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Satisfactory completion of this computer exercise gives two (2) bonus credits for this year’s
finals. The examination of the computer exercises is oral and written. Firstly the results
should be presented in a written report (use a word processor) and secondly each student
should be prepared to answer question about the exercise when it is handed back. Hand in
the report at the lastest during the exercise session on October 14 and pick it up after agree-
ment with Anders Blomqvist. Do attach your commented MATLAB code to your report!
Cooperation in groups of not more than two students is allowed.
The necessary MATLAB m-files can be found at www.math.kth.se/~andersb/teaching.html
The intention of this exercise is to exemplify how easy it is to apply the theory of the course
using a computer. We will use the “Control System Toolbox” in MATLAB, which will save
us lots of programming. Names written with bold font are command names in MATLAB.
Write help control to get a list of available functions in the “Control System Toolbox” or
use the help browser.

1. Observers

In this exercise we will construct a full-order observer to the inverted pendulum system
and use it to make an output feedback stabilization of the system.

(1) Construct an observer with stable poles to the inverted pendulum system of Lab1.
(2) Combine one of the stabilizing feedbacks (or a new better one of your choice) of

Lab 1 with the observer above (as in the Figure on page 62 in the lecture notes
(”Kurskompendiet”) ). The combination is a new linear system with twice as many
states (x and x̂), four additional outputs (the estimation errors, making the total 6)
y = (x1, x3, x1−x̂1, x2−x̂2, x3−x̂3, x4−x̂4) and one input (the original one). Construct
the new (bigger) system Anew, Bnew, Cnew, Dnew. Is the new system minimal?

(3) Simulate a step response with an initial estimation error (of your choice) x(0) 6= x̂(0)
using lsim. Do the above simulation for two cases, one where the poles of the observer
is closer to the origin than the poles of the feedback and one the other way around.
Which is best and why? Hint: One way of doing this is to choose two sets of poles
with clearly different bahaviors. First give the observer one set and the closed-loop
system the other set. Then swap the sets and notice the difference.

2. L-Q Optimal Control.

In this section we use the linearized pendulum equations from Lab 1.

2.1. Infinite time horizon. Consider the following problem

min

∫

∞

0

xT Qx + uT Ru dt

when
ẋ = Ax + Bu, x(0) = x0.

That is driving the system towards the equilibrium over infinite time while keeping controls
and errors small.
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Note that Remark 8.1.1 explains how this translates to the problem formulation of chapter
8 in the course book. Remind yourself what the compatible dimensions of the matrices are.

(1) Choose your own Q and R and calculate the optimal control (are or care might be
useful).

(2) Note that the resulting control is a state feedback. Calculate the closed loop poles of
the system for some different R and Q. How are the poles affected by making R big
and Q small? The other way around? (Compare sufficiently large difference of R and
Q to see the difference). Note that this design method is an alternative to explicit
pole placement.

Note that there is also an LQ theory for the finite time horizon case, with or without fixed
terminal state.

3. Kalman filter for parameter estimation

The Kalman filter is a widely used algorithm in control and signal processing. Applications
are for example state estimation, sensor fusion and target tracking. Examples of more ad-
vanced target tracking are for example a camera tracking moving humans and radars tracking
airplanes. The case we will study is tracking of a piecewise constant but unknown signal. Let
xk be a scalar that is a piecewise constant function of time where we do not know the values
that xk can assume and not the times when it changes. Let us say that |xk| ≤ 1 though (this
is for all lab groups to get comparable results). The measurements that we have are noisy
measurements yk of xk defined by

(1) yk = xk + dwk

where wk is N(0, 1) and d = 0.3. The task is to design a Kalman filter for estimating xk

given yk. The following model puts the problem in a Kalman filter framework:

(2)

{

xk+1 = xk + bvk

yk = xk + dwk

where we have modeled xk as a random walk. Now, b is a tuning parameter that you have
to choose and it is part of the lab to study how this choice affects the filter performance.
Remember that (2) is a model and that the true xk and thus the measurements yk must be
generated off-line where you choose the piecewise constant xk in some way you find suitable.

3.1. Fixed b.

(1) Implement a Kalman filter that estimates xk (Theorem 9.1.10).
(2) Feed the filter with observations as in (1), where xk is piecewise constant (choosen by

you) and wk is random noise (use randn). Study the following aspects experimentally.
(a) How does P0 affect performance? (study the initial behavior).
(b) How does b affect performance?
(c) There seems to be a contradiction between between fast convergence to the true

xk and smooth estimates. Describe this and explain why.

3.2. Time-varying b. Consider now the situation where we know when xk changes value.
Construct a time-varying bk that resolves the conflict between convergence speed and smooth-
ness. Use the insight obtained when tuning bk (i.e. when do we want smoothness and when
do we need higher convergence speed?).

Good Luck! Don’t hesitate to ask (by email or phone) if anything is unclear.


