

}
.

Normalized outer rational functions, that is with λ = 1, then belong to the direct
product of two Schur regions

Pnm := Sn × Sm.

If the polynomials are of the same degree we simply write Pn. Also, define the dense
subset P∗

nm consisting of all coprime rational functions in Pnm. The topology of P∗
n

is fairly complicated. Firstly, note that the Schur region Sn in general is noncon-
vex. Secondly, the coprimeness assumption divides the space into n + 1 connected
components, see [7, 30]. Also, introduce the function space Ln consisting of all not
necessarily monic polynomials of degree at most n.

The spectral density corresponding to the rational spectral factor w(z) can be
written

Φ(z) = w(z)w∗(z) = λ2σ(z)σ∗(z)

a(z)a∗(z)
=
P (z)

Q(z)
, (2.2)

where P and Q are pseudo-polynomials of degrees m and n defined as

P (z) := 1 + p1/2(z + z−1) + · · ·+ pm/2(z
m + z−m),

Q(z) := q0 + q1/2(z + z−1) + · · ·+ qn/2(z
n + z−n).

We can generalize the pseudo-polynomials to be represented in some other function
space:

P (z)

Q(z)
=

P (z)

τ(z)τ∗(z)

/ Q(z)

τ(z)τ∗(z)
,

where we define

τ(z) := det(I −Az) = τ0 + τ1z + · · ·+ τn+1z
n+1. (2.3)

By taking A = 0 we recover the pseudo-polynomials. Also note, that if detA = 0,
τn+1 = 0 so τ(z) is of degree at most n. The generalized pseudo-polynomial can now
be written

Q(z) =
n∑

k=0

qk
2

(Gk(z) +G∗
k(z)) =

a(z)a∗(z)

τ(z)τ∗(z)
, (2.4)
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for some basis functions Gk(z) spanning the appropriate subspace and where a(z) is a
polynomial of degree n. We identify the space of pseudo-polynomials that are positive
on the unit circle with the space of coefficients, given some basis functions:

Q+ =
{
(q0, q1, . . . , qn) ∈ R

n+1 : Q(z) > 0, z ∈ T
}
.

We also define the subset for which the leading coefficient q0 = 1 as Q0
+.

To represent transfer functions and their corresponding spectral densities we will
use basis functions. A suitable framework for this, which can be interpreted as filter-
banks, is given in [18, 19]. Let A ∈ C

n+1×n+1 and B ∈ C
n+1. The pair (A,B) is

called reachable if the reachability matrix

Γ :=
[
B AB . . . AnB

]
,

has full rank. If, in addition, A have all its eigenvalues in D, we define the basis
functions








G0

G1

...
Gn








:= G(z) := (I −Az)−1B = B +Az(Iz −A)−1B,

In particular, if detA = 0 one basis function will be a constant. Clearly, the basis
functions Gk will be analytic in D. Define a set of basis functions as

G :=






G(z) = (I −Az)−1B :

A ∈ C
n+1×n+1, B ∈ C

n+1,
eig(A) ⊂ D, (A,B) reachable, G0(z) ≡ 1,
〈G0, Gk〉 = δ0k, k = 1, . . . , n+ 1,






. (2.5)

For such basis function we define Ḡ by G =:
[
1 ḠT

]T
. Several classes of basis

functions can be recovered by suitable choices of A and B, see for instance [18, 19, 2].
In particular we shall call Gk(z) = zk the standard basis.

Given some spectral density Ψ ∈ C+ and some basis functions G ∈ G we define

rk :=
1

2π

∫ π

−π

Gk(eiθ)Ψ(eiθ)Φ(eiθ)dθ = 〈Gk,ΨΦ〉 , (2.6)

for the spectral density Φ. Note that we can think of Ψ as the density of a prefilter
that is applied to the signal. For the special case with Ψ ≡ 1 and G as the standard
basis the components rk will be Fourier coefficients of the spectral density. In the
setting of stochastic processes, these are exactly the covariances of the processes. For
the special case of Ψ ≡ 1 and G such that Gk(z) = 1/(z − zk), the components rk

are interpolation values on the positive-real part of the spectral density in the poles
of the basis: f(zk) = rk. We will call (2.6) generalized prefiltered covariances. The
corresponding Pick matrix is given by

Σ =
1

2π

∫ π

−π

G(eiθ)Ψ(eiθ)Φ(eiθ)G∗(eiθ)dθ,

and is related to the interpolation data matrix W via Σ = WE+EW ∗, where E is the
controllability Gramian of (A,B), see for instance [18, 19]. The covariance vector is
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then given by r = WB. Likewise, given the reachable pair (A,B) and the covariance
vector r there is a unique Pick matrix Σ(r). In fact, using the representation

W = w0I + w1A+ · · ·+ wnA
n,

the coefficients wj are given by w = Γ−1r. Hence we can determine W and then
compute as Σ = WE + EW ∗. We define the set of feasible generalized prefiltered
covariances as

Rn :=
{
r ∈ C

n+1 : Σ(r) > 0
}
.

In this thesis we will also study moments of the logarithm of the spectral density
defined as

ck :=
1

2π

∫ π

−π

Gk(eiθ)Ψ(eiθ) log
(

Ψ(eiθ)Φ(eiθ)
)

dθ = 〈Gk,Ψ log (ΨΦ)〉 . (2.7)

For the special case with Ψ ≡ 1 and G as the standard basis, the components ck will
be Fourier coefficients of the logarithm of the spectral density. In signal processing
and speech processing, in particular, these are called cepstral coefficients, see for
instance [6, 27]. In signal processing, the cepstral coefficients have traditionally been
considered as an alternative to covariances for parameterizing AR models. The basis
G generalize the notion of cepstrum together with the prefiltering that Ψ represents.
Therefore, we will call (2.7) the generalized prefiltered cepstral coefficients.

As we are interested in the Nevanlinna-Pick problem with degree constraint, it is
instrumental to define the set of covariances and cepstral coefficients that corresponds
to a rational density of degree n. We will slightly generalize the definitions in [10, 23],
which do this in an implicit fashion. Let Ψ ∈ C+ and G,H ∈ G be given. Define

Xnm :=







(r, c) ∈ C
n+1 × C

n :

r ∈ R, λ ∈ R+, σ ∈ Sm, a ∈ Sn,

rk =

〈

Hk,Ψλ
2σσ

∗

aa∗
ττ∗

tt∗

〉

, k = 0, 1, . . . , n

ck =

〈

Gk,Ψ log Ψλ2σσ
∗

aa∗
ττ∗

tt∗

〉

, k = 1, 2, . . . ,m







,

(2.8)
where τ = det(I − AHz) and t = det(I − AGz). In many situations we will have
m = n and G = H; then we will denote the set Xn.

Remark 2.1. The definition of Xn is implicit, making it as hard to check whether
an element belongs to it, as to solve for the interpolating function. However, it will
be of great theoretical value to define the set this way. For actual computation of an
interpolant, there are ways to circumvent this difficulty as discussed and shown in the
following chapters.

Since spectral densities can be interpreted as distribution functions in the spectral
domain we will adopt a discrepancy from statistics called spectral Kullback-Leibler
discrepancy [22]:

Definition 2.2 (Spectral Kullback-Leibler discrepancy). Given two spectral den-
sities Ψ,Φ ∈ C+ with common zeroth moment, 〈1,Ψ〉 = 〈1,Φ〉, the spectral Kullback-
Leibler discrepancy is given by

S(Ψ,Φ) :=

〈

Ψ, log
Ψ

Φ

〉

.
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It is not symmetric in its arguments but jointly convex. It fulfills S(Ψ,Φ) ≥ 0 with
equality if and only if Ψ = Φ, see for instance [20]. The spectral Kullback-Leibler
discrepancy is a generalization of the entropy of a spectral density, which is recovered
by taking Ψ ≡ 1.

3. Spectral Kullback-Leibler Approximation with Cepstral- and Cova-

riance-Type Constraints. Here we are interested in the problem of finding spectral
densities that fulfill conditions on their cepstra and second order moments. By as-
sumptions on the interpolation data, we will ensure that there exists infinitely many
solutions. Out of those, we will be interested in the particular solution that has
the smallest spectral Kullback-Leibler discrepancy, with respect to a given density.
Moreover, we will show that this spectral density is essentially unique.

Consider the following infinite dimensional approximation problem:
Problem 3.1 (Kullback-Leibler Approximation). Let Ψ ∈ C+ and G,H ∈ G be

given. Assume that (r, c) ∈ Xnm. Find any spectral density Φ ∈ C+ that minimizes the
spectral Kullback-Leibler discrepancy S(Ψ,Φ) subject to the interpolation conditions

rk = 〈Hk,Φ〉 k = 0, . . . , n, (3.1)

cl = 〈Gl,Ψ log Φ〉 l = 1, . . . ,m. (3.2)

This Kullback-Leibler approximation problem is a generalization of the primal
problem studied in [10, 15] in the style of [20]. In fact, in proving the theorem
we shall follow these key references closely. Note that we let Ψ act as a frequency
weighting of the log-spectrum of Φ.

The following theorem give the solution to the problem, its functional form, and
conditions for a unique solution.

Theorem 3.2. The solution to Problem 3.1 is of the form Φ = ΨP̂ Q̂−1 where
P̂ ∈ Q0

+ and Q̂ ∈ Q+. Moreover, if (P̂ , Q̂) are coprime they are unique.
A key feature of the theorem is the functional form of the solution, which can

be interpreted as a complexity constraint. For instance, taking m = 0, G such that
Gk(z) = 1/(z − zk), and Ψ = σσ∗/(ττ∗) where σ ∈ Sn yields a complete parameteri-
zation of the Nevanlinna-Pick interpolation problem with degree constraint.

We will prove Theorem 3.2 using Lagrangian techniques. In fact, we will show
that the dual, in mathematical programming sense, is

(D) min
(P,Q)∈Q0

+
×Q+

〈Q,R〉 − 〈P, logR〉 − 〈1, PΨ〉+

〈

PΨ, log
PΨ

Q

〉

︸ ︷︷ ︸

=: J(P,Q)

, (3.3)

where R(z) ∈ C is any continuous function defined on T, not necessarily positive,
which fulfills the interpolation conditions (3.1) and (3.2).

As for the dual we will show the following also very central theorem, which will
be the key in proving Theorem 3.2.

Theorem 3.3. The dual problem (D) is a convex optimization problem and has
a solution (P̂ , Q̂) where Q̂ is an interior point, that is Q̂ ∈ Q+. Any corresponding
spectral density of the form ΨP̂ Q̂−1 fulfills the interpolation conditions (3.1). If in
addition P̂ ∈ Q0

+ also the interpolation conditions (3.2) are satisfied. Moreover, if

(P̂ , Q̂) are coprime, they are unique.
Next we shall prove the main theorems.
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Proof of Theorem 3.2 First we form the Lagrangian

L(P,Q,Φ)

:= 〈Ψ, log Ψ− log Φ〉 −
n∑

k=0

qk(rk − 〈Hk,Φ〉) +
m∑

l=1

pl(cl − 〈GlΨ, log Φ〉),

= −qT r + pT c+

〈
n∑

k=0

qkHk,Φ

〉

−

〈
m∑

l=1

plGl + 1,Ψ log Φ

〉

,

= −〈Q,R〉+ 〈P, logR〉+ 〈Q,Φ〉 − 〈PΨ, log Φ〉 ,

where we have defined

P := 1 +
p1

2
(G1 +G∗

1) + · · ·+
pm

2
(Gm +G∗

m),

Q := q0 +
q1
2

(H1 +H∗
1 ) + · · ·+

qn
2

(Hn +H∗
n),

and, R as any function, not necessarily positive, on the circle, which fulfills the inter-
polation conditions (3.1) and (3.2). Here pk and qk are complex numbers except q0
which is real.

The dual optimization problem then is

(D) min
(P,Q)∈Q0

+
×Q+

− inf
Φ∈C+

L(P,Q,Φ). (3.4)

We get additional conditions on P and Q, by noting where the dual functional attains
an infinite value. Firstly, Q(z) ≥ 0 for all z ∈ T since otherwise the term 〈Q,Φ〉 can
be arbitrary large. Secondly, also P (z) ≥ 0 for z ∈ T since otherwise −〈PΨ, log Φ〉
can be made arbitrarily large. These are all the requirements1.

Next we will show that any stationary point of the map Φ 7→ L(P,Q,Φ) fulfills
the complexity constraint Φ = ΨP̂ Q̂−1. Consider any feasible change of Φ:

δL(P,Q,Φ; δΦ) := lim
ε→0

1

ε

(

L(P,Q,Φ + εδΦ)− L(P,Q,Φ)
)

,

= 〈Q, δΦ〉 − lim
ε→0

1

ε

〈

PΨ, log
Φ + εδΦ

Φ
︸ ︷︷ ︸

=ε δΦ
Φ

+h.o.t.

〉

,

=

〈

δΦ, Q−
PΨ

Φ

〉

.

Since we allow for all possible changes, any stationary point must satisfy the com-
plexity constrain Φ = ΨP̂ Q̂−1. Evaluating the Lagrangian in the stationary point we
have

L(P,Q,
PΨ

Q
) = −〈Q,R〉+ 〈P, logR〉+

〈

Q,
PΨ

Q

〉

−

〈

PΨ, log
PΦ

Q

〉

,

= −J(P,Q),

1One might believe that as for Q we also need to require that P ≤ 0 since log Φ can be made
arbitrarily large. However, since for any fix P > 0 and Q > 0 the linear term 〈Q, Φ〉 will dominate
the logarithmic term − log Φ for large |Φ|, this is in fact not the case.
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meaning that the dual problem in the Lagrangian relaxation is (D) in (3.4).
Now, due to the definition of Xnm in (2.8), there exists at least one solution of

the form ΨP̂ Q̂−1 with P̂ ∈ Q0
+ and Q̂ ∈ Q+. Since the spectral Kullback-Leibler

discrepancy is jointly convex we have that

L(P̂ , Q̂, Φ̂) ≤ L(P̂ , Q̂,Φ), ∀ Φ ∈ C+. (3.5)

However, for all Φ that fulfill the interpolation conditions (3.1) and (3.2), we have
that

L(·, ·,Φ) = S(Ψ,Φ). (3.6)

In particular Φ̂, again due to Theorem 3.3, fulfills the interpolation conditions. There-
fore, combining (3.5) and (3.6) we have that

S(Ψ, Φ̂) ≤ S(Ψ,Φ), ∀ Φ ∈ C+ satisfying (3.1) and (3.2),

verifying the optimality of Φ̂. Appealing to Theorem 3.3 the solution is unique when-
ever P̂ and Q̂ are coprime. This concludes the proof of Theorem 3.2.

Plugging that solution into the dual problem we get the dual D in (3.4). Next we
will turn to the quite involved proof of Theorem 3.3. The proof is a fairly straightfor-
ward generalization of the corresponding proofs in [9, 11, 15].

Proof of Theorem 3.3 First we prove that the functional J(P,Q) is proper and
bounded from below, that is, that inverse images of compact sets are compact in

Q
0

+×Q+. To this end, suppose that (p(k), q(k)) is a sequence in J−1((−∞, µ]). To show

that J−1((−∞, µ]) is compact it suffices to show that (p(k), q(k)) has a subsequence
that converges to a point in J−1((−∞, µ]).

First we show that Q
0

+ is compact. Clearly it is a closed subset of R
N . We can

factorize P (z) = λσ(z)σ∗(z) where σ(z) ∈ Sn and p0 = λ(1 + σ2
1 + · · ·+ σ2

n). Clearly,
the coefficients of σ(z) are bounded and since p0 = 1 also λ is bounded. Thus, also pk

for k = 1, 2, . . . , n are bounded which implies that Q
0

+ is bounded and hence compact.

The compactness of Q
0

+ implies that p(k) has a convergent subsequence.

As for q(k) we can factor out the constant, Q(k)(z) = q
(k)
0 Q̃(k)(z) where q̃(k) ∈ Q

0

+.

Since Q
0

+ is compact it suffices to show that q
(k)
0 has a convergent subsequence. Now

we can write the dual functional in (3.3) as

J(P (k), Q(k)) =: c
(k)
1 q

(k)
0 − c

(k)
2 log q

(k)
0 − c

(k)
3 , (3.7)

where

c
(k)
1 =

〈

Q̃(k), R
〉

,

c
(k)
2 =

〈

P (k)Ψ, 1
〉

,

c
(k)
3 =

〈

P (k), logR
〉

+
〈

1, P (k)Ψ
〉

−

〈

P (k)Ψ, log
P (k)Ψ

Q̃(k)

〉

.

Clearly, since P (k) and Q̃(k) belong to Q
0

+ which is compact, c
(k)
1 and c

(k)
2 are positive

and bounded away from positive infinity. Moreover, c
(k)
3 is bounded away from plus

and minus infinity. Now, if q
(k)
0 would tend to 0 that second term in (3.7) would tend
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to infinity and not stay inside J−1((−∞, µ]). Likewise, if q
(k)
0 would tend to positive

infinity, the first term of (3.7) would tend to infinity. Thus we conclude that q
(k)
0 has

a convergent subsequence and that J−1((−∞, µ]) is compact.
Since J is proper and defined on a closed, convex domain it attains a minimal

point (P̂ , Q̂) there. Next we will show that Q̂ is an interior point. We shall proceed
as in [11]. First consider the directional derivative of J(P,Q) in any feasible direction
{

δP : P + δP ∈ Q
0

+

}

and
{
δQ : Q+ δQ ∈ Q+

}
:

δJ(P,Q; δP, δQ)

:= lim
ε→0

1

ε

(

J(P + εδP,Q+ εδQ)− J(P,Q)
)

,

= lim
ε→0

1

ε

(

〈εδQ,R〉 − 〈εδP, logR〉 − 〈1, εδPΨ〉

+

〈

εδPΨ, log
(P + εδP )Ψ

Q+ εδQ

〉

+

〈

PΨ, log
P + εδP

P

〉

−

〈

PΨ, log
Q+ εδQ

Q

〉)

,

= 〈δQ,R〉 − 〈δP, logR〉 − 〈δP,Ψ〉+

〈

δP,Ψ log
PΨ

Q

〉

+

〈

PΨ,
δP

P

〉

−

〈

PΨ,
δQ

Q

〉

,

=

〈

δQ,R−
PΨ

Q

〉

−

〈

δP, logR−Ψ log
PΨ

Q

〉

. (3.8)

For the moment, we will only study variations in Q(z). Let q ∈ Q+ and q ∈ ∂Q+

be arbitrary. Then Q(z) is positive on the unit circle while Q(z) is nonnegative and
equal to 0 for at least one θ0 ∈ [−π, π]. Define qλ := q + λ(q − q) for λ ∈ (0, 1] where
q corresponds to Q(z). Then also Qλ(z) is positive on the unit circle. Consider the
directional derivative in (P,Qλ) in the direction δQ = Q−Q and keeping P constant:

δJ(P,Qλ; 0, Q−Q) =

〈

Q−Q,R−
PΨ

Qλ

〉

= wT (q − q)−

〈

PΨ,
Q−Q

Qλ

〉

. (3.9)

Now, note that

d

dλ

Q−Q

Qλ

= −
Q−Q

Q2
λ

dQλ

dλ
=

(
Q−Q

Qλ

)2

≥ 0,

and hence the integrand of the second term of (3.9) is a monotonically nondecreasing
function of λ for all z ∈ T. Thus the integrand tends pointwise on the unit circle to
(Q − Q)/Q as λ → 0. Since the {(Q − Q)/Qλ}λ is a Cauchy sequence in L1(T) it
converges almost everywhere to (Q − Q)/Q. However, since (Q − Q)/Q has at least
one pole on the unit circle it is not summable and

−

〈

PΨ,
Q−Q

Qλ

〉

→∞, λ→ 0.

Consequently, δJ(P,Qλ; 0, Q − Q) → ∞ as λ → 0 for all q ∈ Q+ and q ∈ ∂Q+.
Hence, by [29, Lemma 26.2] J is an essentially smooth functional of Q and by [29,
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Theorem 26.3] it is essentially strictly convex with respect to Q. Thus we have proven

that there exists a minimizer (P̂ , Q̂) ∈ Q
0

+ ×Q+.

Since Q̂ is an interior point the stationarity condition must be satisfied there.
Taking δQ = Hk +H∗

k and δP = 0 in (3.8) yields the stationarity condition

rk = 〈Hk, R〉 = 〈Hk,Φ〉 k = 0, . . . , n.

If in addition P̂ is an interior point, and thus a stationary point, (3.8) also yields

cl = 〈Gl, logR〉 = 〈Gl,Ψ log Φ〉 l = 1, . . . ,m.

We need to show that the optimal point is unique whenever P̂ and Q̂ are coprime.
Consider the second variation:

δ2J(P,Q; δP, δQ)

:= lim
ε→0

1

ε
(δJ(P + εδP,Q+ εδQ; δP, δQ)− J(P,Q; δP, δQ)),

= lim
ε→0

1

ε

(〈

δQ,R−
(P + εδP )Ψ

Q+ εδQ

〉

−

〈

δP, logR−Ψ log
(P + εδP )Ψ

Q+ εδQ

〉

−

〈

δQ,R−
PΨ

Q

〉

+

〈

δP, logR−Ψ log
PΨ

Q

〉)

,

= lim
ε→0

1

ε

(〈

δQ,
Q(P + εδP )Ψ− (Q+ εδQ)PΨ

(Q+ εδQ)Q

〉

+

〈

δP,Ψ(log
P + εδP

P
− log

Q+ εδQ

Q
)

〉)

,

=

〈

δQ,
PδQΨ− δPQΨ

Q2

〉

+

〈

δP,Ψ

(
δP

P
−
δQ

Q

)〉

,

=

〈
Ψ

PQ2
, (δPQ− PδQ)2

〉

≥ 0.

Therefore, the dual functional J is convex. The second variation is zero only when
PδQ− δPQ, that is,

P

Q
=
δP

δQ
.

However, this is impossible if P̂ and Q̂ are coprime, since p0 ≡ 1 implies that δp0 = 0.
Thus, J is strictly convex at (P̂ , Q̂) if they are coprime, and the optimal point is
indeed unique. That concludes the proof of Theorem 3.3.

The statement of Problem 3.1 might appear intractable since, as stated in Re-
mark 2.1, there is no available test for checking whether a point (r, c) belongs to
Xnm. The benefit of this formulation is the direct parameterization of ARMA mod-
els, on which we will elaborate more in the next section. Also, seen as an ARMA
estimator and considering the asymptotical statistical properties of the parameters,
the case when (r̂, ĉ) /∈ Xnm can easily be taken care of. In fact, we can take
(r̂N , ĉN ) = (r̂N−1, ĉN−1) whenever the N th estimate falls outside Xnm and the initial
estimate (r̂0, ĉ0) arbitrary in Xnm. This will not affect the asymptotic behavior.

Yet, as a practical procedure in ARMA estimation and robust control, this is
indeed an issue. Following [14, 15] we will study a regularized dual optimization
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problem, where we introduce a barrier-like term which will force the optimal point
into the interior of the feasible region, that is, also with respect to the numerator
pseudo-polynomial. More precisely, consider the problem

(Dλ) min
(P,Q)∈Q

0

+×Q+

J(P,Q)− λ 〈1, logP 〉 , (3.10)

where λ > 0. Repeating the arguments in the proof of Theorem 3.3 one can readily
show that the additional term, −λ 〈1, logP 〉 is functional, which is proper and bounded
from above, and whose derivative tends to negative infinity when the P tend to the
boundary of Q0

+. Therefore the functional will still be proper and bounded from above
so there exist a solution. Also, a parallel discussion with respect to P rules out the
possibility to have a boundary solution. The first order variation (3.8) now becomes

δJ(P,Q; δP, δQ) =

〈

δQ,R−
PΨ

Q

〉

+

〈

δP, logR−Ψ log
PΨ

Q
−
λ

P

〉

.

At the stationary point we will therefore not quite match the cepstral estimate, but
rather the modified estimate:

cl = 〈Gl,Ψ log Φ〉 − λ

〈

1,
1

P

〉

l = 1, . . . ,m. (3.11)

In fact, we have the following result.
Theorem 3.4. Let (r, c) ∈ Rn × C

n. Then the regularized dual problem (Dλ)
is a convex optimization problem and has an interior point solution (P̂ , Q̂) ∈ Q0

+ ×

Q+. Any corresponding spectral density of the form ΨP̂ Q̂−1 fulfills the interpolation
conditions (3.1) and (3.11).

As for the special case studied in [15], we recover the original problem with λ = 0.
When λ → ∞ the regularization term tend to infinity unless P → 1. Therefore, as
argued in [15], the maximum entropy solution is recovered when λ =∞. These prop-
erties make λ a natural choice for deformation parameter in a numerical continuation
method, see [1], and the algorithm of [15] is based on this observation.

Remark 3.5. The theorems of this section are generalizations of the results in
[10, 20]. In fact, taking Ψ = 1 and G as the standard basis yields Theorem 5.1 of [10]
while taking m = 0, that is no cepstral interpolation, yields Theorem 5 of [20].

4. A Family of Global Coordinatizations of P∗
n. In this section we shall

show that the normalized generalized prefiltered covariances and generalized pre-
filtered cepstral coefficients provide a coordinatization of stable miniphase real ra-
tional functions of fixed degree for each choice of prefilter and each choice of basis
functions. Hence we get a family of coordinatizations of P∗

n with the standard co-
variances and correlation coefficients as one member. By spectral factorization it is
also a coordinatization of positive real functions of bounded degree. Note that in this
section we only treat the real case rather than the complex case in Section 3. Thereby,
all functions in C+ are real, the matrices (A,B) are real making G ∈ G real, and all
interpolation data (r, c) is real.

We shall treat the normalized case, that is when a, b, σ ∈ Sn and where we
normalize the covariance-type interpolation conditions to r = r/r0. This will reduce
the dimension of the problem by one and simplify the overall analysis somewhat. It
can be perceived as a counterpart of analytically reducing the innovation variance in
Maximum Likelihood ARMA estimation. Also see the discussion in [10, p. 29].



12 A. BLOMQVIST

Since all functions are scalar in this section we write

〈G,Φ〉 =






〈G0,Φ〉
...

〈Gn,Φ〉




 ,

which is a slight abuse of notation. However, it simplifies the presentation consider-
ably.

Theorem 4.1. Let Ψ ∈ C+ and G ∈ G be given. The corresponding generalized
prefiltered normalized covariances r1, r2, . . . , rn and the generalized prefiltered cepstral
coefficients c1, c2, . . . , cn provide a smooth coordinatization of P∗

n.
The theorem states that the map

F : P∗
n → Xn,

(a, σ) 7→ (r, c),
(4.1)

where r and c are the generalized filtered normalized covariances and cepstral coeffi-
cients in (2.6) and (2.7), respectively, is a diffeomorphism. The normalization means
that r0 = 1 and we have taken r = (r1, . . . , rn). A direct consequence of the theorem
is

Corollary 4.2. The map F is a homeomorphism and Xn has the same topo-
logical properties as P∗

n.
Remark 4.3. Theorem 4.1 is a generalization of [10, Theorem 3.1] which is

recovered by taking Ψ ≡ 1 and G as the standard basis. Our proof has the same
structure as that of [10] but introducing Ψ render some technical difficulties.

The rest of this section is devoted to the proof of Theorem 4.1. One might believe
that F is a diffeomorphism as a direct consequence of some global inverse function
theorem, such as Hadamard’s global inverse function theorem [21]. However, the
rather complicated topology of P∗

n and Xn, see Section 2, make such global theorems
not applicable. Instead, we will perform a global analysis of two foliations of the
manifold Pn in order to prove that F is a local diffeomorphism at each point of P∗

n.
In fact we will prove:

Theorem 4.4. The map F if a local diffeomorphism on P∗
n.

In order to prove Theorem 4.4, we will study two sets of submanifolds of Pn. In
fact, they both form n-dimensional foliations of Pn. For k = 0, . . . , n, define the maps

ξk : Pn → R,

(a, σ) 7→

〈

Gk,Ψ
σσ∗

aa∗

〉

.
(4.2)

Normalization with the zeroth generalized prefiltered covariance gives η : Pn → R
n

with components ηk = ξk/ξ0, k = 1 . . . n. The normalization makes η a map to
the generalized prefiltered correlation coefficients. We have that Rn = η(Pn), where
Rn ⊂ R

n with the previously described normalization. Given r ∈ Rn define the first
set of submanifolds as the subsets of Pn matching r, that is,

Pn(r) := η−1(r).

As for the second foliation, we define the map ζ : Pn → R
n to the cepstral coefficients:

ζk : Pn → R,

(a, σ) 7→

〈

Gk,Ψ log
σσ∗

aa∗

〉

,
(4.3)
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for k = 1 . . . n. The set of feasible cepstra is given by Cn = ζ(Pn). Now, given c ∈ Cn,
define the second set of submanifolds as the subsets of Pn with cepstra c, that is,

Pn(c) := ζ−1(c).

First we will state and prove a preliminary result is regarding a linear map. Let
φ ∈ Sn. Consider the linear map from the vector space of polynomials of degree at
most n− 1:

ϑφ : Ln−1 → U ⊂ R
n,

u 7→

〈

Ḡ,
T (φ)u

φφ∗

〉

.

The map is invertible, generalizing [10, Lemma 4.1]. However, we can not directly
generalize the proof since 〈Ψ, T (φ)u/(φφ∗)〉 is, in general, nonzero for nonconstant Ψ.

Lemma 4.5. The linear map ϑφ is a bijection.
Proof. Start with injectivity by supposing that ϑφu = 0. Then

〈

Gk,Ψ
T (φ)u

φφ∗

〉

= 0, k = 1, 2, . . . n.

By symmetry this also holds for k = −1,−2, · · · − n. Therefore

〈

Gk

ττ∗

φφ∗
,
φφ∗

ττ∗
Ψ
T (φ)u

φφ∗

〉

= 0, k = ±1,±2, · · · ± n.

Now let Ĝ ∈ G be a set of basis functions corresponding to (Â, B̂) such that φ =
det(I − Âz). Since 〈1, Gk〉 =< 1, Ĝk >= 0 we then have that

〈

Ĝk,
φφ∗

ττ∗
Ψ
T (φ)u

φφ∗

〉

= 0, k = ±1,±2, · · · ± n.

Now, since

T (φ)u

φφ∗
=
u

φ
+
u∗

φ∗
,

with u/φ strictly proper, taking an appropriate linear combination we have

〈
T (φ)u

φφ∗
,
φφ∗

ττ∗
Ψ
T (φ)u

φφ∗

〉

=

∥
∥
∥
∥

T (φ)u

φτ
w

∥
∥
∥
∥

2

= 0,

where w is the spectral factor of Ψ. Hence T (φ)u = 0 and by the invertibility of T ,
see for instance [13, Lemma 2.1], we also have u = 0. Hence ϑφ is injective. Being
a linear map between vector spaces of the same real dimension, it is also surjective,
and hence bijective.

Now, we can prove the first major result regarding the submanifolds of Pn.
Proposition 4.6. The manifolds Pn(c) are smooth n-manifolds and their tan-

gent space T(a,σ)Pn(c) consists of those (u, v) ∈ Ln−1 × Ln−1 for which

〈

Gk,Ψ
T (σ)v

σσ∗

〉

=

〈

Gk,Ψ
T (a)u

aa∗

〉

, (4.4)
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for k = 1 . . . n. Moreover the connected components of the n-manifolds {Pn(c) : c ∈
Cn} form the leaves of a foliation of Pn.

Proof. The tangent vector of Pn(c) at (a, σ), T(a,σ)Pn(c) are the vectors in the
kernel of the Jacobian of ζ at (a, σ). For u, v ∈ Ln−1:

D(u,v)ζ(a, σ) = lim
ε→0

1

ε
(ζ(a+ εu, σ + εv)− ζ(a, σ)) .

Applying the calculation

lim
ε→0

1

ε
(log(σ + εv)− log σ) = lim

ε→0

1

ε
log
(

1 + ε
v

σ

)

=
v

σ
,

we get that

D(u,v)ζ(a, σ) =

〈

Ḡ,Ψ

(
v

σ
+
v∗

σ∗
−
u

a
−
u∗

a∗

)〉

,

=

〈

Ḡ,Ψ

(
T (σ)v

σσ∗
−
T (a)u

aa∗

)〉

. (4.5)

Thus we have proven that the tangent space is given by (4.4). Since both the maps
ϑa and ϑσ are bijective linear maps by Lemma 4.5, the tangent space is of dimension
n. Hence the rank of Jac(ζ)|(a,σ) is then full for all feasible (a, σ). By the implicit
function theorem Pn(c) are then smooth n-manifolds.

Since Jac(ζ)|(a,σ) is full rank, ζ is a submersion, and hence the connected com-
ponents of the n-manifolds {Pn(c) : c ∈ Cn} form the leaves of a foliation of Pn.

Now we have a parallel statement for Pn(r), which we will prove in a similar
fashion. Here, the normalization makes the analysis somewhat more involved but the
generalization from [10] is more direct.

Proposition 4.7. The manifolds Pn(r) are smooth n-manifolds and their tan-
gent space T(a,σ)Pn(r) consists of those (u, v) ∈ Ln−1 × Ln−1 for which

〈

Gk,Ψ
T (σ)v

aa∗

〉

=

〈

Gk,Ψ
σσ∗

aa∗
T (a)u

aa∗

〉

+ ϕ(a, σ, u, v)

〈

Gk,Ψ
σσ∗

aa∗

〉

, (4.6)

for k = 0 . . . n and where

ϕ(a, σ, u, v) := D(u,v) log ξ0(a, σ) =
D(u,v)ξ0(a, σ)

ξ0(a, σ)
.

Moreover the connected components of the n-manifolds {Pn(r) : r ∈ Rn} form the
leaves of a foliation of Pn.

Proof. Again we compute the directional derivative of η at (a, σ) ∈ Pn in the
direction (u, v) ∈ Ln−1 × Ln−1. We have

D(u,v)ηk(a, σ) =
1

ξ0(a, σ)
D(u,v)ξk(a, σ)−

ξk(a, σ)

ξ0(a, σ)2
D(u,v)ξ0(a, σ), (4.7)

where

D(u,v)ξk(a, σ) =

〈

Gk,Ψ

(
T (σ)v

aa∗
−
σσ∗

aa∗
T (a)u

aa∗

)〉

. (4.8)
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Multiplying (4.7) with ξ0(a, σ) = r0 > 0 we get the the kernel of Jac(η)|(a,σ) to consist
of all (u, v) ∈ Ln × Ln such that

〈

Gk,Ψ
T (σ)v

aa∗

〉

=

〈

Gk,Ψ
σσ∗

aa∗
T (σ)v

aa∗

〉

+ ϕ(a, σ, u, v)

〈

Gk,Ψ
σσ∗

aa∗

〉

, (4.9)

for k = 1 . . . n. Since η0 = ξ0/ξ0 = 1 (4.9) trivially also holds for k = 0. This
establishes (4.6). Next we will prove that the tangent space is n-dimensional for all
(a, σ) ∈ Pn. Let p be a polynomial of degree n defined by p(z) := v(z)+ϕa(z). Then
the tangent equations can be written as

Πp = Υu,

where the linear operators Π : Ln → R
n+1 and Υ : Ln−1 → R

n+1 are given by

Πp :=

〈

G,Ψ
σσ∗

aa∗
T (σ)p

aa∗

〉

and Υu :=

〈

G,Ψ
T (σ)u

aa∗

〉

.

To see this, note that T (a)a/(aa∗) = 2. Now, Π is in fact injective. Assume that
Πp = 0. By changing basis functions from G to some G̃ ∈ G associated with (Ã, B̃)
such that det(I − Ãz) = a(z) we have that, for some nonsingular U , that

Πp = U

〈

G̃,
aa∗

ττ∗
Ψ
σσ∗

aa∗
T (σ)p

aa∗

〉

= 0,

⇒

〈

G̃k,Ψ
σσ∗

ττ∗
T (σ)p

aa∗

〉

= 0, k = 0,±1, · · · ± n.

Now, taking appropriate linear combinations we have that

0 =

〈
T (σ)p

aa∗
,Ψ

σσ∗

ττ∗
T (σ)p

aa∗

〉

=

∥
∥
∥
∥
w
σT (σ)p

aτ

∥
∥
∥
∥

2

,

where w is the spectral factor of Ψ. Hence T (σ)p = 0, implying that p = 0. Thus Π
is injective. Then we have p = Π−1Υv.

Since the leading coefficient of p is ϕ/2, this defines an affine map L : Ln−1 →
Ln−1 sending u to v := Π−1Υu − ϕa/2. Then T(a,σ)Pn(r) consists of those (u, v) ∈
Ln−1 × Ln−1 such that v = Lu which hence is n dimensional. Therefore the rank of
Jac(η)|(a,σ) is full for all (a, σ) ∈ Pn so that Pn(r) are smooth n-manifolds by the
implicit function theorem.

As in the proof of Proposition 4.6, η is a submersion and the claim follows.
Next we shall study the intersection of the tangent spaces T(a,σ)Pn(c) and T(a,σ)Pn(r).

Whenever the intersection is a unique point, the submanifolds Pn(c) and Pn(r) are
complementary and provide a coordinatization.

Theorem 4.8. The tangent spaces T(a,σ)Pn(r) and T(a,σ)Pn(c) are complemen-
tary in P∗

n. The dimension of Θ := T(a,σ)Pn(r) ∩ T(a,σ)Pn(c) is the degree of the
greatest common divisor.

Proof. First consider the equations for T(a,σ)Pn(c):
〈

Gk,Ψ
T (σ)v

σσ∗

〉

=

〈

Gk,Ψ
T (a)u

aa∗

〉

, k = ±1, · · · ± n, (4.10)

which can be written
〈

Gk

ττ∗

σσ∗
,
σσ∗

ττ∗
Ψ
T (σ)v

σσ∗

〉

=

〈

Gk

ττ∗

σσ∗
,
σσ∗

ττ∗
Ψ
T (a)u

aa∗

〉

, k = ±1, · · · ± n.
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Now let Ĝ ∈ G be a set of basis functions corresponding to (Â, B̂) such that σ =
det(I − Âz). Since 〈1, Gk〉 =< 1, Ĝk >= 0 we then have that

〈

Ĝk,
σσ∗

ττ∗
Ψ
T (σ)v

σσ∗

〉

=

〈

Ĝk,
σσ∗

ττ∗
Ψ
T (a)u

aa∗

〉

, k = ±1, · · · ± n.

Now, since

T (σ)v

σσ∗
=
v

σ
+
v∗

σ∗
,

with v/σ strictly proper, taking an appropriate linear combination we have

〈
T (σ)v

σσ∗
,
σσ∗

ττ∗
Ψ
T (σ)v

σσ∗

〉

=

〈
T (σ)v

σσ∗
,
σσ∗

ττ∗
Ψ
T (a)u

aa∗

〉

,

that is
〈
T (σ)v

ττ∗
,Ψ

T (σ)v

σσ∗

〉

=

〈
T (σ)v

ττ∗
,Ψ

T (a)u

aa∗

〉

.

Taking linear combinations of (4.10) corresponding to T (σ)v/(ττ ∗) yields

〈
T (σ)v

ττ∗
,Ψ

T (σ)v

σσ∗

〉

=

〈
T (σ)v

ττ∗
,Ψ

T (a)u

aa∗

〉

+

〈

1,
T (σ)v

ττ∗

〉〈

Ψ,
T (σ)v

σσ∗
−
T (a)u

aa∗

〉

.

Since T (σ)v/(ττ∗) is a density for nonzero v, combining the expressions we have

〈

Ψ,
T (σ)v

σσ∗

〉

=

〈

Ψ,
T (a)u

aa∗

〉

,

on T(a,σ)Pn(c). Hence, we have that

〈

Gk,Ψ
T (σ)v

σσ∗

〉

=

〈

Gk,Ψ
T (a)u

aa∗

〉

,

for k = 0,±1, · · · ± n on T(a,σ)Pn(c). The equations describing T(a,σ)Pn(r) are

〈

Gk,Ψ
T (σ)v

aa∗

〉

=

〈

Gk,Ψ
σσ∗

aa∗
T (σ)v

aa∗

〉

+ ϕ(a, σ, u, v)

〈

Gk,Ψ
σσ∗

aa∗

〉

,

for k = 0,±1, · · · ± n. Now, taking appropriate linear combinations we have that
〈

Ψ,
T (σ)v

ττ∗

〉

=

〈

Ψ,
σσ∗

ττ∗
T (a)u

aa∗

〉

,

〈

Ψ,
T (σ)v

ττ∗

〉

=

〈

Ψ,
σσ∗

ττ∗
T (a)u

aa∗

〉

+ ϕ

〈

Ψ,
σσ∗

ττ∗

〉

.

We conclude that ϕ = 0 on Θ.
Thus on Θ we have

〈

Gk,Ψ
T (σ)v

σσ∗

〉

=

〈

Gk,Ψ
T (a)u

aa∗

〉

, k = 0,±1, · · · ± n,

〈

Gk,Ψ
T (σ)v

aa∗

〉

=

〈

Gk,Ψ
σσ∗

aa∗
T (σ)v

aa∗

〉

, k = 0,±1, · · · ± n.



SIMULTANEOUS CEPSTRAL AND COVARIANCE MATCHING 17

Again taking appropriate linear combinations we have that

〈
T (σ)v

ττ∗
,Ψ

T (σ)v

σσ∗

〉

=

〈
T (σ)v

ττ∗
,Ψ

T (a)u

aa∗

〉

,

〈
T (a)u

ττ∗
,Ψ

T (σ)v

aa∗

〉

=

〈
T (a)u

ττ∗
,Ψ

σσ∗

aa∗
T (a)u

aa∗

〉

.

Again letting w be the spectral factor of Ψ and defining

f1 =
T (σ)v

τσ∗
w and f2 =

T (a)uσ

τaa∗
w,

the equations can be written ‖f1‖
2 = 〈f1, f2〉 and 〈f1, f2〉 = ‖f2‖

2. By the parallelo-
gram law we then have

‖f1 − f2‖ = ‖f1‖
2 + ‖f2‖

2 − 2 〈f1, f2〉 = 0.

Hence f1 = f2 on the unit circle implying that

v

σ
+
v∗

σ∗
=
T (σ)v

σσ∗
=
T (a)u

aa∗
=
u

a
+
u∗

a∗
,

on the unit circle. Being real polynomials this need to hold also for the positive real
part. Moreover, it clearly holds for u = v = 0 so now consider the nontrivial case.
We can write the equation as

v

u
=
σ

a
.

This has no solution if (a, σ) are coprime, which establishes that T(a,σ)Pn(r) and
T(a,σ)Pn(c) are complementary in P∗

n. On the other hand, if they have a common
factor of degree d, then u and v can be any polynomials of degree n − 1 with a
common factor of degree at least d− 1, hence defining a vector space of dimension d
establishing the rest of the claim.

We summarize with the proofs of the main theorems.
Proof of Theorem 4.4 Since T(a,σ)Pn(r) and T(a,σ)Pn(c) are complementary in P∗

n

by Theorem 4.8, the kernels of Jac(η)|(a,σ) and Jac(ζ)|(a,σ) are complementary at any
(a, σ) ∈ P∗

n. Hence the Jacobian of the joint map F is full rank. By the implicit
function theorem F is a local diffeomorphism on P∗

n.
Proof of Theorem 4.1 First we prove that the map F is a bijection as a consequence

of Theorem 3.2 in the previous section. Take H = G. Let Q(z) = λ1a(z)a
∗(z) and

P (z) = λ2σ(z)σ∗(z) where λ1 and λ2 are taken so that p0 = 1 and r0 = 1. Since P
and Q are coprime F is a bijection by Theorem 3.2. Together with Theorem 4.4 this
implies that F is a diffeomorphism.

5. Simultaneously Solving the Cepstral and Covariance Equations. In
this section we will study the scalar problem also allowing for the cepstral-type condi-
tions. Since we have generalized the theory of [10], the numerical algorithms of [14, 15]
are no longer applicable. Here we will construct a homotopy with respect to the co-
variances and cepstral interpolation data from some initial values to some desired
values. By choosing the initial values so that the covariance-type conditions are sat-
isfied, we can construct a homotopy which lies in the connected sub-manifold Pn(r).
Thereby, we can solve the inverse problem of going from the interpolation data to a
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model by solving a set of ordinary differential equations. The well-posedness shown
in Section 4 is critical in motivating the here proposed algorithm.

We shall consider the case of m = n being the default. Also, the smoothness
properties in Section 4 were derived for this case. However, a generalization to the
arbitrary (n,m) seems within reach. Moreover we will assume that the prefilter density
is rational of degree n. In this section we shall index the polynomial coefficients in
decreasing powers of the variable.

Assume that the prefilter density Ψ is given by

Ψ =
ââ∗

σ̂σ̂∗
,

where â and σ̂ are of order n. Typically, for ARMA estimation, we will take (â, σ̂)
as a preliminary estimate of the ARMA model. We also choose some basis function
G̃ ∈ G. The map ξ, defined by (4.2), then has the components

ξk : Pn → R,

(a, σ) 7→

〈

G̃k,
ââ∗

σ̂σ̂∗

σσ∗

aa∗

〉

,

for k = 0 . . . n. The normalized coefficients are as before given by ηk = ξk/ξ0 for
k = 0 . . . n. Likewise, for the cepstral-type equations, we have the map ζ defined in
(4.3) with components

ζk : Pn → R,

(a, σ) 7→

〈

G̃k,
ââ∗

σ̂σ̂∗
log

σσ∗

aa∗

〉

,

for k = 1 . . . n. The map F is given by (4.1). Let r and c be some given data
normalized so that r0 = 1. As noted in Section 3, generic data might not belong to
Xn. To circumvent this issue we study some regularization of the problem. Here we
consider the regularization terms

sk(σ) :=

〈

G̃k,
ââ∗

σ̂σ̂∗

1

σσ∗

〉

, k = 1 . . .m,

for the corresponding cepstral equations.
We will consider a particular choice of basis function, namely orthonormal basis

functions G = (I − Az)−1B and so that det(I − Az) = σ̂(z) and another set of
orthonormal basis function G̃ = (I − Ãz)−1B̃ such that det(I − Ãz) = â(z). By a
trivial change of basis functions, see [2, 5] we can instead consider the simplified maps
with components

ξk(a, σ) =

〈

Gk,
σσ∗

aa∗

〉

,

ζk(a, σ) =

〈

Gk, log
σσ∗

aa∗

〉

,

sk(σ) =

〈

Gk,
1

σσ∗

〉

,

for k = 0, 1, . . . n.
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Remark 5.1. Another obvious choice of basis function is to take G̃ as the stan-
dard basis defined. This typically enable fast evaluation of the functions ξ and ζ as
well as their derivatives. However, it is our experience that the method presented here
yields better numerical scaling.

Since the manifold P∗
n, or equivalently Xn, is known to have n + 1 connected

components, see, for instance, [7, 30], we need to be somewhat careful in designing a
homotopy from a known solution to the desired solution. We will use the following
result proven by Byrnes and Lindquist:

Corollary 5.2. [13, Corollary 5.5] The submanifolds Pn(r) are connected.
Therefore, we wish to start in a point (a0, σ0) which fulfills the covariances type
conditions. Supposing that the prefilter density corresponds to a model, which is
close to the desired, a natural initial point is to take σ0 = σ̂. Then, to find an a0 such
that the covariance-type conditions hold, we can use the algorithm of [4]. Note that
in general this a0 6= â. Then we can construct a homotopy from F (a0, σ0) = (r, c0) to
the desired values F (a, σ) = (r, c) which stays in one component of P∗

n as

h : [0, 1]× Pn → U ⊂ R
2n,

(µ, a, σ) 7→ F (a, σ)− ε

[
0

s(σ)

]

− µ

[
r0
c

]

− (1− µ)

[
r0
c0

]

.
(5.1)

The initial point is given by h(0, a0, σ0) = 0 and the desired solution is given by the
nonlinear equation h(1, a, σ) = 0. We have a trajectory defined by

{(a, σ) ∈ Pn(r) : h(µ, a, σ) = 0, µ ∈ [0, 1]} .

Since Pn(r) is a subset of P∗
n, we have by Theorem 4.1 that F restricted to Pn(r) is

a diffeomorphism onto its image. Hence it has a full rank Jacobian there, and 0 is a
regular value of the homotopy h. Thus we will get a smooth curve from the initial
point to the solution. In particular we have no turning point, bifurcations, and the
curve is of finite length.

We define the initial value problem as in [1], by differentiating h with respect to
µ. Let x := (a, σ).

∂h

∂x

∂x

∂µ
+
∂h

∂µ
= 0.

Here

∂h

∂x
=
dF

dx
− ε

[
0 0

0
ds

dσ

]

,

so F being diffeomorphic implies that ∂h/∂x is full rank for all x for some ε > 0.
Hence we get the initial value problem as







dx

dµ
= −

(
∂h

∂x

)−1
∂h

∂µ
,

x(0) = 0.

(5.2)

To solve the initial value problem one can apply some predictor-corrector method, see
[1], or some other ordinary differential equation solver. For the predictor-corrector
method we have the Euler step as

v(µ, x) := −

(
∂h

∂x

)−1
dh

dµ
, (5.3)
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Algorithm 1. Cepstral- and Covariance Matching
Set a← aME , σ ← σ̂, and µ← 0
while µ < 1

begin Predictor step
Determine Euler direction v by (5.3)
Set dµ← c3(µ) ≤ 1− µ.
while x+ dµv /∈ P∗

n

Set dµ← dµ/2
end while

Set x← x+ dµv
end Predictor step
begin Corrector step

while max{hk(µ, x)} > c4(µ)
Determine Newton step v by (5.4)
Set dν ← 1
while x+ dνv /∈ P∗

n

Set dν ← dν/2
end while

Set x← x+ dνv
end while

end Corrector step
end while

and Newton steps as

xk+1 − xk = −

(
∂h

∂x

)−1

h(µ, x). (5.4)

Expressions for computing the partial derivatives are direct, see [2].
Algorithm 1 is a predictor-corrector algorithm for solving the cepstral and covari-

ance equations simultaneously. Here c3(µ) is some function of µ determining the step
size in the predictor step. With small increments we follow the trajectory closely,
but that increases the number of steps. How to choose c3(µ) is therefore a trade-off.
The function c4(µ) affects the accuracy in the corrector step, that is how close to the
trajectory we need to be before taking a new predictor step. The value c4(1) gives
the accuracy of the final solution. To test whether x ∈ P∗

n, we compute the Schur
parameters of a and σ and check whether they are less than one in modulus.

6. ARMA Estimation. Next we shall consider how the generalized simultane-
ous cepstral and covariance matching can be applied to ARMA estimation. As seen
from Example 1.1 in the introduction, simultaneously matching a direct estimate of
the covariances and cepstral coefficients is not expected to yield a statistically efficient
estimate. However, we observed that the estimator seemed to be efficient, or close
to efficient, when the MA zero was close to origin. Then, the covariances and the
cepstral coefficients were computed for data that was close to white noise. Here we
will explore this by trying to prefilter the data to make it close to white noise. This
is sometimes called whitening2.

2In particular one can interpret the Prediction Error Method, PEM, as whitening the data. By
feeding the data reversely through the current model estimate the prediction errors are obtained.
The PEM estimate is the minimizer of the sum of squared prediction errors.
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Consider Figure 6.1. Here {xt}
N
t=1 is the measured data in the same way as

in Example 1.1. Assume that we have a preliminary estimate of w(z), say w̃(z).
By choosing ψ(z) = w̃−1(z) the filtered data {yt}

N
t=1 will be closer to white noise

if the preliminary estimate were decent. Now, estimate the biased covariances and
cepstral coefficients of the filtered data. Given these, we formulate the Kullback-
Leibler approximation problem, see Problem 3.1, with Ψ = ψψ∗. From Theorem 3.2
we know that there is a unique solution of the form Φ = ΨP̂ Q̂−1. Since the prefilter
contributes multiplicatively with Ψ, we can ignore that factor and our estimate of the
ARMA model will be the stable, miniphase spectral factor of P̂ Q̂−1.

PSfrag replacements

white
noise

w(z)
{xt}

N
t=1

ψ(z)
{yt}

N
t=1

Fig. 6.1. The prefiltering for ARMA estimation.

We can iteratively change the prefilter ψ by using the new estimates of the model.
In Procedure 1 we propose one possible such scheme, which uses Algorithm 1. Being
iterative, it is not clear whether the procedure converges. However, we will not study
this issue in this paper.

Procedure 1. Prefiltered Cepstral-Covariance Matching,
CCM(f)
Set â← 1 and σ̂ ← 1
for k = 1, . . . , 5

Set ε← c5(k)
Set Ψ← ââ∗/(σ̂σ̂∗)
Estimate r and c from original data
Determine a and σ using Algorithm 1

end for

No matter how interesting, it is beyond the scope of this paper to include an
exhaustive statistical analysis of proposed CCM(f) estimator. However, we shall prove
one fairly immediate result, which ought to be a key result in any statistical analysis
of the estimator.

Theorem 6.1. Let Ψ = (ττ ∗)/(σσ∗) ∈ Q+ and G ∈ G such that det(I − Az) =
τ(z) be given. Also let a time series of length N generated from an ARMA process
with parameters Θ0 be given. Assume that some estimation procedure estimates the
generalized prefiltered covariances and cepstral coefficients Ξ such that

Ξ is AN
(
Ξ0, N

−1U
)
, U =

(
U1 U2

UT
2 U3

)

,

where Ξ0 are the parameters corresponding to Θ0. Then

Θ is AN(Θ0, N
−1W ),

where W is the covariance matrix

W =

[
∂F

∂Θ

]−1(
D 0
0 I

)(
U1 U2

UT
2 U3

)(
D 0
0 I

)T [
∂F

∂Θ

]−T
∣
∣
∣
∣
∣
Θ0

,
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where F is the map defined in (4.1) and D is given by

D := r−1
0








−r1/r0 1 0 · · · 0
−r2/r0 0 1 0

...
...

. . .

−rn/r0 0 0 1







. (6.1)

Proof. The Jacobian of the map mapping the generalized prefiltered covariances

to the normalized ditto, that is,
[
r0 r1 . . . rn

]T
7→
[
r1/r0 r2/r0 . . . rn/r0

]T
,

is given by (6.1). By Theorem 4.1 the map F has an everywhere invertible Jacobian.
Since F is a diffeomorphism and the diagonal elements of U are nonzero, so are the
diagonal elements of W . Hence the claim follows by Proposition 6.4.3 in [8].

The theorem tells us that the CCM(f) estimates inherit the statistical properties
from the estimates of the covariances and cepstral coefficients. The underlying reason
is of course the smoothness of the map F discussed in detail in Section 4. Thus, if we
can estimate the covariances and the cepstral coefficients statistically efficiently, then
we automatically have a statistically efficient estimate of the ARMA model. Also,
consistently estimated cepstral coefficients and covariences yield consistent estimates
of ARMA models.

The joint distribution of generalized prefiltered covariances and cepstral coeffi-
cients is unknown, also in the case of unfiltered coefficients with the standard basis.
Yet, Theorem 6.1 serves as a conceptual tool in understanding the following exam-
ple, where we will study the idea presented above for ARMA(n,n) models. This is
believed to be a generic example, in comparison to the overly simplified example in
the introduction with a simple real zero. However, we acknowledge that higher order
models are more useful in practice – not the least in term of numerical issues.

Example 6.2 (ARMA(n,n)). Consider Figure 6.1. First take the true model to
have poles in 0.5e±2i and zeros in 0.98e±i. The corresponding density is plotted in
Figure 6.2. Note that the zero close to the unit circle creates a frequency region with
low magnitude of the spectrum. This makes the identification harder. Also compare
to the case in Example 1.1 when the simple zero tended towards the circle.

Given a time series consisting of the measurements xt with sample lengths N =
200, 400, . . . , 12800 we try to identify the filter. We compare three estimators. As
reference we use the Maximum-Likelihood estimator implemented in armax in [24].
The estimator will be denote ML. The second estimator is the Cepstral-Covariance
Matching estimator without prefiltering and with the standard basis, as presented
in [10, 15], though computed by an implementation of Algorithm 1. More precisely,
we use the standard biased sample covariances. For estimation of the cepstral coeffi-
cients we first estimate long AR models of orders L = 10, 15, . . . , 40 for the different
sample sizes, respectively. The corresponding ARMA models are computed using an
implementation of Algorithm 1 with the default prefilter Ψ ≡ 1. We will call the
estimator CCM. The last estimator is based on Procedure 1 where we recursively
estimate new, generalized, covariances and cepstral coefficients. To estimate the gen-
eralized prefiltered covariances we apply the input-to-state framework and estimate
the state-covariance. We use the least-squares approach suggested in [19, p. 34] to
estimate a feasible estimate of the interpolation data matrix W ; see also the discus-
sion in [3]. For the generalized cepstrum, we again estimate long AR models of orders
L = 10, 15, . . . , 40. From the AR model we can directly compute the generalized
prefiltered cepstral coefficients.
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Fig. 6.2. The spectrum of the AR(2,2) process.

Table 6.1
The mean and standard deviation in the estimation of the ARMA parameters for N = 12800.

True ML CCM(f) CCM
Mean Std.dev. Mean Std.dev. Mean Std.dev.

a1 0.000 −0.000 0.010 0.000 0.009 0.009 0.013
a2 −0.250 −0.249 0.010 −0.250 0.010 −0.244 0.014
σ1 −1.070 −1.067 0.003 −1.065 0.004 −1.008 0.007
σ2 0.980 0.974 0.006 0.972 0.006 0.884 0.007

First we make a statistical comparison of the parameter estimate. Since the vari-
ance is asymptotical decoupled from estimating the other ARMA parameters, see for
instance [28], we will only compare the parameters

[
σ1 σ2 a1 a2

]
. In Table 6.1

the estimated means and variances of the parameter estimates for the different meth-
ods using a Monte Carlo simulation with 500 runs is given. We note that all methods
seem to be unbiased. Moreover, the variance for the CCM(f) estimator is approxi-
mately the same as for the ML estimator, which in turn is approximately efficient.
Meanwhile, the unfiltered estimator, CCM, does not seem to be efficient. Thus the
example indicates that the prefiltering seem to make the CCM method approximately
asymptotically efficient.

Another way of comparing the estimators is to compute some error measure of
each estimate and then by the Monte Carlo simulation estimate what the mean error is.
In Figures 6.3 and 6.4 the estimated prediction error and Kullback-Leibler discrepancy
relative to the true model are plotted as a function of the sample size. The prediction
errors are computed by feeding white Gaussian noise with 100 samples through the
filters and then estimating the prediction errors. The Kullback-Leibler discrepancy
used is S(Φtrue,Φest) where Φtrue and Φest are the normalized densities of the true
and estimated densities, respectively. We again note that, independent of comparison
method, the CCM(f) seem to have asymptotical error similar to ML while CCM’s
error seems larger. This highlights the reason for introducing the prefiltering.

Remark 6.3. An observation made in Example 1.1 is that the high order AR
based cepstral estimate seems to be asymptotically efficient for white noise. This ex-
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Fig. 6.3. The prediction error as a function of the sample length for the ARMA(2,2) model.
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Fig. 6.4. The Kullback-Leibler discrepancy as a function of the sample length for the
ARMA(2,2) model.

ample indicates that this might generalize to other ARMA models. Therefore it can
be in place to conjecture, that if the prefilter is the inverse of the true model, the
covariance and cepstral estimates are asymptotically efficient and hence so the corre-
sponding ARMA estimates by Theorem 6.1. Furthermore, the example indicates that
using a recursive estimation scheme for determining the prefilter might also constitute
an asymptotically efficient estimator.

7. Conclusions. We have generalized the cepstral-covariance coordinatization
of ARMA processes of Byrnes et al. in [10, 15] to include frequency weighting/prefilt-
ering. A simulation example indicates that this might yield an asymptotically efficient
estimator while maintaining the well-posedness of problem.

We have shown that the statistical properties ARMA parameters are inherited
from the covariances and cepstral coefficients. These depend on how the coefficients
are computed and is partly unknown; some results can be found in [16, 26]. This



SIMULTANEOUS CEPSTRAL AND COVARIANCE MATCHING 25

topic requires further attention.

We propose an algorithm which for a given prefilter computes the estimates uti-
lizes the algorithm in [4]. Thereby, instead of solving the convex optimization problem,
the set of nonlinear moment equations are considered. Similar problems occur else-
where, see for instance [12, 17], and the numerical aspects are not fully understood.

A procedure for iteratively estimating a suitable prefilter is used in the simulation
example. It serves the purpose of illustrating the prefiltering idea but is not robust
and reliable enough to be a practical algorithm.
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