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Abstract

The main body of this thesis consists of four appended papers. The first two
consider different aspects of the trajectory planning problem, while the last two deal
with observer design for mobile robotic and Euler-Lagrange systems respectively.

The first paper addresses the problem of designing a real time, high performance
trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly,
by augmenting a novel safety maneuver at the end of the planned trajectory, this
paper extends previous results by having provable safety properties in a 3D setting.
Secondly, assuming initial feasibility, the planning method is shown to have finite
time task completion. Moreover, in the second part of the paper, the problem of
simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale
separation principle, one is able to adopt standard Laplacian control to this consensus
problem, which is neither unconstrained, nor first order.

Direct methods for trajectory optimization are traditionally based on a priori tem-
poral discretization and collocation methods. In the second paper, the problem of
adaptive node distribution is formulated as a constrained optimization problem, which
is to be included in the underlying nonlinear mathematical programming problem.
The benefits of utilizing the suggested method for online trajectory optimization are
illustrated by a missile guidance example.

In the third paper, the problem of active observer design for an important class of
non-uniformly observable systems, namely mobile robotics systems, is considered. The
set of feasible configurations and the set of output flow equivalent states are defined.
It is shown that the inter-relation between these two sets may serve as the basis for
design of active observers. The proposed observer design methodology is illustrated by
considering a unicycle robot model, equipped with a set of range-measuring sensors.

Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange
systems is defined and analyzed. This observer is a generalization of the observer
recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced
and complemented by a proof that the region of contraction is infinitely thin. However,
assuming a priori bounds on the velocities, convergence of the observer is shown by
means of Lyapunov’s direct method in the case of configuration manifolds with constant
curvature.

Keywords: Computational Optimal Control, Receding Horizon Control, Mission Un-
certainty, Safety, Task Completion, Consensus Problem, Simultaneous Arrival, Adap-
tive Grid Methods, Missile Guidance, Nonlinear Observer Design, Active Observers,
Non–uniformly Observable Systems, Mobile Robotic Systems, Intrinsic Observers, Dif-
ferential Geometric Methods, Euler-Lagrange Systems, Contraction Analysis.
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Introduction

This thesis deals with two important problems in the field of control, namely trajectory
planning and observer design. Here–below, both these terms, as well as their inter–relations,
are explained in an introductory manner. Consequently, the more familiar reader may prefer
to skip it at a first reading. The two subsequent sections, provide a more detailed treatment
of these problems.

Trajectory planning is an instance of the motion planning problem, which is used as
a collective term for both trajectory- and path planning. In its most basic form, motion
planning is about finding a feasible path (or trajectory) connecting two given configurations,
denoted pi and pf , for a single robot present in a static and known environment. A path is
the image of a continuous function γ : [0, 1]→ C, such that γ(0) = pi and γ(1) = pf , which
means that it connects the two given configurations. Here, C denotes the robot’s so called
configuration space [1]. A path should also fulfill the robot’s configuration-level constraints,
for instance, physical obstacles in the environment. A trajectory can then be defined by
specifying the time evolution of a path [1]. Motion planning as described here, is a purely
geometric problem that ignores the inherent dynamic limitations of the robot. Some au-
thors therefore prefer to define a trajectory as designing time dependent configuration– and
velocity functions that are consistent with the robot’s dynamic constraints. This definition
is adopted in this thesis.

There are at least two ways to decompose the motion planning problem. One alter-
native is to find a feasible trajectory through refinement [1, 2] (see Figure 1). Given the
intermediate level objectives and constraints (cf. Figure 2), the path planner first provides a
geometrically feasible path. It is then the task of the trajectory planner to convert this path
to a trajectory that is consistent with the robot’s dynamic constraints. This decomposition
is however not necessary and methods that merge the two modules exist. The framework
adopted in this thesis, namely that of Computational Optimal Control (see Section 1.1),
serves as an example of this alternative approach that disregards the path planning part.
This procedure can be interpreted in Figure 1 by overlooking the dashed path planner
module.

Planner
Traj. Path

Planner

Reference
Trajectory

Intermediate
Objectives/
Constraints

Motion Planner

Figure 1: Possible decompositions of the motion planning problem.

Once we have a feasible reference trajectory at hand (denoted xref in Figure 2), we would
like to use feedback control to make the robot follow the prescribed trajectory. Feedback
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2 Online Trajectory Planning and Observer Based Control

control design techniques require information about at least some parts of the state vector. If
all the state variables necessary for the control design can not be directly measured, which
is a typical situation in complex systems, attention must be directed towards estimating
them. This is achieved by designing an observer, whose task is to reconstruct missing
state information while only using available measurements, y. Observers are defined more
rigorously in Section 2.1.

Task
Assignment

Vehicle/Plant

Motion
Control

Motion
Planner

Actuator
Control

Observer

High−level objectives & constraints

Intermediate objectives & constraints

PSfrag replacements

uref

xref

y

uc

x̂

Figure 2: Possible structure of a modular control system.

Trajectory planning and observer design are both vital sub-problems in the creation of
autonomous robots. They are however not the only problems that have to be addressed.
Other important aspects include high–level task assignment (i.e. making strategic global
plans), controller design, actuator design and sensor fusion. A possible, and rather classic,
structure for decomposing the overall system architecture, has been depicted in Figure 2.
Truly optimal design of autonomous robotic systems requires concurrent solution of all
these sub-problems. Such an approach is however beyond our current understanding of
these issues. As a natural step then, we limit ourselves to a modular and sub-optimal
design scheme, where only parts of the interactions between the modules are counted for.



Kinodynamic Trajectory Planning

Trajectory planning arises as a natural and vital sub-problem of the noble ambition to
design an autonomous system. Once implemented, it lifts the question of vehicle control to
a higher level, where the input descriptions will specify the nature of the task to be carried
out, rather than how to do it. In its most basic form, trajectory planning is about finding a
feasible trajectory connecting two given states, for a single, fully actuated point, present in a
static and known environment. Important extensions include the case of stochastic planning,
temporal constraints, multi-vehicle planning, and trajectory planning from a given initial
point to a terminal set. In this thesis, we are mainly interested in kinodynamic trajectory
planning. The term kinodynamic planning was introduced by Canny et al. [3, 4] and refers
to motion planning problems that have both kinematic (holonomic/nonholonomic), as well
as dynamical constraints.

Another realistic issue, which is at the center of discussion in Papers A and B, involves
imposing computational constraints on the trajectory planner. This requirement may orig-
inate from an assumption on having an imperfect world-model, i.e. severe information
uncertainty with respect to the current objectives and constraints. In such a setting, the
trajectory has to be re-planned in a fast and safe manner as time evolves, so that planning
and execution phases can be interweaved. This is a non–trivial task, since it is known (see
e.g. [3] and chapter 6.1 in [1]) that the solution time for the basic planning problem depends
exponentially on the vehicle’s degrees of freedom. This difficulty is reinforced by the fact
that every extension of the basic planning problem, such as multiple robots and moving
obstacles, adds new degrees of freedom to the problem. Therefore, in order to meet the
online computational requirement, attention must be given to approximate solutions that
are of low computational complexity.

The exposition of the planning approaches in this section is neither complete nor self-
contained. The reader is referred to [1, 2, 5] for fuller discussions. The objective of this
section is rather to explain a number of important issues for the main approach used in this
thesis, namely computational optimal control. This is the subject of Section 1.1.

1.1 Computational Optimal Control

The paradigm of qualitative control design, which is associating a measure of the “utility”
of a certain control action, has been a foundation of system engineering thinking. Opti-
mal control is therefore regarded as one of the more appealing methodologies for trajectory
planning. However, as captivating as the underlying theory might be, real-world appli-
cations have so far been scarce, particularly due to the high computational demand for
solving nonlinear Optimal Control Problems (OCP). Consequently, attention has been paid
to approximation methods and computationally efficient algorithms that compute solutions
which are “near-optimal” in some sense. In this section, we treat a number of important
issues for algorithmic solution of optimal control problems. Also, some major classes of
computational methods are emphasized. A more comprehensive survey of computational

3



4 Online Trajectory Planning and Observer Based Control

methods for solving OCPs, as they appeared in the mid 90’s, can be found in Chapter 2
of [6].

The discussion will be focused around the following optimal control problem:

minimize
u

J =

∫ T

0

L(x, u)dt + Ψ(x(T )) (OCP)

s.t. ẋ = f(x, u)
d(x, u) ≤ 0

x(0) ∈ xi

x(T ) ∈ Sf

where the state x(t) ∈ X , the control u(t) ∈ U , the constraints d : X × U → R
q and

the terminal time, T , is a possibly free variable. Also, X and U are smooth manifolds of
dimension n and p respectively. To further unburden the discussion, we make a standing
assumption that all mappings are assumed to be sufficiently smooth, the state trajectory
is uniquely defined and stays feasible at all time instances, that all stated minimization
problems with respect to u are well–posed and that the minimum is attained.

Unless the objective function J , the system dynamics and the constraints are extremely
simple, finding optimal controls analytically is in most cases prohibitive. Assuming that the
considered OCP originates from a complex, real-world application, the existence of analyt-
ical solutions is thus deemed unlikely. Our objective is then to solve the OCP numerically.

For the actual design of the computational algorithm, the infinite dimensional problem
of choosing the control function in a given space, has to be turned into a finite dimensional
optimal parameter selection problem. This process of representing the continuous time
functions by a finite number of parameters, is referred to as transcription and is typically
achieved by either finite difference methods or finite sum of known basis functions [6, 7]1.

It is further conceptually important to differentiate between direct and indirect tran-
scription methods (see Figure 1.1). These two categories will be dealt with in Section 1.1.1
and 1.1.2 respectively.

Nλ

consistency

consistency

LagrangianHamiltonian

Lagrange multipliers

KKT

Adjoints

direct transcription

indirect trancription

OCP OCP

OCP

λ

N
OCP

PMP/DP

Figure 1.1: Direct and indirect transcription methods.

1.1.1 Indirect Transcription Methods

For a given OCP, indirect methods start off by introducing the Hamiltonian

H(x, u, λ) = λT f(x, u)− L(x, u),

1Certain choices for basis functions, blur the distinction between the two mentioned transcription meth-
ods (see e.g. [8, 9]).
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where λ denotes the adjoint variables, and formulating the optimality conditions either
according to the Pontryagin Maximum Principle (PMP) [10] or Dynamic Programming
(DP) [11]. The PMP leads to an associated two point boundary value problem (TPBVP),
while DP gives rise to the Hamilton-Jacobi-Bellman (HJB) partial differential equation.
These infinite dimensional problems are denoted OCPλ in Figure 1.1. Indirect transcription
methods then proceed by approximating and numerically solving the TPBVP/HJB. Possible
approaches for doing so include (see e.g. [12])

• (Multiple) shooting method

• Finite difference method

• Collocation method

• Galerkin method

In general, indirect methods are considered to produce more accurate results [13, 14]. In
essence, direct methods which circumvent the PMP and DP by transcribing the OCP di-
rectly and using nonlinear programming techniques, have no way of fully utilizing the special
structure of OCPs. Nevertheless, indirect methods are not typically used to solve problems
having complex dynamics or constraint set. Nor are they suitable for problems where the
underlying OCP is changeable in terms of the objective function, J , the final manifold, Sf

and/or the constraint set, d(x, u). This is most often due to:

• The ill-conditioned properties of the TPBVP2

• The occasionally tedious derivation of the optimality conditions via PMP/DP3

• The analytic intractability of solving the derived (nonlinear) optimality conditions

• The analytic intractability of solving the HJB partial differential equation

• The “curse of dimensionality”, i.e. the inherent exponentially increasing computational
complexity for solving HJB as the problem size increases [11]

Bearing in mind the assumption on information uncertainty made in this thesis, the principal
interest will therefore be on direct transcription methods.

1.1.2 Direct Transcription Methods

The essential idea behind direct transcription methods is to use a finite number of basis
functions to approximate the control manifold U and/or the state manifold X . Which
space, or spaces to parameterize and what basis functions to adopt, are some of the pivotal
differences between existing direct transcription methods. Let us therefore discuss these
two issues in greater detail.

2The associated TPBV can in fact be singular, in which case numerical solutions must be disregarded.
This issue has been demonstrated in [15] by applying the PMP to a most simple OCP, namely the so called
Dubins’ problem [16].

3Symbolic mathematical packages have facilitated this procedure to a certain degree. Nevertheless,
such luxuries cannot be enjoyed in a large class of interesting real-world applications, where look up tables
dominate data presentation.
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Space Parameterization

Regarding the choice of suitable space(s) to parameterize, there is no unambiguous and
clear-cut answer. In the literature, parameterization of state [17], control [18,19], and both
the state and control [20–22], has been suggested. As a consequence of the regularity as-
sumption on the control system, it follows that every control trajectory yields a unique state
trajectory. In principle, it is therefore sufficient to only parameterize the control space, U .
Since the size of the transcribed optimization problem (denoted OCPN in Figure 1.1) is
proportional to the number of approximation parameters, only parameterizing U results
in a comparatively small optimization problem, OCPN . This approach is vindicated by
the fact that optimization routines typically converge faster and more reliable on smaller
problems. Nevertheless, it turns out that from a computational and implementation point
of view, it might still be preferable to introduce parameterization variables in both U and
X . This is since in typical control applications, parts of the objective function J , as well
as some of the constraints of the OCP, are state dependent. Examples include threat mini-
mization objectives and various kinematic constraints, such as obstacle avoidance. In such
cases, only parameterizing the control, leads to implicit constraint and gradient expressions
in the transcribed optimization problem, OCPN , which in turn may result in severely in-
creased computational complexity. Finally, if only the state space, X , is parameterized,
the parameters have to be constrained as to be achievable by some feasible control. This
method thus results in a differential inclusion formulation and is practically applicable for
the limited class of problems where the following mapping from a point x ∈ X to a subset
of the tangent space, TxX

S(x) = {f(x, u) ∈ TxX : u ∈ U , d(x, u) ≤ 0},

can be easily characterized or approximated. This set is termed holograph in [23]. Note that
in order to solely involve the state parameters in the differential inclusion formulation, one
must be able to also eliminate the control from the objective function J , as well. Interesting
contributions, regarding the computational efficiency of the differential inclusion method,
versus that of parameterizing both U and X , can be found in [24–26].

To summarize this discussion, it is the author’s belief that the choice of proper space(s)
for parameterization should be made based on the particular OCP at hand. The leitmotiv
should be to keep possible convexities of the objective function, and/or constraint set intact,
even after the parameterization. Since, “the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity” [27], transforming these will
most likely result in increased computational complexity (cf. [24, 28]). The statement that
optimization routines converge faster and more reliable on smaller problems, holds true
if two problems with similar structure and complexity (in terms of nonconvexity), but
different number of variables are compared. The importance of problem structure versus
that of number of variables is however an open and case specific question.

A parallel discussion, is that of using the flatness properties of a system for trajectory
planning. Parameterizing the flat outputs – in addition to becoming a static problem –
generally reduces the number of variables in OCPN , but as noted in e.g. [29, 30], this pa-
rameterization might transform the objective function and constraints in a possibly complex
(nonconvex) form, and consequently have negative influence on the convergence properties
and/or the solution times4.

4In [29], the evidence of the hypothesis that the solution time is an exponential decreasing function of
the relative degree of the transformed system, are given by numerical experiments on a specific problem
and can therefore not be considered as a firm affirmative proof.
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Basis Functions

From the theory of approximation (see e.g. [31, 32]), by choosing the real parameters αi,
i = 1, · · · , n appropriately and n large enough, the finite sum

fn(t) =
n∑

i=1

αiφi(t),

can be made to approximate a well-behaved function, f(t), to any degree of accuracy.
Here, φi(t), i = 1, · · · , n are known basis functions that span the approximating space.
Different choices of basis functions, manage to approximate functions with different degrees
of smoothness. As an example, consider the basis functions φi(t) = ti, i.e. approximating
f(t) in the space of n-th order polynomials. If f(t) is a continuous function, uniform
convergence of fn(t) to f(t) follows by Weierstrass theorem, which states that the space of
polynomials is dense in the space of continuous functions [33].

In principle, any preferred basis functions can be employed. The reader is referred
to the introductory part of Ma’s thesis [6], for a concise summary of different applicable
approximation schemes. In practice however, piecewise polynomials [21], in particular cubic
spline functions [20], belong to the classical choices. More recently, different orthonormal
basis functions, e.g. Chebyshev polynomials [9,22,34] and Legendre polynomials [8,35], have
been extensively considered for trajectory optimization problems.

Parameterizing U and/or X turns the infinite dimensional OCP into a finite dimen-
sional optimal parameter selection problem, which can be seen as an implicit nonlinear
mathematical programming problem (NLP). Implicit, since:

1. computing the integral cost,

2. finding the state trajectory solution consistent with the prescribed dynamics,

3. fulfilling the constraints d(x, u) ≤ 0,

are all still infinite dimensional problems. Numerical procedures require further approxi-
mations. In most direct methods (see e.g. [7] and the references therein), this is achieved
by a priori temporal discretization and approximation of the differential operator. The in-
tegral cost can then be approximately evaluated by any preferred quadrature rule (consult
e.g. [12,36]). In addition, the state and control constraints, d(x, u) ≤ 0, are imposed at the
temporal nodes and treated as regular constraints of the NLP. Finally, additional constraints
are imposed on the NLP variables so that the generated state trajectory is consistent with
the approximating differential operator.

From this discussion, one can realize that the accuracy of the obtained solution will
generally depend on the temporal discretization scheme. As mentioned, a priori parti-
tion of the time interval into a prescribed number of sub-intervals, is the most intuitive,
straightforward and widespread approach for this. It is however a well-established fact in
numerical analysis (see e.g. [12, 37]), that a proper distribution of grid points is crucial for
both the accuracy of the approximating solution, and the computational effort. The basic
idea is that by concentrating the nodes and hence computational effort in those parts of
the grid that require most attention (e.g. areas with sharp non-linearities and large solution
variations), it becomes possible to gain accuracy whilst retaining computational efficiency.
Since the solution is not known in advance, a priori node distribution has no way of pay-
ing attention to the particular problem at hand. To remedy this, iterative mesh refinement
techniques have been suggested [38]. However, strategically adding new nodes to the current
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grid in an iterative manner, results in increased running times, which is counter productive
for our online computational objectives. In Paper B, an adaptive temporal discretization
method for trajectory optimization is suggested, where a fixed number of nodes are opti-
mally distributed as to improve the accuracy of the approximation. The node distribution
scheme is formulated as a constrained optimization problem, which is to be augmented to
the underlying NLP and solved on the fly.



Observers for Nonlinear Systems

In complex real–life systems, it is typically some state variables which cannot be directly
measured. If needed – for instance for feedback control design or monitoring purposes – one
must aim at obtaining an estimate of these unknown state variables.

For a dynamical system, an observer is another dynamical system whose task is to
reconstruct missing state information while only using available measurements. The input
to the observer is the output of the original system (which may include its input), and the
observer is expected to produce as output an estimate of some state function of the original
system.

This section gives a brief and expository treatment of observers for nonlinear systems.
One of the main objectives has been to relate the material to our viewpoint, and in exten-
sion, the relevant augmented papers (Paper C and D). The disposition is as follows. To
start with, a concise and conceptually clear definition of an observer is given in Section 2.1.
This definition is minimalistic in the sense that it specifies the minimal characteristics of an
observer. For practical purposes, additional desired properties, such as domain of attrac-
tion, convergence rate, etc., may be further specified. In particular, Section 2.2 is concerned
with how to demonstrate the convergence properties of an observer. Other observer char-
acteristics and classification thereof, are discussed more thoroughly in Section 2.3. One of
the main paths for observer design, namely via nonlinear coordinate transformations, is dis-
cussed in Section 2.4. Finally, the main purpose of Section 2.5 is to pinpoint the nontrivial
relationship between the concept of observability and observer existence for general nonlin-
ear systems. This is an important point to make, not the least because of the treacherous
similarities in the terminology.

2.1 Observer Definition

Consider the nonlinear control system

Σ :

{
ẋ = F(x, u) (system dynamics)
y = h(x, u) (system output)

with state x ∈ X , control u ∈ U and output y ∈ Y. Here X ,U and Y are smooth manifolds
of dimension n, p and m respectively. In the following, in addition to the measurements,
the output y is supposed to include known control inputs. For the dynamical system Σ, an
observer may be defined as follows.

Definition 2.1 (Observer). A dynamical system with state manifold Z, input manifold Y,
together with a mapping F̂ : (Z×Y)→ TZ is an observer for the system Σ, if there exists a
smooth mapping Ψ : X → Z, such that the diagram shown in Figure 2.1 (the dashed arrow
excluded), commutes. The observer gives a full state reconstruction if there in addition is a
mapping Φ : (Z ×Y)→ X such that the full diagram in Figure 2.1 is commutative ( cf. [39]
and [40]).
Here, Ψ∗ denotes the tangent mapping, π is projection upon a Cartesian factor, while τ
denotes the projection of the tangent bundle.

9
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Figure 2.1: Commutative diagram defining an observer.

According to Definition 2.1, the objective when designing a general observer, is to track
Ψ(x), rather than x itself. Note also, that the same observer dynamics F̂ , may allow several
different full state observer mappings, Φ, and that in general a full state observer

Σ̂ :

{

ż = F̂(z, y)
x̂ = Φ(z, y)

may not be put in the form ˙̂x = Ξ(x̂, y).
As a consequence of this definition, an observer has the following basic property:

Property 2.1. z(t0) = Ψ(x(t0)) at some time instance t0, yields z(t) = Ψ(x(t)) for all
t ≥ t0.

Proposition 2.1. An observer has Property 2.1 if and only if the diagram in Figure 2.1 is
commutative.

Proof. Assume we have Property 2.1, i.e.

z(t) = Ψ(x(t)), ∀t ≥ t0.

Then taking the derivative with respect to time, yields

ż =
∂Ψ

∂x
ẋ =

∂Ψ

∂x
F(x, u).

Comparing this with the expression for Σ̂, we see that property 2.1 implies that

∂Ψ

∂x
F(x, u) = F̂(Ψ(x), h(x, u)), (2.1)

which is exactly what the commutativity of the diagram in Figure (2.1) suggests.
In the other direction, assume that the diagram in Figure (2.1) commutes and that

z(t0) = Ψ(x(t0)) for some t0 ∈ R
+. Solving the differential equation governing z, we have

z(t)− z(t0) =

∫ t

t0

F̂(z, y)dτ =

∫ t

t0

∂Ψ

∂x
ẋdτ =

[
Ψ(x(τ))

]t

t0
= Ψ(x(t))− z(t0),

the second and last equality following from the two assumptions made.

Definition 2.1 thus provides a clear representation of Property 2.1 which is the minimal
requirement that an observer has to fulfill. In particular, this definition does not impose any
convergence requirements on the observer. This follows the line of thought in the pioneering
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work of Luenberger [41]. For practical purposes however, additional desired properties for
an observer, such as domain of attraction, convergence rate, etc., may be specified. This
topic is discussed more thoroughly in Section 2.3. In particular, it is reasonable to require
the additional property:

Property 2.2. As time proceeds, the trajectories z(t) and Ψ(x(t)) converges.

This property, i.e. the convergence properties of an observer, may be demonstrated and
defined in different ways. The convergence issue will be discussed in more detail in Sec-
tion 2.2, where two approaches for showing convergence, namely Lyapunov-based methods
and contraction analysis, are presented.

2.2 Convergence Analysis

2.2.1 Lyapunov-based methods

Lyapunov stability theory, and in particular Lyapunov’s direct method, is a possible ap-
proach to determine the stability properties of a nonlinear system

ẇ = f(t, w), t ∈ R
+, w ∈ W,

which may also represent controlled systems in closed loop form. As the subject is very well
documented in the literature (consult e.g. [42–45]), the main emphasis here-within will be
on using the Lyapunov theorems for showing observer convergence.

If one is able to find a (locally) positive definite, decrescent, continuously differentiable
function, V (t, w), whose total time derivative along the system dynamics, f ,

V̇ =
∂V

∂t
+

∂V

∂w
f(t, w)

can be shown to be (locally) negative definite, then (local) uniformly asymptotic stability of
the origin follows from Lyapunov theory (see e.g. Theorem 4.9 in [43]). Notice that in the
case of time autonomous systems, the Lyapunov function may be taken as a time invariant
functional. This result, is a strong, sufficient condition for stability and as such, incorpo-
rates a certain degree of conservatism. Despite the existence of converse theorems [46, 47],
the main limitation of the Lyapunov based methods are that they are non-constructive,
in the sense that they do not provide any systematic procedure for determining Lyapunov
functions. Although natural Lyapunov candidates may be provided by Lyapunov-like “en-
ergy” functions, the choice of V is to a large extent a trial and error process that may be
practically impossible for systems of high order.

In the observer design context of ours, we are interested in Lyapunov functions V (z,Ψ(x)) ≥
0 such that

V (z,Ψ(x)) = 0⇐⇒ z = Ψ(x).

In local coordinates, the objective is to determine the stability of the error dynamics, i.e.
we wish to examine if the estimation error decays to zero. The more general choice is to set
w(t) = z(t)−Ψ(x(t)), and consequently, W = Z. For full-state observers however, another
possibility would be to consider the convergence of x̂ = Φ(z, y) to x in X–space instead, i.e.
setting w(t) = x̂(t) − x(t), and consequently, W = X . Because of its generality, we shall
concentrate on the former case.
With w(t) = z(t)−Ψ(x(t)), the error dynamics becomes

ẇ = ż − ∂Ψ

∂x
ẋ = F̂(z, y)− ∂Ψ

∂x
F(x, u) , f(t, w). (2.2)
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It is noteworthy that the commutativity of the diagram in Figure 2.1, makes the origin
(z(t) = Ψ(x(t))) an equilibrium point of (2.2) (see also (2.1)). In general, error dynam-
ics (2.2) is nonlinear. Further, it is a function of the true state x, which: first of all
is unknown to us, and secondly is not a fixed quantity. These facts, clarify the need of
techniques beyond the linear theory for analyzing the error dynamics (2.2). They also
demonstrate the difficulty in making any statements regarding the convergence properties
of the observer without any further specification of the functions involved.

2.2.2 Contraction Analysis

One way to determine the convergence properties of a dynamical system, such as the ob-
server dynamics

ż = F̂(z, y),

is to use contraction analysis [48]. As a concept on a smooth Riemannian manifold, Z,
convergence of two neighboring trajectories is defined with respect to a given metric tensor,
g. In essence, the dynamics F̂ is said to be a strict contraction with respect to the metric
g, if for all inputs of Σ̂,1 y ∈ Y, the symmetric part of its covariant derivative is negative
definite. Since the Lie derivative of g with respect to the vector field F̂ , denoted LF̂g, is
proportional to the symmetric part of the covariant derivative of F̂ , contraction may be
characterized by negative definitiveness of LF̂g.

To see this, let ρt denote the geodesic curve between two neighboring trajectories, z1(·)
and z2(·) (see Figure 2.2). Let Υt

F̂ρ0 denote the evolution of the geodesic curve, ρ0, under

the dynamics F̂ , at time t. Further, let τ : [0, 1] → Z be a parameterization of the curve
Υt

F̂ρ0 such that τ(0) = z1(t) and τ(1) = z2(t). We have

d

dt

∫

Υt

F̂
ρ0

ds =

∫

Υt

F̂
ρ0

1

2
(LF̂g)(

dτ

ds
,
dτ

ds
)ds,

so if LF̂g is negative definite for every input y ∈ Y (LF̂g < 0), then

∫

ρt

ds , inf

∫ z2(t)

z1(t)

ds ≤
∫

Υt

F̂
ρ0

ds ≤
∫

ρ0

ds , inf

∫ z2(0)

z1(0)

ds,

that is, the Riemannian distance between any two trajectories tends to zero as time proceeds
(cf. [48]).

Contraction solely implies that the Riemannian distance between neighboring trajecto-
ries tends to zero. In order to be able to conclude regarding observer convergence, one must
also verify that the observer dynamics contains the actual plant trajectory as a particular
solution. This issue is actually the essence of Property 2.1. In conjunction with contraction,
Property 2.1 automatically yields Property 2.2, i.e. observer convergence. In other words,
if the observer dynamics, F̂ , is a strict contraction with respect to g and further turns the
diagram of Figure 2.1 commutative, then the observer is convergent.

Remark 2.1. Contraction, as described here-above, is a property of the control system
on Z alone. In particular, it does not involve neither the control input, nor output of the
original system, Σ.

1Which naturally coincide with the outputs of Σ.
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z2(0)
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F̂ρ0
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Figure 2.2: The length of the geodesic curve ρt, between two trajectories decreases if LF̂g <
0.

With this point of view, the control synthesis and observer design are decoupled processes
and do not interact. To connect with the concept of active observer design of Paper C,
requiring the symmetric part of the covariant derivative of F̂ to be negative definite for all
inputs, y ∈ Y, is an unnecessarily strong condition. As a convincing example, consider the
case when the output map of Σ, h : X ×U → Y, is not onto. What can be done in the case
when there are some y that do not turn F̂ contractive? Let the collection of y for which F̂ is
contractive, be denoted by Yc. If the input to the original system, u(·), can be chosen such
that y(·) ∈ Yc, then the convergence of the observer is secured. The term active observer
design refers exactly to this integrated fashion of control synthesis and observer design (cf.
Paper C). The idea is to design the exciting control, while bearing in mind the convergence
properties of the observer. This is an important issue since it is known that for nonlinear
systems in general, the so called separation principle does not hold. That is, separate design
of a stabilizing state feedback controller and a convergent observer, does not always result
in a stabilizing output feedback controller. For a counter–example, consult [49].

The assumption that the observer dynamics is contractive, is however very restrictive
and in many cases Property 2.2 has to be shown by means of Lyapunov–based methods.
To this end, Lyapunov’s direct method was briefly reviewed in the previous section 2.2.1.

2.3 Observer Properties and Classification

The advantages with representing an observer as in Definition 2.1, accrue particularly in the
case of observer classification. This definition is minimalistic in the sense that it specifies
the minimal characteristics of an observer, namely that the observer dynamics contains the
actual plant trajectory as a particular solution. For practical purposes, additional prop-
erties may be further specified. This viewpoint, facilitates keeping the added properties
separated and thereby achieving a transparent classification scheme for observers. In this
section, a number of such properties are discussed. Moreover, some of the different observer
types occurring in the literature are classified and related to these properties. The material
presented in this section is of independent interest since observer nomenclature is not stan-
dardized and is to a large extend “author dependent”. The list of observer properties and
definitions in this section, by no means cover all characteristics that could be associated
with observers. It rather provides the foundation for further elaboration and extensions.

As one of the key properties, convergence of observers has at least three aspects associ-
ated with it: the domain of attraction, the rate of convergence and its relation to the choice
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of system input. These are the first three properties to be discussed below.
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Domain of attraction:

A most natural question, involves the extension of the domain of attraction, i.e. the set
of initial points for which the observer converges. This characteristic basically tells us
how far from the true state the initial estimation can be made without jeopardizing
the convergence properties of the observer. In other words, this property puts a
constraint on the distance between Ψ(x(t0)) and z(t0) in Z–space. There are at least
three different restrictions to be discussed, namely:

• Global domain of attraction: There is no restriction, i.e. the observer converges for
all z(t0) ∈ Z. Using the terminology of [48], having a global domain of attraction
means that Z is a region of contraction.

• Local domain of attraction: For all x(t0) ∈ X , there is a ε > 0 such that the
observer is convergent for all z(t0) ∈ B(Ψ(x(t0)), ε). Here, B(Ψ(x(t0)), ε) denotes
the ε–ball, centered at Ψ(x(t0)).

• Semi–global domain of attraction: This refers to the cases in which it is possible
to design observers that converge on every compact subset of Z. For instance,
if for all ε > 0, one can possibly tune the observer design parameters so that
convergence is guaranteed for all z(t0) ∈ B(Ψ(x(t0)), ε).

Remark 2.2. Unless Ψ(x(t0)) is a priori known, which is seldom the case, global
domain of attraction is the only fully implementable version listed above. Having only
a local domain of attraction, renders observer initialization practically a trial and error
procedure (since ε is unknown and might potentially be very small). The semi–global
version of the domain of attraction property could be of interest, for instance, when
there are a priori known bounds on the systems domain of operation2 (in X–space).
If compact, then by the smoothness (and hence continuity) of Ψ, this also bounds
Ψ(x(t0)) in Z–space.

Rate of convergence:

This property concerns the rate with which the estimation error decays to zero. As the
notion of “convergence rate” might be familiar to most readers, the most frequently
discussed ones are simply listed.

• Asymptotic convergence rate

• Exponential convergence rate

• Finite–time convergence

It is noteworthy that finite–time convergence is not possible to obtain with locally
Lipschitz vector fields. Some other issues related to the rate of convergence are to be
found in Definition 2.2 and Remark 2.5.

Input dependent convergence:

For forced nonlinear systems in general, convergence of the observer is an input de-
pendent property. As a particular example, which will be at the center of discussion
in Paper C, consider the case of a mobile robot equipped with exteroceptive sensors.
For simplicity of discussion, it is assumed that the system is globally observable, i.e.
for any two initial states, x1, x2 ∈ X , there exist a control trajectory, u(·) ∈ U , that
distinguishes the outputs, y1(·) = h(X(x1, u(·)), u(·)) and y2(·) = h(X(x2, u(·)), u(·)).

2The operation domain of a system is yet another observer property to be discussed later in this section.
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Here, X(x1, u(·)) denotes a solution of Σ using the control input, u(·) with x1 as the
initial condition. Despite this strong assumption, there might be control inputs for
which the observer does not converge. As in the example of a unicycle robot model,
the zero input corresponds to the mobile platform standing still and therefore not
collecting any new data. As the output remains constant and no new information
arrives to the observer, the estimation procedure can not proceed, hence observer
convergence is not possible.

With this in mind, it is possible to distinguish the following observer properties
(cf. [50]).

• Uniform convergence: This most demanding version of this property requires con-
vergence of the observer for all control inputs, u ∈ U .

• Semi–uniform convergence: A more moderate version would be to require observer
convergence whenever the input is restricted to given compact subsets of U , for
instance, dictated by ways of norm restrictions. The bounding set is however
allowed to be arbitrarily large, possibly with the observer design parameters
varying accordingly.

• Non–uniform convergence: This refers to the case when there are control inputs
for which the observer does not converge.

Remark 2.3. The attentive reader might here discern the connection of input depen-
dent convergence with Remark 2.1 and the succeeding discussion on active observer
design (cf. Paper C).

The two last characteristics to be discussed, involve different restrictions on the observer-
and system trajectories respectively.

Domain of operation of the observer:

Another distinguishable property of an observer, concerns whether or not the observer
state, z(t), is restricted to remain close to Ψ(x(t)). This is an extremely important
concept, not the least for safety critical output feedback controllers. In such systems,
special attention has to be paid to the “peaking phenomenon” of the estimation er-
ror [51], i.e. the potentially large mismatch between Ψ(x(t)) and z(t), and in extension,
between the output feedback controllers, u(y(t),Ψ(x(t))) and u(y(t), z(t)). Similar re-
stricted concepts have already been defined in the case of accessibility, controllability,
stabilizability and observability (see e.g. [51, 52] and [53] page 11).

The global case implies unrestricted observer trajectories, i.e. the mismatch between
z(t) and Ψ(x(t)) may vary arbitrarily. An observer having semi–global domain of
attraction, refers to the case when z(t) can be made to stay in a chosen neighborhood
of Ψ(x(t)). The semi–global version is of utmost practical interest, since it puts an
upper bound on the maximum estimation error. Finally, the most restricted version,
termed local, restricts the generated observer state, z(t), to stay in any prescribed
neighborhood of Ψ(x(t)). Here, we assume that the observer is initiated at a point
inside the given neighborhood. Thus it is possible to dictate the estimation accuracy
of an observer with a local domain of operation, which is a very strong requirement.

Domain of operation of the system:

Yet another characteristic worth mentioning, is the region of the state space in which
the system is operating. This issue involves whether or not we have restrictions on the
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unmeasured states of the system and exists in a global, semi–global and local version
(cf. [54]). If the state, x(t), may vary arbitrarily on the state space, X , without jeop-
ardizing the convergence properties of the observer, then the corresponding observer
is termed global. The semi-global version refers to those cases when it is possible to
design a convergent observer, once the unmeasured states are restricted to a given
compact subset of the state space. The size of this region is however allowed to be
made arbitrarily large, possibly with the observer design parameters varying accord-
ingly. Finally, the local version refers to those cases when it is possible to design an
observer that converges only if the unmeasured states are restricted to a neighborhood
of a given state, x0.

Remark 2.4. The intrinsic observer of Paper D, serves as an illustrative example of
the importance of the system’s domain of operation in observer design and convergence
analysis.

From this discussion, it should be clear that the terminology for observers and observer
design is not a trivial matter. For instance, a “local observer” might refer to several distinct
properties. Therefore, one should always strive to adopt a descriptive nomenclature and
keep the properties and the spaces they live in separated. To this end, Table 2.1 collects
the properties listed in this section.

Observer property Restricted versions Property space

Domain of attraction Global, semi–global, local Z
Rate of convergence Asymp., Exp., Finite–time Z or X
Input dependent conv. Unif., semi–unif., non–unif. U
Observer’s domain of oper. Global, semi–global, local Z
System’s domain of oper. Global, semi–global, local X

Table 2.1: By keeping the observer properties and their associated spaces separated, it is
possible to set up a transparent classification scheme and adopt a descriptive nomenclature.

We proceed by relating some of the observer types occurring in the literature to the
concepts and properties listed so far.

Definition 2.2 (Asymptotic, Exponential, and Finite–time Observer). An observer whose
estimation error has an asymptotic (exponential) rate of decay, is called an asymptotic (ex-
ponential) observer. Finite-time observers provide a correct estimation of Ψ(x(t)) within
finite–time.

Remark 2.5. Despite the fact that neither asymptotic, nor exponential observers are able
to reconstruct Ψ(x(t)) within finite–time, they are the most frequently existing observers
in the literature. One explanation of this might be that finite–time convergent observers
require non–smooth vector fields, F̂ .
Definition 2.3 (Identity Observer). The special case when Ψ equals the identity map and
Z = X , is often referred to as an identity observer.

Definition 2.4 (Smooth and Continuous Observers [54]). Referring to diagram 2.1, if Ψ−1

is a smooth map ( i.e. Ψ is a diffeomorphism), the observer is referred to as a smooth
observer, while Ψ−1 being merely continuous ( i.e. Ψ being a semi-diffeomorphism), yields
a continuous observer.
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A continuous observer might be of interest whenever the smooth exponential observer
falls short, which occurs exactly when the Taylor linearization of system Σ is undetectable [55].
For an example, explicitly constructed to show the non-existence of a smooth observer and
point out the potential of continuous observers, consult [56].

Definition 2.5 (Reduced Order, Full Order and Expanded Order Observers [54,56]). These
three classes can be distinguished according to the dimension of Z, which defines the order of
the observer. An observer is termed reduced order if its order is less than n (the dimension
of X ). It is called full order if it is of order n and the full-state estimate does not depend
directly on y, i.e. x̂ = Φ(z). Finally, an observer of order greater than n is called expanded
order.

Definition 2.6 (Uniform and Non–Uniform Observer [50]). An observer whose convergence
properties does not depend on the input to the original system, Σ, is called a uniform
observer. Else, it is termed non–uniform observer.

Remark 2.6. If one considers disturbances as unknown (unmeasured) inputs to the original
system, robust observers [57] may be seen to equal the concept of uniform observers.

2.4 Coordinate Transformations and Linear Error Dynamics

The problem of existence and synthesis of observers for linear systems is fully under-
stood [41]. It may then seem natural that for the design of observers for nonlinear systems,
significant amounts of research have been conducted with the aim of finding special coor-
dinate systems – but also conditions for the existence of them – in which one can adopt
techniques from linear systems theory. In fact, one of the main paths for observer design
for nonlinear systems, goes via nonlinear coordinate transformation. The idea is to turn the
original nonlinear system into some specific “observer form”, utilizing e.g. diffeomorphism or
immersion [58–64]. In these new coordinates, classical methods from linear systems theory
are employed to complete the observer design procedure.

In two seminal papers [59,60] – which treat the case of unforced single output and MIMO
systems respectively – the idea of using state transformations in order to turn the nonlinear
system into a linear one up to output injection was settled. In a first step, the authors seek
diffeomorphisms,

x̃ = T1(x) and ỹ = T2(y),

such that the original nonlinear system

Σ :

{
ẋ = F(x, u),
y = h(x),

is transformed into

Σ̃ :

{
˙̃x = Ax̃− g(y),
ỹ = Cx̃,

with (A,C) an observable pair. System Σ̃ is an observable linear system up to output
injection which is known to admit Luenberger type of observers. Notice that both these
papers require the output map to be linear as well. The observer design procedure is then
completed in a second step by adopting a Luenberger style observer

Σ̂ :

{
ż = Az − g(y) + L(ỹ − Cz)
x̂ = T−1

1 (z),
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where L is the constant observer gain. To see the main advantage with the proposed
transformation, one must have a look at the error dynamics;

d

dt
(z − x̃) = ż − ˙̃x = Az − g(y) + L(ỹ − Cz)−Ax̃ + g(y) = (A− LC)(z − x̃). (2.3)

Since (A,C) is an observable pair, pole placement can be used to obtain exponential con-
vergence (with arbitrary rate) for the linear error dynamics (2.3).

More recently, Kazantzis and Kravaris [65] have proposed to rather seek a diffeomor-
phism, x̃ = T (x), that transforms the original nonlinear system to a system having linear
dynamics up to output injection (the output map may however be nonlinear)

Σ̃
′

:

{
˙̃x = Ax̃− g(y)
y = h(T−1(x̃))

where the matrix A is Hurwitz. It is then possible to propose an observer for the transformed
system, Σ̃

′

, namely the dynamic system

Σ̂
′

:

{
ż = Az − g(y)
x̂ = T−1(z),

with the associated linear stable error dynamics

d

dt
(z − x̃) = A(z − x̃),

will serve as a smooth observer having exponential error decay. In terms of the original set
of coordinates, the following dynamic system

˙̂x = F(x̂, u) + L(x̂)
[
g(y)− g(h(x̂))

]
, (2.4)

with nonlinear gain

L(x̂) =
[∂T

∂x̂
(x̂)

]−1
,

is a full-state observer for the original system, Σ. Note that it is not in general possible to
put a full state observer (such as Σ̃

′

) in the form ˙̂x = Ξ(x̂, u, y) as is done in (2.4).
These described approaches have some drawbacks:

• The structural requirements are extremely stringent so that large classes of nonlinear
systems are excluded. In particular, it is noteworthy that both Σ̃ and Σ̃

′

exclude the
class of non–uniformly observable systems.

• Finding the right state transformation may be difficult since it involves solving a
system of first-order partial differential equations. In order to overcome this and
make practical use of the described approaches, different approximation schemes may
be adopted. In [65] and [66]3 approximation schemes based on simple series expansions
are proposed.

• The observer has only local properties, more specifically where the coordinate transfor-
mation is valid. Global statements require that the collection of local transformations
are consistent, i.e. form an atlas.

3Mind the important erratum to this paper [67].
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2.5 Observability and the Existence of Observers

The main purpose of this section is to pinpoint the nontrivial relationship between the
concept of observability and observer existence for general nonlinear systems. This is an
important point to make, not the least because of the treacherous similarities in the termi-
nology. By using two examples, it will be shown that for nonlinear systems in general, and
non-uniformly observable systems in particular, observability may not imply, nor is implied
by the existence of an observer. A more suitable concept from the observer design point of
view, is that of detectability [50,56]. This is in accordance with linear systems theory.

Example 2.1 (observability ; observer). Consider

Σ1







ẋ1 = −x1 + ux3
2

ẋ2 = x2 + x2
1

y = x1

It is easy to show that Σ1 is (non-uniformly) observable by noting that u0(·) = 1 distin-
guishes all initial points. To see this, assume there are two initial states

x1 = [x11 x12]
T and x2 = [x21 x22]

T

such that
y0(x1, t) ≡ y0(x2, t), ∀t ≥ 0. (2.5)

Here y0(xi, t) denotes the output trajectory when the system is initiated at xi, i = 1, 2 and
driven by the input function u0(·) = 1. From (2.5) we immediately obtain x11 = x21, for
the special choice of t = 0. Equation (2.5) also implies

ẏ0(x1, t) ≡ ẏ0(x2, t) ∀t ≥ 0

which yields x12 = x22, for the special choice of t = 0. Hence we conclude that x1 = x2, i.e.
u0(·) = 1 distinguishes all initial points. However, it has been shown in [68] (see also [56])
that there does not exist any smooth observer with asymptotically stable error dynamics
for Σ1, due to the positive eigenvalue associated with x2.

Example 2.2 (observability : observer). Consider

Σ2







ẋ1 = u
ẋ2 = x1 + x2

2

ẋ3 = −x3 + x2

y = x2

which is not observable since x3 is neither measured nor affects the dynamics of x1 or x2.
Still it can be shown by considering the error dynamics, that for proper choice of α and β

Σ̂2







˙̂x1 = u + α(y − x̂2)
˙̂x2 = x̂1 + y2 + β(y − x̂2)
˙̂x3 = −x̂3 + y,

acts as an input-independent observer for Σ. This is because the dynamics for x3 is stable
in itself, once the other two states have been driven to zero.



Reader’s Guide

This thesis consists of four independent papers presented in reversed chronological order.
This section offers a brief and descriptive summary of the appended papers. The first two
papers consider different aspects of the trajectory planning problem.

Paper A: Online Trajectory Planning for Aerial Vehicles: a Safe Approach with Guaran-
teed Task Completion, coauthored with J. Robinson and P. Ögren.

In this paper, online trajectory planning for aerial vehicles subject to simultaneous
kinematic and dynamic constraints is considered. The trajectory planning problem is
formulated as a somewhat modified Optimal Control Problem (OCP). An underlying
assumption however, is that due to imperfect information, the kinematic constraints,
as well as the location of the target set and possible threats, might change during the
course of flight. Also, assuming that the problem originates from a complex, real-
world application, the existence of analytical solutions is disregarded; thus seeking
fast computational algorithms for solving the OCP.

In order to cope with the real-time objectives, the line of thought presented in this pa-
per merges that of point-wise satisficing control [69,70] and Receding Horizon Control
(RHC) [71]. Here-within, the global characteristics of the environment and mission
objectives are captured in a functional, calculated off-line and passed to the online
receding horizon controller as a terminal cost. It should however be mentioned that
the possibility of updating the “off-line” computed terminal cost should not be over-
looked. As pointed out in [72], the term “off-line” is rather to be interpreted as, at
a much slower sampling rate than the control loop. As new information about the
environment or mission objectives is gathered when the mission unfolds, it can be
processed and fed back regularly to the vehicle through an updated terminal cost, as
discussed in e.g. [73].

It is known that in the absence of particular precautions when approximating the
tail of the integral cost with a terminal cost, neither closed-loop stability (or task
completion1), nor safety can be assured.

These issues have been the leitmotivs of Paper A. Its main contributions are two-fold;
by augmenting a so called safety maneuver at the end of the planned trajectory, this
paper extends previous results by addressing provable safety properties in a 3D setting.
In addition, assuming initial feasibility, the planning method presented is shown to
have finite time task completion. As a subsidiary consequence, it is noteworthy that
introducing the safety maneuver, also makes it possible to cope with hard real-time
systems as well as various optimization routine failures including non–convergence
and abnormal termination.

1Standard RHC is tailored for steady-state control or asymptotic stabilization to the origin in the
Lyapunov sense. The notion of task completion considered in this paper is a different problem, namely
it aims at controlling the plant into a target set which is not necessarily control invariant or contain any
equilibrium points.
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Moreover, a quantitative comparison between the two competing objectives of opti-
mality and computational tractability is made. Some other key characteristics of the
trajectory planner, such as ability to minimize threat exposure and robustness, are
highlighted through simulations.

The second part of this paper is devoted to the problem of simultaneous arrival of mul-
tiple aerial vehicles. This is an application of the wider class of consensus problems.
Standard results in this field involve consensus problems described by unconstrained,
scalar (or fully actuated) first order linear systems (see e.g. [74–76]). In our case how-
ever, the relation between the control (i.e. the vehicle acceleration), and the consensus
quantity (which is the Estimated Time to Arrival, ETA) is neither unconstrained nor
first order. However, by using a time-scale separation principle, we are able to achieve
consensus by adopting standard Laplacian control.

Paper A is based on the following publications:

A1: D.A. Anisi, J. Robinson and P. Ögren, Safe Receding Horizon Control of an
Aerial Vehicle, IEEE Conference on Decision and Control, San Diego, CA, Dec.,
2006.

A2: D.A. Anisi, J. Robinson and P. Ögren, Online Trajectory Planning for Aerial
Vehicles: a Safe Approach with Guaranteed Task Completion, AIAA Guidance,
Navigation and Control Conference and Exhibit, Keystone, Colorado, Aug. 2006.

A3: D.A. Anisi, J. Hamberg and X. Hu, Nearly Time-Optimal Paths for a Ground
Vehicle, Journal of Control Theory and Applications, Nov. 2003.

Paper B: Adaptive Node Distribution for Online Trajectory Planning.

For the actual design of the computational algorithm for solving an Optimal Control
Problem (OCP) – like the one considered in Paper A – the infinite-dimensional prob-
lem of choosing a control function in a given space, has to be transcribed into a finite
dimensional parameter selection problem, or a nonlinear mathematical programming
problem (NLP).

Traditional transcription methods are based on a priori partition of the time interval
into a prescribed number of subintervals whose endpoints are called nodes. Generally,
trajectory optimization run-times are critically depending on the number of variables
in the NLP. These in turn, are proportional to the number of nodes in the temporal
discretization. Therefore, it is extremely important to keep the number of nodes as
low as possible when aiming at constructing computationally efficient methods for
trajectory optimization.

It is a well-established fact in numerical analysis, that a proper distribution of grid
points is crucial for both the accuracy of the approximating solution, and the com-
putational effort (see e.g. [12, 37]). The basic idea is that by concentrating the nodes
and hence computational effort in those parts of the grid that require most attention,
e.g. areas with sharp non-linearities and large solution variations, it becomes possible
to gain accuracy whilst retaining computational efficiency.

Inspired by this, Paper B advocates that in any computationally efficient method for
trajectory optimization, node distribution should be a part of the optimization pro-
cess. More precisely, once the number of nodes in the temporal discretization has been
decided (depending on e.g. computational resources), the question of optimal node dis-
tribution is raised. Based on two existing frameworks for adaptive grid generation,
namely equidistribution principle and functional minimization, node distribution is
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formulated as a constrained optimization problem, which is to be augmented with the
underlying NLP. Although adaptive grid methods - which mainly concern node distri-
bution in the spatial domain - have been an active field for the last couple of decades,
to the best of the author’s knowledge, utilizing them for adaptive node distribution
(in the temporal domain) and online trajectory optimization has not been considered
elsewhere. The benefits of utilizing the suggested adaptive node distribution method
for online trajectory optimization, are illustrated by a missile guidance example.

This paper corresponds to the following publications:

B1: D.A. Anisi, Adaptive Node Distribution for Online Trajectory Planning, Congress
of the International Council of the Aeronautical Sciences (ICAS), Hamburg, Ger-
many, Sep. 2006.

B2: D.A. Anisi, Online Trajectory Planning Using Adaptive Temporal Discretization,
Swedish Workshop on Autonomous Robotics (SWAR), Stockholm, Sweden, Sep.
2005.

The last two papers of this thesis deal with observer design for mobile robotic and Euler-
Lagrange systems, respectively. A short description of these papers follows.

Paper C: Active Observers for Mobile Robotic Systems, coauthored with X. Hu.

Feedback control design techniques require knowledge about at least some parts of
the state vector. If all the state variables necessary for the control system can not be
directly measured, which is a typical situation in complex systems, attention must be
directed towards obtaining an estimate of the unknown state variables. Most current
methodologies for observer design, such as observers with linearizable error dynam-
ics [59, 60, 65] and high gain observers [77, 78], lead to the design of an exponential
observer. As a necessary condition for the existence of a smooth exponential observer,
the linearized pair must be detectable [55]. In fact, most of the existing nonlinear ob-
server design methods are only applicable to uniformly observable nonlinear systems.
Study for observer design of non-uniformly observable systems is still lacking, except
for bilinear systems. This is witnessed in [79], where it is pointed out that one of the
key questions in nonlinear control is “how to design a nonlinear observer for nonlinear
systems whose linearization is neither observable nor detectable”.

An important class of non-uniformly observable systems comes from applications in
mobile robotics. A mobile robot typically operates in an environment (work-space)
with obstacles, and is equipped with exteroceptive sensors to aid localization. For
such systems, due to environmental restrictions and the way the sensors function, the
exciting control has to be chosen in a deliberate manner, i.e. an active observer has
to be designed.

Paper C considers the problem of active observer design for mobile robotic systems and
proposes an alternative design methodology. Moreover, it extends the observability
concept to the field of mobile robotics by proposing a new concept called small-time
observability.

The main ingredients of the proposed methodology include:

• The set of feasible configurations

• The set of output flow equivalent states
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In this paper, it is shown that the inter-relation between these two sets may serve as
the basis for design of active observers. More precisely, the main theoretical result
states that if the exciting control is chosen such that the intersection of the two sets
is a singleton, then the system is small-time observable.

In order to give a conceptually clear description of the main ingredients and steps
required in the construction, a design study is presented. There-within, an active
observer is designed for a unicycle robot model, equipped with a set of range-measuring
sensors. Finally, by means of Lyapunov’s direct method, it is shown that the designed
observer has locally bounded error and that this bound can be made arbitrary small
by tuning the observer gains.

An earlier version of paper C has appeared as

C1: D.A. Anisi and X. Hu, Observability and Active Observers for Mobile Robotic
Systems, International Symposium on Mathematical Theory of Networks and
Systems (MTNS), Kyoto, Japan, Jul. 2006.

Paper D: Riemannian Observers for Euler-Lagrange Systems, coauthored with J. Ham-
berg.

In the last paper of this thesis, a geometrically intrinsic observer for a class of nonlin-
ear systems is defined and analyzed. The subclass considered is that of Euler-Lagrange
systems, where the output of the system is assumed to be the generalized position
and force, and the goal is to reconstruct the generalized velocities. An often prac-
ticed solution to the problem of reconstructing the velocity variables is to numerically
differentiate the known position measurements. This approach however, fails to per-
form for high and fast varying velocities, but naturally also when noise has made the
position measurements havoc.

It is known that the Euler-Lagrange equations are intrinsic and may be written in a
coordinate-free way (see e.g. [80]). It is then natural to keep this coordinate indepen-
dence in the observer design as well. The Riemannian geometric point of view has
influenced part of control theory, e.g. optimal control and control design. However,
the impact on observer design, has been modest. Suppressing unnecessary coordinates
in the observer design has several prominent features. Beside the obvious advantage of
having one universal observer for all coordinate systems, the minimum quantities for
defining an observer become evident. These issues are two of the principal interests
of the work presented in this paper.

The presented observer is a generalization of the one recently proposed by Aghannan
and Rouchon [81]. There, the authors successfully adopt contraction analysis [48], to
address convergence of an intrinsic observer for Euler-Lagrange systems with position
measurements. In this paper, their contractivity result is reproduced and comple-
mented by a proof that the region of contractivity is infinitely thin. In addition, the
results of [81] are extended by using Lyapunov theory to show convergence in the
constant curvature case, whenever we have a priori given bounds on the general-
ized velocities. In the case of physical (e.g. mechanical or electrical) Euler-Lagrange
systems, this assumption is a realistic one.

Finally, the convergence properties of the observer are illustrated by an example where
the configuration manifold is the three-dimensional sphere, S3.

A more compressed version of this paper has been previously published as
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D1: D.A. Anisi and J. Hamberg, Riemannian Observers for Euler-Lagrange Systems,
IFAC World Congress, Prague, Czech Republic, July 2005.

3.1 Remark on Notation

In the four independent papers that follow, the notation is introduced separately in each
paper. The reader is urged to mind notational collision.





Main Contributions and Limitations

The main contributions of this thesis are:

+ Paper A extends previous results regarding Receding Horizon Control (RHC) of au-
tonomous vehicles, by addressing safety and task completion properties in a 3D setting.

+ Paper B presents an adaptive node distribution scheme for online trajectory planning.

+ A concise and conceptually clear definition of an observer is given. This definition
underlies the results of Paper C and D.

+ Based on this definition, several distinguished observer properties are listed and a
classification scheme for observers is proposed.

+ Paper C proposes an alternative methodology for designing active observers for mobile
robotic systems.

+ Paper C also proposes a new observability concept called small-time observability and
provides sufficient condition for it.

+ Paper D defines and analyzes a geometrically intrinsic observer for Euler-Lagrange
systems with position measurements.

The main limitations of the results of this thesis are:

– The main results of Paper A and B should be interweaved. That is, investigation
should be pursued about the possibility of increasing the accuracy of the safe trajectory
planner of Paper A, by using the adaptive node distribution scheme proposed in
Paper B.

– In Paper C, the important question of the relation between the given environmental
map and the global convergence properties of the proposed observer, should be more
extensively studied.

– Using the approach from Paper D on more general spaces is prohibitive. Approxima-
tion schemes are called for.

– The observer of Paper D should be combined with an intrinsic formulation of state-
feedback control. This idea has been elaborated upon in [82, 83] in the special case
when the manifold is a Lie group and the kinetic energy is left invariant.

4.1 Work Division

The first three papers are mainly due to the first author. The coauthors have here provided
invaluable inputs by pointing out unclear arguments and suggesting improvements. How-
ever, the lion’s share of Paper D is profoundly based on the arsenal of differential geometric
tools of Johan Hamberg. The first author made contributions mostly in the introductory
part, the formulation of the given proofs and the section on Euler-Lagrange systems. He
also served as a critical reviewer of the extensive index gymnastics.
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Abstract

On-line trajectory optimization in the three dimensional space is the main topic of
the paper at hand. The high-level framework augments on-line receding horizon control
with an off-line computed terminal cost that captures the global characteristics of the
environment, as well as any possible mission objectives. The first part of the paper
is devoted to the single vehicle case while the second part considers the problem of
simultaneous arrival of multiple aerial vehicles. The main contribution of the first
part is two-fold. Firstly, by augmenting a so called safety maneuver at the end of the
planned trajectory, this paper extends previous results by addressing provable safety
properties in a 3D setting. Secondly, assuming initial feasibility, the planning method
presented is shown to have finite time task completion. Moreover, a quantitative
comparison between the two competing objectives of optimality and computational
tractability is made. Finally, some other key characteristics of the trajectory planner,
such as ability to minimize threat exposure and robustness, are highlighted through
simulations. As for the simultaneous arrival problem considered in the second part,
by using a time-scale separation principle, we are able to adopt standard Laplacian
control to a consensus problem which is neither unconstrained, nor first order.

Keywords: On-line trajectory optimization, Computational Optimal Control, Mis-
sion Uncertainty, Trajectory Re-planning, Safety, Task Completion, Consensus Prob-
lem, Simultaneous Arrival.

A.1 Introduction

I
n this paper, on-line trajectory planning for an aerial vehicle subject to simultaneous
kinematic and dynamic constraints is considered. The trajectory planning problem is

formulated as a somewhat modified Optimal Control Problem (OCP), where optimality
can be dictated by a mixture of conditions and penalties relating to time- and energy
efficiency, threat avoidance, stealth behavior and various end-point constraints imposed
by the target-seeker and/or terrain. An underlying assumption however, is that due to
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imperfect information, the kinematic constraints, as well as the location of the target set
and possible threats, might change during the course of flight. Consequently, we can not
use the family of techniques that rely on off-line generation of a trajectory database for on-
line interrogation [1–3]. Also, assuming the problem originates from a complex real-world
application, the existence of analytical solutions is unlikely; thus we seek fast computational
algorithms for solving the OCP.

Background and Solution Foundation

In late 80’s, by extending their “free path encoding method” [4], Canny and Reid demon-
strated the NP - hardness of finding a shortest kinodynamic path for a point moving amidst
polyhedral obstacles in a three dimensional environment [5]. Therefore, in order to meet
the on-line computational requirement, attention must be paid to approximation methods,
i.e. computationally efficient algorithms that compute kinodynamically feasible trajectories
that are “near-optimal” in some sense.

One way to pursue, is to re-evaluate our notion of optimality. If finding a truly optimal
solution is intractable, one might instead consider finding pareto-optimal solutions, where
the computational load is considered as one of the objective functions to be minimized
(cf. [6]). Pareto-optimality is a concept of multiple objective decision making [7] and, intu-
itively, a pareto-optimal solution is one in which no other solution can improve one objective
without a simultaneous deterioration of at least one of the others. It should however be
noted that in our case, not every pareto-optimal solution will be regarded as feasible. If
just augmenting the objective function from the original OCP with a quantification of the
computational load, one pareto-optimal solution would be not to optimize the trajectory at
all. To see this, notice that the computational load would then be zero and thus any effort
to improve the quality of the trajectory would require increased computational load. In
particular, such a trivially pareto-optimal trajectory, would typically not end in the target
set.

To set this right, it must be noted that although formulated as an OCP, finding a
provably collision free path that is guaranteed to end in the target set must be given higher
priority than the optimality properties thereof. This diversification, or ranking, of our
objectives is quite natural since the optimal control formulation can be considered as a tool
for choosing one single input in the set of controls that fulfill our minimum requirements1,
which in our particular case will be to generate collision free paths that lead us to the target
set. A collision free vehicle path is called safe, while reaching the target set will hence-forth
be referred to as task completion. As will be shown, the controller design of this paper have
both provable safety properties, as well as a guaranteed finite time task completion.

The line of thought presented in this paper merges that of point-wise satisficing con-
trol [9, 10] and Receding Horizon Control (RHC) or Model Predictive Control (MPC) [11].
In RHC/MPC, the doubtful viability of long term optimization under uncertain conditions
is adhered, so that instead of solving the OCP on the full interval, one repeatedly solves
it on the interval [tc, tc + Tp] instead. Here tc denotes the current time instance and Tp

is the planning horizon. Upon applying the first control element, measuring the obtained
state and moving the time interval forward in time, the optimization step is iteratively
performed. This closes the loop and obtains a certain robustness against modelling errors
or disturbances. Unfortunately, it is known that in the absence of particular precautions,

1Any solution meeting the minimum requirements is called satisficing [8]. For a more control-oriented
presentation of the concept, consult [9, 10].
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closed-loop stability2 cannot be assured. In principle however, this issue is relatively easily
tackled by introducing stability terms or constraints. In the literature (see e.g. [11]), several
approaches to ensure stability of RHC/MPC schemes can be found, one of the most ap-
pealing approaches being that of utilizing a constrained control Lyapunov function (CLF)
as terminal cost [12, 13]. As a matter of fact, it has been shown in [14], that OCP, RHC
as well as the set of CLF-based continuous control designs (such as Sontag’s universal for-
mula [15], Freeman and Kokotović’s min-norm formula [16], but also the satisficing control
methods [9,10]) can be viewed in a unified manner; namely that OCP and CLF-based meth-
ods are the two limiting cases of RHC when the planning horizon goes to infinity and zero
respectively (see Figure A.1). This enables us to adopt a horizon independent point of view,
where the length of the planning horizon, Tp, is determined based on accuracy demands
and computational resources, while inherently more global properties (such as stability or
task completion) are handled by the monotonicity properties of the composite cost.

CLF RHC

0 Tp

OCP
Horizon

Figure A.1: A unifying view on OCP, RHC and the CLF-based control methods.

A.1.1 Related work

Task completion has been previously considered by Richards and How [17, 18]. By aug-
menting the system with a binary “target state”, that indicates whether the target set is
reached or not, the authors end up with a hybrid system at hand. Task completion is
then guaranteed by imposing a hard terminal equality constraint on the target state which
restricts the trajectory candidates to those that end up in the terminal set at the end of
the planning horizon. Although intuitively appealing, this is indeed a very restrictive and
computationally demanding constraint that beside the introducement of binary states, re-
quire needlessly long planning horizons. In addition, early termination of the optimization
routine may cause violation of the equality constraint and consequently jeopardize the task
completion objective. The alternative solution outlined in this paper, argues that requir-
ing monotonicity of the composite cost is sufficient to obtain the desired task completion
property. This decouples the length of the planning horizon from task completion and thus
allows us to choose the planning horizon only taking computational resources and real-time
constraints into account.

Regarding safety concerns, reference should be made to the recent works of Ögren and
Leonard [19], Schouwenaars et. al [20] and Kuwata and How [21,22], who consider safe RHC
of autonomous vehicles. These approaches are however tailored for a 2D setting. The last
two references further utilize visibility graphs for environmental representation. Although
visibility graph based methods are effective in urban terrain (where the buildings provide
neat blocks and corner points to exploit), they are not suitable for the mountain terrain
data used in this paper. In addition to regarding a 3D problem, our work shows that it
is possible to address both safety and task completion issues in a unified manner without
introducing any integer variables. It also differs from the mentioned papers by the fact that

2Standard RHC/MPC is tailored for steady-state control or asymptotic stabilization to the origin in
the Lyapunov sense. The notion of task completion considered in this paper is a different problem, namely
it aims at controlling the plant into a target set which is not necessarily control invariant or contain any
equilibrium points.
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in our case, safety also renders task completion possible. This is simply due to an elaborate
choice of the so called “set of safe states”, in which the safety maneuver is to end.

The general framework utilized in this paper for path planning in the three dimensional
space, is reminiscent of that presented in [23]. In both papers, the global characteristics
of the environment and mission objectives are captured in a functional, calculated off-line
and passed to the on-line receding horizon controller as a terminal cost. However, safety
and task completion concerns are the pivotal differences between these two papers. This is
also a convenient point at which to mention that the possibility of updating the “off-line”
computed terminal cost should not be overlooked. As pointed out in [23], the term “off-
line” is rather to be interpreted as, at a much slower sampling rate than the control loop,
i.e. in the order of tens of seconds. As new information about the environment or mission
objectives is gathered when the mission unfolds, it can be processed and fed back regularly
to the vehicle through an updated terminal cost, as discussed in e.g. [24].

Simultaneous arrival of multiple vehicles is an application of the wider class of consensus
problems. Standard results in this field involve consensus problems described by uncon-
strained, scalar (or fully actuated) first order linear systems (see e.g. [25–27]). In our case
however, the relation between the control (i.e. the vehicle acceleration), and the consensus
quantity (which is the Estimated Time to Arrival, ETA) is neither unconstrained nor first
order. However, by using a time-scale separation principle, we are able to achieve consensus
by using standard Laplacian control. In a non receding horizon setting, synchronization of
timing-critical missions has been considered in a number of papers, including [28,29].

This paper is organized as follows; Section A.2 introduces the trajectory optimization
problem as well as some basic terminology used in this paper. Section A.3 presents the
problem formulation and clarifies the relation between the original OCP and the transcrip-
tion thereof into a finite-dimensional nonlinear mathematical programming problem (NLP).
Subsequently, the fundamental role of the safety maneuver and the implication of it on task
completion are discussed in Section A.4. Details on environment representation and termi-
nal cost computation can be found in Section A.5. In Section A.6, a quantitative comparison
between the two competing objectives of optimality and computational tractability is made
for the problem at hand. Section A.7 presents a small selection of the simulations made
with the proposed trajectory planning algorithm while Section A.8 extends these results
to the multi-vehicle case. Finally, Section A.9 concludes this paper with some expository
remarks.

A.2 Preliminaries

In this section, we review some standard background material and present the used termi-
nology. Consequently, the more familiar reader may prefer to skip it at a first reading.
Consider the following trajectory optimization or optimal control problem (OCP):

minimize
u

∫ T

tc

L(x, u)dt (A.1)

s.t. ẋ = f(x) + g(x)u

d(x, u) ≤ 0

x(tc) = xc ∈ R
n

x(T ) ∈ Sf ⊆ R
n,

where the state x(t) ∈ X ⊆ R
n, the control u(t) ∈ U ⊆ R

m, the constraints d : X ×U → R
p,

the terminal time T is a possibly free variable, and tc can be read as the “current” or
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“considered” time. All mappings are assumed to be sufficiently smooth and the dynamical
system complete. To further unburden the discussion, we make a standing assumption
throughout the paper, that all stated minimization problems with respect to u are well–
posed and that the minimum is attained.

Optimal Control Problem

We consider henceforth only feasible state trajectories x, i.e. state histories such that all
conditions in (A.1) are met for all times t and the closed target set Sf is reached in finite
time T ∈ [0,∞). Define Ū as the set of control functions such that u remains in U at all times
and a feasible state trajectory x is generated. Let the value function J : X × Ū 7→ [0,∞)
be defined by

J(x(tc), u) =

∫ T

tc

L(x(t), u(t)) dt, tc ∈ [0, T ],

that is the cost to go from x(tc) to Sf using a control u. We assume that an optimum
to (A.1) always exists and define accordingly the optimal value function J ∗ : X 7→ [0,∞) as

J∗(x(tc)) = min
u∈Ū

∫ T

tc

L(x(t), u(t)) dt, tc ∈ [0, T ],

which thus represents the optimal cost to go from x(tc) to Sf . Without loss of generality
we may assume that L(x(tc), u(tc)) = 0 if and only if x(tc) ∈ Sf so that J∗(x(tc)) = 0 is
equivalent to x(tc) ∈ Sf .

Receding Horizon Control

In the receding horizon setting, we consider a slightly modified OCP where the planning
horizon Tp ∈ [0, T − tc] is given relative to some tc ∈ [0, T ], and the discarded optimal tail
cost, defined as

min
u∈Ū

∫ T

tc+Tp

L(x(t), u(t)) dt,

is upper bounded by some terminal cost, Ψ : X 7→ [0,∞). In other words, we have that

Ψ(x(tc + Tp)) ≥ min
u∈Ū

∫ T

tc+Tp

L(x(t), u(t)) dt.

The terminal cost, Ψ(x(tc + Tp)), is meant to act as a more easily computed (but conser-
vative) approximation to the optimal cost to go from x(tc + Tp) to Sf . With the aid of the
terminal cost, the composite cost J̃ : X × Ū 7→ [0,∞), is defined as

J̃(x(tc), u)

∫ tc+Tp

tc

L(x(t), u(t)) dt + Ψ(x(tc + Tp)).

Since the terminal cost acts as an upper bound on the discarded optimal tail cost we have

J̃(x(tc), u) =

∫ tc+Tp

tc

L(x(t), u(t)) dt + Ψ(x(tc + Tp))

≥
∫ tc+Tp

tc

L(x(t), u(t)) dt + min
u∈Ū

∫ T

tc+Tp

L(x(t), u(t)) dt

≥ min
u∈Ū

∫ T

tc

L(x(t), u(t)) dt = J∗(x(tc)),
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that is, the composite cost provides an upper bound on the optimal value function. Now,
if the control u can be chosen such that J̃ is monotonically decreasing along a feasible
trajectory, then J̃ acts as a Lyapunov–like function for the receding horizon controlled
system. This will, together with a sandwiching argument, guarantee task completion for
the original OCP, i.e. J∗(x(T )) = 0 for some T <∞.
Here, one of the key issues that motivate the present work reveals itself. Namely, since Ψ
is merely an approximation to the optimal cost to go, it will in general not be possible to
find a control u that both satisfies all the constraints in (A.1), and cause a decrease in J̃
(unless Ψ is chosen as a constrained CLF, which will not be assumed in this paper). Using
the terminology of [9, 10], the set of satisficing controls might be empty. In these cases, a
reserve plan (namely using the augmented safety maneuver) turns out to be a useful tool
for ensuring both safety and task completion.

Ideally, Ψ(x(tc + Tp)) should be chosen to equal the optimal value function,

J∗(x(tc + Tp)) = min
u∈Ū

∫ T

tc+Tp

L(x, u)dt,

which can be found by solving the Hamilton-Jacobi-Bellman partial differential equation
(HJBE); a highly nontrivial task. If one would be able to solve HJBE for J ∗ and set the
terminal cost equal to it, then the RHC scheme would coincide with that of solving the
OCP on the full time interval, [tc, T ].

A.3 Problem Formulation

We are now ready to state our trajectory planning problem. The aerial vehicle is modeled
as a unit-mass point in R

3 with bounded velocity and acceleration. The equations of
motion are those of Newtonian mechanics so that the control inputs are the applied forces
or accelerations (by virtue of the unit-mass assumption). Let p = [x y z]T ∈ R

3 denote the
position of the vehicle in its work-space, R

3, while v = ṗ = [vx vy vz]
T denotes its velocity.

Let further
X = {(p, v) : p ∈ R

3, v ∈ R
3},

denote the state-space. A state s = (p, v) ∈ X , is a position-velocity-tuple and hence X
is isomorphic to R

6. Designing the aerial vehicle controller, we would like to meet the
following objectives:

• Avoid ground collision

• Arrive at the target set

• Compute controls in real time

• Allow for information updates

• Use small control effort

• Achieve a short time of flight

• Achieve low threat and radar exposure

Ideally, we would like to formally guarantee the first two items, satisfy the following two
and minimize an objective function composed of the last three. Our primary objective is
however to find a provably collision free trajectory from a specified initial vehicle position
and velocity, i.e. from a given state si = (pi, vi) ∈ X , that reaches a final vehicle position
with an arbitrary final velocity. Hence, the target set can be written as

Sf = {(p, v) ∈ X : p = pf},
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where pf is given. With this diversification, or ranking, of our objectives, we are natu-
rally lead to consider approximative and near-optimal solutions since solving the problem
to optimality turns out to be computationally intractable, contradicting our third listed
objective.

Remark A.1. Note that Sf will in general not be an invariant set. Standard RHC/MPC
is tailored for steady-state control or asymptotic stabilization to the origin in the Lyapunov
sense. The notion of task completion considered in this paper is a different problem, namely
controlling the plant into a target set which is not necessarily control invariant or contain
any equilibrium points.

Problem Transcription

For the actual design of the receding horizon controller, the OCP (A.1), which is an infinite-
dimensional problem of choosing a control function in a given space, has to be transcribed
into a finite-dimensional parameter selection problem. To this end, uniform temporal dis-
cretization is performed and the differential operator is approximated with a zero-order sam-
pled dynamic model. Although it is possible to adopt higher order quadrature rules [30],
a straightforward Riemannian sum is used to approximate the integral cost. The objec-
tive will be to minimize a combination of the L2-norm of the applied control and the task
completion time. Other types of mission objectives, such as low threat exposure, may be
incorporated by the terminal cost. On top of the kinematic constraints, the dynamic con-
straints we consider are hard L∞-norm constraints on both applied acceleration and vehicle
velocity. Then, at each time-step, k ∈ N = {1, 2, . . . }, upon measuring the current state,
(pc, vc), the receding horizon control action, a∗

k,1 is computed. Here, the control sequence

a∗
k = [a∗

k,1, · · · , a∗
k,N ] ∈ R

3N , denotes a solution to the finite-dimensional optimal control
problem3;

minimize
ak

N−1∑

i=1

h(‖ak,i‖22 + β) + Ψ(pk,N ) (A.2)

s.t. pk,i+1 = pk,i + h vk,i i = 1, · · · , N − 1

vk,i+1 = vk,i + h ak,i i = 1, · · · , N − 1

d(pk,i) ≤ 0 i = 1, · · · , N
‖vk,i‖∞ ≤ vmax i = 1, · · · , N
‖ak,i‖∞ ≤ amax i = 1, · · · , N
pk,1 = pc

vk,1 = vc

ak,N ∈ Sε(sk,N ),

where h > 0 is the sampling interval and the design parameter β > 0 determines the relative
importance between time-optimality and energy efficiency. In addition, the set Sε(sk,N ) is
defined as follows.

Definition A.1 (Target approaching controls). The set of target approaching controls,
Sε(sk,i), is defined to be the subset of control values in U , such that

[

Ψ(pk,i + hvk,i)−Ψ(pk,i)
]

+ hL(sk,i, ak,i) ≤ −ε.

3Mind the difference between the time step index, k ∈ N, and the index used in the RHC sequence,
i ∈ {1, · · · , N}.
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Remark A.2. An utmost important question, involves the non–emptiness of the set of
target approaching controls. Under what conditions can we assure that Sε is nonempty and
what can be done in the case of infeasibility? It can be shown (cf. [10]) that if Ψ is chosen
as a constrained CLF and the stage cost, L, is convex in the control variable, then Sε is
a convex, and hence connected set. The parameter ε, determines the size of this set and
if fulfilling a simple inequality constraint, always turns Sε nonempty. However, because of
the apparent difficulties with choosing Ψ as a CLF, this work will recognize the existence
of cases when Sε turns out to be empty. The augmented safety maneuver, which will be
introduced properly in Section A.4, provides a solution to this infeasibility problem.

The motivation behind the nomenclature used for Sε, will be clear from the proposition
to follow.
Let ak = [ak,1, · · · , ak,N ] ∈ R

3N denote the control sequence used at time step k. Let
further

ak+1 =
←−
T (ak, ?) = [ak,2, · · · , ak,N , ?] ∈ R

3N ,

denote the control sequence used at time step k + 1. Here,
←−
T denotes a left shift operator

and the star symbol, ?, denotes an arbitrary control element. These control sequences, give
rise to the trajectories

{
pk = [pk,1, · · · , pk,N ]
vk = [vk,1, · · · , vk,N ]

and
{

pk+1 =
←−
T (pk, pk,N + hvk,N ) = [pk,2, · · · , pk,N , pk,N + hvk,N ]

vk+1 =
←−
T (vk, vk,N + hak,N ) = [vk,2, · · · , vk,N , vk,N + hak,N ]

respectively.

Proposition A.1 (Target set approaching). If choosing ak,N ∈ Sε(sk,N ), then

J̃(pk+1,1, ak+1) < J̃(pk,1, ak),

that is, the composite cost at the next time step has been reduced, hence the target set is
approaching.

Proof.

J̃(pk+1,1, ak+1) =
N−1∑

i=1

hL(sk+1,i, ak+1,i) + Ψ(pk+1,N )

=

N∑

i=2

hL(sk,i, ak,i) + Ψ(pk,N )−Ψ(pk,N ) + Ψ(pk,N + hvk,N )

+hL(sk,1, ak,1)− hL(sk,1, ak,1)

=

N−1∑

i=1

hL(sk,i, ak,i) + Ψ(pk,N )−Ψ(pk,N ) + Ψ(pk,N + hvk,N )

+hL(sk,N , ak,N )− hL(sk,1, ak,1)

≤ J̃(pk,1, ak)− ε− hL(sk,1, ak,1) < J̃(pk,1, ak).

Remark A.3. Although insignificant for the proof of this particular proposition, recursive
use of this result (in order to achieve target set reaching) requires

? = ak+1,N ∈ Sε(sk+1,N ).
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For the sake of completeness and to make the effect of the above described transcription
clear, if we define a parameter vector,

ξk = [pk,1, · · · , pk,N , vk,1, · · · , vk,N , ak,1, · · · , ak,N ]T ∈ R
9N ,

an objective function,

F(ξk) =

N−1∑

i=1

h(‖ak,i‖22 + β) + Ψ(pk,N ),

and constraint functions, G1(ξk) and G2(ξk), according to

G1(ξk) =







pk,i+1 − pk,i − h vk,i

vk,i+1 − vk,i − h ak,i

pk,1 − pc

vk,1 − vc







G2(ξk) =







d(pk,i)
‖vk,i‖∞ − vmax

‖ak,i‖∞ − amax

h(‖ak,N‖22 + β) + [Ψ(pk,N + h vk,N )−Ψ(pk,N )] + ε






,

then (A.2) can be written as

minimize
ξk F(ξk) (A.3)

s.t. G1(ξk) = 0

G2(ξk) ≤ 0

which is the constrained NLP that needs to be solved on-line at each time-step, k.

A.4 The Safety Maneuver and Task Completion

This section provides an alternative whenever the NLP solver fails to provide a solution
to (A.2). This infeasibility may have different sources, including;

• The set of target approaching controls being empty (as remarked upon in connection
with Definition A.1)

• Since the terminal cost is most often calculated from a graph representation of the
environment, it might lead to paths that turn out to be dynamically infeasible in the
future

• Various optimization routine failures including non–convergence and abnormal termi-
nation

Remark A.4. Optimization routine failures will always be present regardless the choice
of Ψ, and may therefore not be neglected in any case.

Previously, in a 2D setting, Schouwenaars et. al [20] and Kuwata and How [21, 22], have
considered safe RHC of autonomous vehicles. By constraining the computed path at each
time-step to end on either a right, or a left turning collision free circle, where the vehicle
can safely remain for an indefinite period of time (or at least until it runs out of fuel),
the first mentioned authors account for safety. The authors of the latter mentioned papers
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make use of three circles to smoothen out all the corners of the straight line segments
in the visibility graph, modify the cost map and thereby incorporate vehicle dynamics in
the terminal cost. To the contrary, our work considers path planning in 3D space and
further differs from previous results, by the fact that in our case, safety also renders task
completion possible. This is simply due to an elaborate choice of the so called set of safe
states, in which the safety maneuver is to end. We argue that a safe state should be chosen
such that there are more options left than just aimlessly lingering in a loiter pattern. The
choice made in this paper (vertically aligned vehicle), always leaves you with the possibility
of continuing upward and thus, upon a full turn above the target point, pf , renders task
completion possible (see Figure A.2). The remaining of this section is devoted to show how
this simple observation underlies both the safety and task completions results, presented as
Proposition A.2 and A.3 respectively.
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Figure A.2: The safety maneuver connects the planned trajectory with the set of safe states
from where the existence of a safe path to the target set is known to exist. Here, to simplify
exposition, the augmented safety maneuver is shown at every tenth time step.

Definition A.2 (Safe path). A path, pj = [xj yj zj ]
T , j ∈ I ⊂ N, is called safe if and only

if its vertical elements, zj, are all located above the terrain surface, i.e.

d(pj) , H(xj , yj) + hmin − zj ≤ 0, ∀ j ∈ I.

Here, H(xj , yj) denotes the altitude of the mountain at the point (xj , yj) (as interrogated
from a more detailed map than the one used for spatial decomposition), and hmin > 0
denotes the minimum clearance distance.

Definition A.3 (Set of safe states). A state, s = (p, v) ∈ X , is called safe if there exists a
safe, as well as dynamically feasible path linking p to the target set, Sf . For the particular
choice of mountainous terrain, a distinguishable subset of the safe states is

Ss = {(p, v) ∈ X : d(p) ≤ 0, eT
z v − ‖v‖ sin ᾱ ≥ 0},

that is, the states where the vehicle is flying with a flight path angle larger than the maximal
terrain inclination, ᾱ.
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The way to ensure collision avoidance, lies in the construction of a so called “safety
maneuver”,

p̆k = [p̆k,1, · · · , p̆k,N̄ ] ∈ R
3N̄

v̆k = [v̆k,1, · · · , v̆k,N̄ ] ∈ R
3N̄

ăk = [ăk,1, · · · , ăk,N̄ ] ∈ R
3N̄ ,

that connects the optimized trajectory,

p∗k = [p∗k,1, · · · , p∗k,N ] ∈ R
3N

v∗
k = [v∗

k,1, · · · , v∗
k,N ] ∈ R

3N

a∗
k = [a∗

k,1, · · · , a∗
k,N ] ∈ R

3N ,

to Ss. In other words, we require (p̆k,N̄ , v̆k,N̄ ) ∈ Ss. Here, N̄ denotes the maximum number
of steps needed to perform the safety maneuver. How to determine N̄ will be discussed in
more detail here-below. This approach can be thought of as increasing the number of nodes
in the temporal discretization from N to N + N̄ . However, in order to be computationally
efficient, the augmented part, i.e. the components of the safety maneuver, are predetermined
and do not take part in the optimization process. The freedom in predetermining the safety
maneuver is limited by the following set of constraints

p̆k,i+1 = p̆k,i + h v̆k,i i = 1, · · · , N̄ − 1

v̆k,i+1 = v̆k,i + h ăk,i i = 1, · · · , N̄ − 1

p̆k,i(z) ≥ H(p̆k,i(x), p̆k,i(y)) + hmin i = 1, · · · , N̄
‖v̆k,i‖∞ ≤ vmax i = 1, · · · , N̄
‖ăk,i‖∞ ≤ amax i = 1, · · · , N̄
(p̆k,1, v̆k,1) = (p∗k,N + h v∗

k,N , v∗
k,N + h a∗

k,N )

(p̆k,N̄ , v̆k,N̄ ) ∈ Ss, (A.4)

which restrict the safety maneuver to be a kinodynamically feasible trajectory for the aerial
vehicle. In the following, the term concatenated solution refers to the augmentation of the
optimized solution, (p∗k, v∗

k, a∗
k), with the safety maneuver, (p̆k, v̆k, ăk).

Proposition A.2 (Safety). Assume the existence of a feasible concatenated solution at time
k = 1. If the safety maneuver is chosen such that it fulfills the constraints (A.4), then there
exists a safe path for all future time steps, k ∈ N \1.
Proof. We reason by mathematical induction. The initialization step is trivially fulfilled
due to the assumption made in the proposition formulation. Next, assume the existence of
a feasible concatenated solution at time step k. In particular, this assumption implies

(p̆k,N̄ , v̆k,N̄ ) ∈ Ss. (A.5)

Remains to show the existence of a feasible concatenated solution at time step, k + 1. To
this end, using the left shift operator,

←−
T , we set

pk+1,
←−
T (p∗k, p̆k,1) =[p∗k,2, · · · , p∗k,N , p̆k,1]

vk+1,
←−
T (v∗

k, v̆k,1) =[v∗
k,2, · · · , v∗

k,N , v̆k,1]

ak+1,
←−
T (a∗

k, ăk,1) =[a∗
k,2, · · · , a∗

k,N , ăk,1]

p̆k+1,
←−
T (p̆k, p̆k,N̄ + hv̆k,N̄ )=[p̆k,2, · · · , p̆k,N̄ , p̆k,N̄ + hv̆k,N̄ ]

v̆k+1,
←−
T (v̆k, v̆k,N̄ ) =[v̆k,2, · · · , v̆k,N̄ , v̆k,N̄ ]

ăk+1,
←−
T (ăk, 0̄) =[ăk,2, · · · , ăk,N̄ , 0̄].
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From the definition of v̆k+1 and Equation A.5 it follows that

eT
z v̆k+1,N̄ ≥ ‖v̆k+1,N̄‖ sin ᾱ. (A.6)

If we let α denote the angle between the velocity vector v̆k,N̄ and the horizontal plane (i.e.
the flight path angle), the maximal terrain inclination implies

|H(p̆k+1,N̄ )−H(p̆k,N̄ )| ≤ tan ᾱ cosα ‖p̆k+1,N̄ − p̆k,N̄‖
≤ sin ᾱ ‖p̆k+1,N̄ − p̆k,N̄‖,

which can be interpreted as a Lipschitz condition on the terrain surface and used to show
that

H(p̆k+1,N̄ ) + hmin ≤
|H(p̆k+1,N̄ )−H(p̆k,N̄ )|+ |H(p̆k,N̄ ) + hmin| ≤
sin ᾱ ‖p̆k+1,N̄ − p̆k,N̄‖+ H(p̆k,N̄ ) + hmin ≤
sinα ‖h v̆k,N̄‖+ p̆k,N̄ (z) = p̆k+1,N̄ (z). (A.7)

Combining Equations (A.6) and (A.7) yields

(p̆k+1,N̄ , v̆k+1,N̄ ) ∈ Ss.

It is then straightforward to verify that (p̆k+1, v̆k+1, ăk+1) fulfills the remaining constraints
of (A.4) and thus, augmented with (pk+1, vk+1, ak+1) serves as a feasible concatenated
solution at time step k + 1.

Remark A.5. Mind the intentional digression from the notation used earlier; solution
(pk+1, vk+1, ak+1) is defined by the left shift operator,

←−
T , and does not necessarily equal

(p∗k+1, v
∗
k+1, a

∗
k+1) - the output obtained from solving the NLP. This is an important point

to make, since the essence of Proposition A.2 is that if the NLP output is missing or do not
satisfy the feasibility constraints of (A.3) and (A.4) at the time step k + 1, then one always
have the choice of taking

(p∗k+1, v
∗
k+1, a

∗
k+1) = (pk+1, vk+1, ak+1),

that is, sticking with the demonstrably feasible solution obtained from the previous time
step, k. In this view, the introduction of the safety maneuver also makes it possible to
cope with hard real-time constraints; namely it provides an applicable option even when
the NLP solver has not converged, or terminates abnormally.

Proposition A.3 (Task completion). Assuming the existence of a feasible concatenated
solution at time k = 1, the trajectory planner will generate safe paths that end in the target
set, Sf . Hence, task completion is guaranteed.

Proof. Let k̄ denote the largest time step for which there exist control inputs am,N ∈
Sεm

(sm,N ), giving rise to feasible concatenated solutions for all m ≤ k̄. Here, εm denotes
the parameter used in time step m. From the initial assumption made, we have k̄ ≥ 1.
Now, if

k̄∑

m=1

εm + hk̄β ≥ J̃(p1,1, a1),



Online Trajectory Planning for Aerial Vehicles 47

task completion follows directly by a recursive call on Proposition A.1 (cf. Remark A.3),
the non-negativity of J̃ and a sandwiching argument. Else, by setting

(p∗
k̄+l

, v∗
k̄+l

, a∗
k̄+l

) = (pk̄+l, vk̄+l, ak̄+l)

for l = 1, · · · , N̄ , and iteratively adopting the argument used in the proof of Proposition A.2,
we get

(pk̄+N̄+N,1, vk̄+N̄+N,1) ∈ Ss.

Task completion is then guaranteed due to Definition A.3; namely the existence of a kino-
dynamically feasible path connecting the points of Ss to the target set.

Since k̄ is ultimately determined by the terminal cost, Proposition A.3 also reveals the
importance of choosing Ψ with a small degree of conservatism.

A.5 Environment Representation and Terminal Cost

Computation

For environmental representation, real terrain elevation data over the Cascade mountains,
WA, have been used (see Figure A.3). The dataset used is a subset extracted from the
one appearing in Reference [31]4. The full-resolution elevation image, is made up of
16, 385 × 16, 385 nodes at 10 meters horizontal spacing. The vertical resolution is 0.1 me-
ters. This dataset occupies roughly 5 GB on disk and is therefore impractical to work
with. However, as will be seen from the simulation results but also pointed out in [23], the
environment should be decomposed in a manner that is consistent with the maneuvering
capabilities of the vehicle. Therefore, this high level of accuracy is not needed to capture
the global characteristics of the environment by the terminal cost, Ψ. The lower-resolution
maps used in the simulations have therefore been sub-sampled at every 16th and 256th in-
stance, resulting in a inter-pixel spacing of 160 and 2560 meters respectively. In the vertical
direction, there are five horizontal layers with 600 meters in between. The vertical positions
of each node depend on the altitude of the terrain at that particular point of the map. The
non-uniform grid built this way, can be seen as stretching out the layers of a uniform grid
on the terrain surface.

Upon this spatial-decomposition procedure, we end up with a grid having only 33×33×5
nodes. Given the target node, nf = Sf , the terminal cost at any node, Ψ(ni), is an
approximation of the cost to go from ni to nf . Naturally, we have that Ψ(nf ) = 0. There is
a cost of cij to be associated with a transition between node i and j. In the nominal case,
this cost will be taken proportional to the Euclidean distance 5. However, if there exist
threat zones or other preferences regarding the path of the vehicle, these costs are readily
modified to account for them as well. For instance, the transition cost is to be set to a higher
value within the detection area of a known SAM-site or radar. The actual values of Ψ(ni)
are calculated off-line using an implementation based on Dijkstra’s algorithm, which returns
the cheapest path (as defined by the costs, cij) from node nf to all other nodes. The value
of the terminal cost at an arbitrary position in the grid is then found using interpolation
between the nodes surrounding that point. The interpolation routine used, can be shown
to be consistent and free from local minimums inside each cube in the grid.

4This freely available data can also be found at
http://duff.geology.washington.edu/data/raster/tenmeter/onebytwo10/.

5Beside its computational simplicity, this choice is motivated by its utility for the simultaneous arrival
problem considered in Section A.8.
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Figure A.3: The terrain elevation map used in the simulations represents an area of more
than 82km ×82km taken from the Cascade range, WA. It contains the summit of Mt.
Rainier, Mt. Adams and Mt. St. Helen’s.

Finally, as pointed out in Section A.1, the term “off-line” here is rather to be interpreted
as at a much slower sampling rate than the control loop, i.e. in the order of tens of seconds.
As new information about the environment or mission objectives is gathered as the mission
unfolds, it can be processed and fed back regularly to the vehicle through an updated
terminal cost (cf. [23,24]). With the non-optimized Matlab code used, it takes on average
15.8 seconds to both built the graph representing the environment and calculate the terminal
cost. Modifying an existing graph (in order to incorporate mission objectives), takes only
1.5 seconds on average. All computations have been performed on a shared Linux cluster,
using one of its four 2.80 GHz Intel Xeon processors.

A.6 Optimality and Computational Load

In this section, we first flesh out the relation between the prediction horizon, Tp, and the
number of nodes used for the temporal discretization, N . Then, we empirically verify the
intuition that a longer prediction horizon (paired with a suitable N), generates solutions
closer to optimum. As expected, the price for this reduction in the objective function has
to be paid in terms of increased computational load. It is then important to set up a
quantitative comparison between these two competing objectives. As a particular example,
it is shown that by accepting a deterioration of less than 3% in the objective function, it is
possible to reduce the run-times with more than 38%.

Prediction Horizon and Temporal Discretization

Generally, trajectory optimization run-times are critically depending on the number of
variables in the underlying NLP. These in turn, are proportional to the number of nodes
in the temporal discretization, N . How the solution time varies as a function of N is
depending on the particular NLP solver used. Figure A.4(a) illustrates the average, and
maximum run-times of NPOPT; the solver used for all simulations here-within. NPOPT is
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an updated version of NPSOL; a sequential quadratic programming (SQP) based method
for solving NLPs [32]. It it worth mentioning, that the average and maximum have been
taken both over a number of planning horizons (typically 10 different values) and iterations
(typically 100 − 150 iterations per planning horizon). The error bars in Figure A.4(a)
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Figure A.4:

represent deviation from the mean value when different planning horizons are chosen. From
the raw data, it can be extracted that there is no dependency between these deviations and
the length of the planning horizon, Tp. Hence these relatively small error bars, rather stem
from the naturally existing fluctuations in solution times of NLPs. It then follows that the
choice of N , is to a large extent restricted by the real-time computational requirement.

Once N has been chosen depending on computational resources6, a guideline for choosing
an appropriate planning horizon is as follows. A lower bound for it is achieved by the
requirement that the sampling time,

h =
Tp

N − 1
,

must be large enough to nest the average run-time. Since constraint fulfillment can only be
imposed at the sampling instances, a hard upper bound for Tp can be found by choosing a
highest allowable inter-node spacing. By inter-node spacing, d, we mean

d = max
k∈{2,...,N}

‖pk − pk−1‖ ≤ dmax, (A.8)

that is, the maximum distance (in the workspace) between two subsequent sampling in-
stances. However, simulations indicate the existence of a vaguer upper bound, above which
deterioration in the objective function arises. All these three bounds are depicted in Fig-
ure A.4(b). It is to be interpreted as follows. For a given N , all the planning horizons

6The horizon independent approach of this paper, allows us to choose N only taking computational
resources and real-time objectives into account; this without jeopardizing task completion/stability. Other
works, where the length of the planning horizon is involved in the task completion/stability proof, do not
enjoy this characteristic.
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lying in area A (above the first mentioned upper bound) are infeasible since they violate
the highest allowable inter-node spacing constraint (A.8) and are hence to be disregarded.
Although feasible, the planning horizons of strip B are non-optimal in the sense that there
always exists a smaller Tp in C that gives a lower value on the objective function. Moving
on to strip C, it constitutes the set of applicable planning horizons. It is in this sector that
the choice of Tp should be made. Finally, all planning horizons in area D (below the lower
bound) give rise to sampling times smaller than the average run-time. The optimization
routine will then typically not have enough time to converge. In this sense, all Tp in D are
to be considered as infeasible.

A Quantitative Comparison Method

In general, a longer prediction horizon - paired with a suitable N as extracted from Fig-
ure A.4(b) - generates solutions closer to optimum. As seen from Figure A.5 and Table A.1,
longer prediction horizon gives rise to shorter trajectories that in addition require less con-
trol effort, i.e. have lower value on the objective function. Referring to Figure A.5, as
Tp increases, the planner becomes more predictive and “cuts corners”, resulting in shorter
trajectories. Regarding the objective function, it can be noted from the fourth column of
Table A.1, that the control effort is also inversely proportional to the horizon length. How-
ever, as evident from the last two columns of Table A.1, this brings a dramatic increase in
average and maximum run-times.
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Figure A.5: The impact of varying the planning horizon length, Tp ∈ {5, 10, 15}. As Tp

increases, the planner becomes more predictive and “cuts corners”.

When going from one planning horizon to another, two important issues are those of
a possible decrease in the objective function (relative optimality) and the increased run-
time associated with it (relative computational load). Table A.2 puts these two aspects in
perspective. There, comparison can be made between the relative increase in the objective
function and the relative reduction in run-time, when going from one planning horizon, Tp1

to a shorter one, Tp2
. This allows us to quantify the “select-ability” and “reject-ability”

properties of this choice. As a particular example, it can be seen from the last row of
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Tp N Path length ‖a‖2 Mean CPU-time Max CPU-time

5 s 4 71 080 m 6.07 0.17 s 0.37 s
10 s 7 70 382 m 4.37 0.35 s 0.74 s
15 s 10 69 919 m 3.72 0.62 s 1.07 s
20 s 13 69 551 m 3.62 1.01 s 1.51 s

Table A.1: Longer prediction horizon generates solutions with lower value on the objective
function. The price of that being the evident increase in computational load.

Tp1
→ Tp2

Rel. optimality Rel. comp. load (mean) Rel. comp. load (max)

10→ 5 s +38.9% −52.3% −50.0%
15→ 10 s +17.4% −43.2% −30.84%
20→ 15 s + 2.9% −38.6% −29.14%

Table A.2: The impact of the length of Tp on the optimality and computational load. By
accepting a deterioration of less than 3% in the objective function, it is possible to reduce
the run-times with more than 38%.

Table A.2, that by accepting a deterioration of less than 3% in the objective function, it is
possible to reduce the run-times with more than 38% by reducing Tp from twenty to fifteen
seconds.

A.7 Simulations

In this section, a small selection of the simulations made with the proposed trajectory
planning algorithm is presented. The intention is to merely illustrate two specific properties
of it; ability to minimize threat exposure, robustness and balancing the two competing
objectives of time-optimality and energy efficiency.

Threat Exposure

As earlier depicted, it is the terminal cost, Ψ(p), that captures the global characteristics
of both the environment and the mission objectives. This is readily done by varying the
costs, cij , in the graph representation of the environment. Figure A.6 shows the effect of
switching on a radar having a detection radius of 10km. The position of the radar is marked
with a black triangle, while yellow circles are used to map out the volume where the vehicle
is visible to the radar. The path with circles, shows the outcome of the trajectory planner
when the radar is not accounted for. Unaware of its existence, the generated path passes
right through the detection area of the radar. The other path, namely the one marked with
squares, shows the outcome when the terminal cost incorporates the radar. The threat
exposure is now minimized by flying at a much lower altitude, utilizing the protection
provided by the terrain and thereby avoiding radar detection.

Robustness

One of the most prominent characteristics of adopting a RHC scheme is that, by reducing
the computational effort drastically, it gives us the possibility to repeatedly solve the NLP
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Figure A.6: The effect of threat exposure on the generated path.

on-line with the current state as a new initial value. This way, feedback is incorporated
and a certain degree of robustness is obtained. Next, to put the robustness properties of
the trajectory planner to test, the existence of parametric uncertainty, measurement noise
and other disturbances (such as wind gust or plant-model mismatch) is introduced. To this
end, the nominal update equation, pk+1,1 = pk,2, is modified to

pk+1,1 = pk,2 + w,

where w is a uniformly distributed noise parameter, U(−w̄, w̄). This modification implies
that we, at the next time instance, will not move exactly to the nominal position we aimed
for but rather to a random point in its vicinity. In what follows, in order to isolate the effect
of the noise parameter, we set Tp = 10, N = 6, and study the generated paths and objective
function (control effort) as w̄ varies in the interval [0 0.5]. Figure A.7 shows the generated
paths corresponding to four increasing values on the noise parameter. As can be seen in
the third column of Table A.3, the disturbance corresponds to a displacement of more than
40%. Table A.3 also offers additional insight into the simulations made. In addition to the
particular values of w̄ that have been chosen, the actual effect of it, expressed as maximum
offset (in meters) from the nominal position, pk,2, can be read from the second column. The
relative disturbance, i.e. the ratio between the maximum offset and the maximum inter-
node spacing, d (see Equation (A.8)), serves as a comparative measure of the size of the
disturbance. Finally, as seen in the fourth column, the control effort increases as a function
of w̄.

Time-Optimality vs. Energy Efficiency

Next, attention is paid to the role of the penalty parameter, β, which determines the relative
importance between time-optimality and energy efficiency. Low values on β indicates a
relatively high penalty on control usage (which yields energy efficient trajectories), while
β taking on a high value reflects the objective of time optimal control. Figure A.8 shows
two trajectories generated with two distinct values on β, namely βL = 1 (Low penalty) and
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(a) w̄ = 0.01
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(c) w̄ = 0.3
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(d) w̄ = 0.5

Figure A.7: The effect of the noise parameter, w, on the generated paths. For the sake
of reference, the nominal path (w̄ = 0), has been sketched with a white solid line. As
w̄ increases, the offset from the nominal path becomes more evident, but is repeatedly
suppressed by the planner.

w̄ Max. offset Relative disturbance ‖a‖2
0.0 − − 4.88
0.01 ± 37 m 2.5% 4.98
0.05 ± 184 m 10.8% 7.94
0.1 ± 367 m 20.3% 15.12
0.2 ± 734 m 29.6% 17.32
0.3 ±1101 m 36.0% 30.48
0.5 ±1835 m 42.4% 48.73

Table A.3: Impact of the added disturbance.

βH = 104 (High penalty). Table A.4 offers additional insight into the simulations made.
In particular, the simulations verify the intuition that βL produces more energy effective
paths, while βH results in more aggressive maneuvers and faster task completion.
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Figure A.8: The effect of varying the penalty parameter, β.

Penalty parameter Time of flight Energy consumption

βL = 1 TL = 362.5 s ‖u‖L = 0.26
βH = 104 TH = 227.5 s ‖u‖H = 1.13

Table A.4: The trade-off between the two competing objectives of time-optimality and
energy efficiency can be made by varying the penalty parameter, β.

A.8 Simultaneous Arrival of Multiple Aerial-Vehicles

In this section we extend the trajectory optimization problem considered in Section A.3 to
the multi-vehicle case. In a centralized setting, such generalization is straightforward with
inter-vehicle collision avoidance and increased computational effort as the main hurdles.
The first issue can be handled explicitly by the trajectory planner by imposing anti-collision
constraints such as safety zones around each vehicle. To hold the computational burden in
check, parallel and distributed computing techniques might be considered. A decentralized
RHC scheme to generate collision free trajectories have been proposed in [33] where the ve-
hicles, based on local information, sequentially plan their individual trajectories. Further, in
the venue of formation stabilization of a group of vehicles that are only coupled through the
cost function, [34] proposes a distributed implementation of RHC. In this paper, we outset
from these works and pay attention to cooperative decision making and consensus seeking
in the multi-vehicle network. In particular, we are interested in the problem of agreeing on
a simultaneous arrival time. Task synchronization gives major strategical advantages for a
large class of mission scenarios, including the case when jamming the enemy radar.

In what follows, in Section A.8.1, we present the framework that will capture this con-
sensus problem of ours and review some established results. Standard results in this field
involve consensus problems described by unconstrained, scalar (or fully actuated) first order
linear systems (see e.g. [25–27]). Extensions in the direction of time dependent interaction
topology and communication delays have also been made [35–37]. In our case however,
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the relation between the control (i.e. the vehicle acceleration), and the consensus quantity
(which is the Estimated Time to Arrival, ETA) is neither unconstrained nor first order.
To remedy this, our design study is presented, where we propose a time-scale separation
principle (Section A.8.2) which gives rise to simple equations of motion for the ETA. The
interaction between the consensus planner and the trajectory planner is discussed in Sec-
tion A.8.3 while simulation results are presented in Section A.8.4.

A.8.1 Consensus Problems on Weighted Graphs

Consider a weighted graph G = (V, E ,A) representing the interaction topology of the net-
work of vehicles. Here V denotes the set of vertices, E ⊆ V × V is the set of edges, while A
is a weighted adjacency matrix, A = [alm], with non-negative elements, alm. Each vertex
vm ∈ V is an aerial-vehicle. Let n = |V| denote the cardinality of the vertex set, i.e. the
total number of vehicles in the group, so that m ∈ Nn , {1, · · · , n}. There is an edge
elm = (vl, vm) between any two vertices vl and vm, if and only if the two vehicles can
communicate. The elements of the adjacency matrix A are associated with the edges of the
graph through elm ∈ E ⇐⇒ alm > 0. In this work, we assume the information flow, and
hence the graph G, to be undirected and connected, i.e. there is a path connecting any two
vertices of the graph. If we let Nm = {l ∈ Nn : elm ∈ E} denote the set of neighbors of
vehicle m, assuming G to be connected implies that Nm 6= ∅, for all m ∈ Nn.

Let ηm(t) ∈ R denote the consensus state of vehicle m at time t. In our case ηm

represents the Estimated Time to Arrival (ETA) for vehicle m. Simultaneous arrival then
means reaching consensus regarding the ETA i.e.

η(t) = [η1(t), · · · , ηn(t)]→ ηd1, as t→∞,

with 1 = [1, · · · , 1] ∈ R
n and the consensus value ηd ∈ R. Assuming the simple first-order

dynamics7

η̇m = um, ∀m ∈ Nn, (A.9)

it has been shown (see e.g. [26,35]), that the following distributed control law (or protocol)

um =
∑

l∈Nm

alm(ηl − ηm) (A.10)

will globally exponentially reach consensus with the speed of the algebraic connectivity of
the graph (see e.g. Theorem 8 in [35]). Protocol (A.10) can be referred to as the “Lapla-
cian protocol”. The reason for this is apparent when considering the closed-loop network
dynamics

η̇(t) = ∆η(t) = −Lη(t), (A.11)

where ∆ denotes the discrete Laplace operator and L is the Laplacian matrix of the graph
G, defined as

L = diag(d1, · · · , dn)−A.

Here dm denotes the valency (i.e. the in/out degree) of vertex m.

7Technically, we do not have this dynamics at hand, but in a discrete setting, we can use a time-scale
separation principle to still motivate the use of this (see Section A.8.2 for details).
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A.8.2 The Time-scale Separation Principle

Standard results in the field of cooperative control and decision making involve consensus
problems described by unconstrained, scalar (or fully actuated) first order linear systems (see
e.g. [25–27]). As previously mentioned, for any vehicle in the group, the relation between
the actual control inputs (i.e. the vehicle acceleration, am) and the consensus state (which is
the ETA, ηm) is neither unconstrained nor first order. In this section however, by utilizing
a time-scale separation principle and introducing the artificial consensus planner control
inputs, um, we are able to motivate the use of the unconstrained first order dynamics (A.9).

To set stage for the discussion, it might be fruitful to make a minor digression to the
principle of guidance and control. Traditionally, the problem of steering a vehicle to its
target is broken down into (at least) two subproblems: the problem of trajectory optimization
(or guidance) and the problem of auto-pilot design (or control). This can be viewed as a
control system having two degree of freedom; an inner loop (the auto-pilot) and an outer loop
(the trajectory optimizer) (see Figure A.9). The pivotal idea that justifies this separation

Auto−pilot

PlantOptimizer
Trajectory

Constraints

ObjectivesPSfrag replacements uref

xref

uc

u y

Figure A.9: The two level separation of the control system is possible due to the multiple
time-scales of guidance and control.

is the multiple time-scales on which guidance and control occurs on. The discrete-time
guidance problem considered in this paper occurs on a relatively slow time-scale (in the
order of seconds). The inner control loop on the other hand takes place on a much faster
time-scale (in the order of milliseconds) and is most often based on a dynamic model of the
vehicle. It is noteworthy that by virtue of this separation, only suboptimal solutions can in
general be found, but the advantage is that the details of the (nonlinear) dynamics of the
vehicle only enters into the trajectory optimization part as relatively simple conditions on
the reference trajectory. This separation thus justifies the simple linear dynamics used to
describe the aerial vehicle in (A.2).

As for the consensus problem of ours, we imitate the above described idea of time-scale
separation principle and design the consensus planner on a fast time-scale. More precisely,
between any two subsequent time-steps in the discrete RHC setting (i.e. between time-
steps k and k+1), we adopt a consensus problem on the fast time-scale, where each vehicle,
vm, shares its consensus state ηm with its neighbors, Nm. A schematic block-diagram
representation of the multi-vehicle network can be seen in Figure A.10. By possibly scaling
the Laplace protocol, its exponential convergence rate implies practical convergence of the
consensus states at the end of the kth time-step. Subsequently, the consensus planner sends
back the consensus value (i.e. the desired ETA for all vehicles), denoted ηd in Figure A.10.
The trajectory planner is then to take ηd into account when planning the trajectory in the
next time-step. How to do this, as well as how to calculate ηm, is discussed in Section A.8.3.

By virtue of this time-scale separation, the freedom of design of the consensus planner
box is obtained. To this end, the artificial consensus planner control inputs, um, are intro-
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Figure A.10: Block-diagram representing consensus planners and the information flow in
the multi-vehicle network.

duced. Further, the dynamics of the state of the consensus planner (i.e. ηm) may have the
linear first order dynamics (A.9).

Remark A.6. As pointed out in [38], all the previously mentioned works on consensus
problems (i.e. References [25–29, 35–37]) assume there is a global clock that synchronizes
the state updates. This ruins the truly decentralized touch of the approaches. However,
based on the time-scale separation principle depicted above, we argue that by introducing
the clock as another actuated consensus state in the consensus planner (on the fast time-
scale), the vehicles can reach consensus regarding the global clock in the same way as with
the ETA.

A.8.3 Consensus Planner Interaction

As depicted in Figure A.10, the consensus planner of the mth vehicle receives the ETA, ηm, at
the beginning of each time-step. At the end of the time-step, the consensus planner returns
the consensus value, ηd, to the trajectory planner. Two important questions regarding this
interaction are:

1. How the trajectory planner should estimate the time to arrival (i.e. calculate ηm) based
on the output from the finite-dimensional optimization problem (A.3).

2. How the trajectory planner should take ηd into account when planning the trajectory
in the next time-step.

These two issues are further discussed here-below.



58 Paper A

Estimating the Time to Arrival

As mentioned in Section A.3.A.5 the terminal cost, Ψ(p), conveys information about the
distance from p to the target point, pf . Our main objective for making this choice has
been its computational simplicity. The consensus problem currently considered, reveals yet
another advantage for making this choice namely, it facilitates arrival time estimation. Thus
the simultaneous arrival problem currently considered serves as an example for a case when
it might be beneficial not choosing the terminal cost, Ψ, close to the optimal value function,
J∗.

Regarding the estimation of the arrival time based on the output of (A.3), the following
is proposed:

ηm,k = Tp +
Ψ(pk,N,m)

vmax
, (A.12)

where ηm,k denotes the ETA of the mth vehicle at the kth time-step, while pk,N,m is the final
position of ditto. This choice is naturally not unique. In particular, one could choose the
denominator in (A.12) differently, for instance as the average (or maximum) of the velocities
in the planned trajectory, i.e.

1

N

N∑

i=1

vk,i,m, (or max
i

vk,i,m).

The current choice (A.12) is however motivated by the fact that, if not updated in the far
future, Ψ is an overestimation of the distance to go, why an apparent overestimation of the
velocity in the denominator might be advantageous. In simulations, (A.12) has turned out
to be a successful choice.

Consensus Value Incorporation

Next we consider the impact of the consensus planner on the trajectory optimizer, i.e. raise
the question of how the trajectory planner should take ηd into account when planning the
trajectory in the next time-step, k + 1. In practice, the trajectory planner can satisfy the
objective of the consensus planner by either imposing a hard constraint

Tp +
Ψ(pk+1,N,m)

vmax
+ h− ηd = 0, (A.13)

or by penalizing deviations from the consensus value, ηd. For instance the following penalty
term

[
Tp +

Ψ(pk+1,N,m)

vmax
+ h− ηd

]q
, q positive even integer,

could be included in the objective function. In the simulations presented in Section A.8.4,
the former approach has been taken. The main reason, is its deterministic nature.

This is a convenient point at which to emphasize that since Ψ is merely an approximation
of the distance to go (an overestimation if Ψ is not updated in the far future), one must
expect and prepare for the case when the ETA turn out to be false at later time instances.
To cope with this issue, as well as with the limited vehicle capability to adjust its ETA
(in order to fulfill (A.13)), an “outlier detection rule” is adopted. The main idea is that
if the consensus value is beyond the range which a vehicle can adjust its arrival time, it
should classify itself as an “outlier” and as such, passively follow as the mission unfolds.
Note however, that there is no need for an outlier to permanently resign from the mission
as ηd might change non-uniformly in the far future. In addition, in order to keep the graph
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connected - but without affecting the consensus value - an outlier should communicate the
average value of the consensus states of its neighbors as its own consensus state. How
the outlier classification rule should be designed is an ambiguous question but, based on a
scenario involving many vehicles with a few distinct outliers, the following rule

ηd − h

ηk,m

∈ [1− δ, 1 + δ] (A.14)

with δ = 0.3 has been used in the simulations to follow.

A.8.4 Simulations

Since the convergence properties of the consensus value, ηd, can be handled separately, the
principal objective for the simulations presented in this section, is to concentrate on the
interaction between the consensus planner and the trajectory planner for one single vehicle.
The following setup has been used to highlight this aspect and to incorporate the impact of
the other vehicles. In each iteration, a fictitious consensus planner receives ηm for the vehicle
and sends back a modified consensus value, ηd. In the nominal case, in order to capture
time-evolution, ηd will just decrease with a constant. Every 30th time-step however, ηd is
set to random number that deviates from ηm by a given percentage at most. To connect
to the outlier detection rule (A.14), a maximum deviation of 30% has been used in the
simulations.

Although the simulations only involve the trajectory planner of one single vehicle, it
must be emphasized that this setup enables us to capture several aspects of the impact of
the other vehicles in the group as well. To start with, a deviating ηd may reflect the most
ordinary case of different vehicles having different ETAs. Alternatively, this deviation may
stem from the important case when the terminal cost, Ψ, turns out to be false for some of
the vehicles. Finally, the occasionally occurring case when the optimization routine used in
a vehicle fails to satisfy the hard equality constraint (A.13) may result in a deviating ηd.
This latter case may occur even though ηd has passed the outlier detection rule (A.14) and
has been observed in the simulations, as can be seen in Figure A.11.
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Figure A.11: Two simulations showing the ETA of a vehicle (dashed line) and the consensus
value ηd (solid line) which incorporates the impact of the other vehicles in the group.

The simulations indicate that, in most cases, the trajectory planner manages to fulfill
the will of the consensus planner in one single time step. However, in some cases when



60 Paper A

there is a large change in the set point, or when the optimization routine fail to satisfy the
equality constraint (A.13) (most often since the limit for the maximum number of major
iterations is reached), it might take more than one time-step for the trajectory planner to
converge to the ηd dictated by the consensus planner.

A.9 Conclusion

In this paper, results regarding trajectory optimization for aerial vehicles in the three dimen-
sional space has been presented. In particular, properties such as safety, completion and si-
multaneous arrival were in focus. Other prominent characteristics of the presented method,
such as ability to minimize threat exposure and robustness, were highlighted through sim-
ulations.

As for the safety concerns, the alternative outlined in this paper, extends previous results
by possessing provable safety properties in a 3D setting. In addition, in our case, safety also
renders task completion possible. This is simply due to an elaborate choice of the set of safe
states, in which the augmented safety maneuver is to end. As a subsidiary consequence,
introducing the safety maneuver also makes it possible to cope with hard real-time systems.

Because of the computational burden it introduces, task completion is here not achieved
by merely adjusting the length of the planning horizon. Instead, it is argued that requiring
monotonicity of the composite cost is sufficient for approaching the target set. Decoupling
the length of the planning horizon from our task completing objectives, enables us to de-
termine it solely on the basis of accuracy demands and computational resources. To guide
this selection, the interaction between optimality and computational load was empirically
examined in Section A.6, where a quantitative comparison between these two competing
objectives where made.

Finally, by using a time-scale separation principle, we were able to adopt standard
Laplacian control to a consensus problem which is neither unconstrained nor first order.
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Abstract

Direct methods for trajectory optimization are traditionally based on a priori tem-
poral discretization and collocation methods. In this work, the problem of node dis-
tribution is formulated as a constrained optimization problem, which is to be included
in the underlying non-linear mathematical programming problem (NLP). The benefits
of utilizing the suggested method for on-line trajectory optimization are illustrated by
a missile guidance example.

Keywords: Computational Optimal Control, On-line Trajectory Planning, Adaptive
Grid Methods, Missile Guidance.

B.1 Introduction

T
he paradigm of qualitative control design, that is associating a measure of the “utility”
of a certain control action, has been a foundation of control engineering thinking. Con-

sequently, optimal control is regarded as one of the more appealing possible methodologies
for control design. However, as captivating and appealing as the underlying theory might
be, real-world applications have so far been scarce. Some of the reasons for this might
be the level of mathematical understanding needed, doubtful viability of optimization un-
der uncertain conditions, and high sensitivity against measurement and modeling errors.
Another particularly important factor originates from the high computational demand for
solving nonlinear Optimal Control Problems (OCP). As a matter of fact, by extending their
“free path encoding method” [1], Canny and Reid have demonstrated the NP - hardness
of finding a shortest kinodynamic path for a point moving amidst polyhedral obstacles in
a three dimensional environment [2]. Consequently, attention have been paid to approx-
imation methods and computationally efficient algorithms that compute kinodynamically
feasible trajectories that are “near-optimal” in some sense. Due to the rapid development
of both computer technology and computational methods however, the above picture has
begun to change. Besides avionics and chemical industry, increasingly many new industrial
applications of optimal control can now be observed. In this paper, the problem of missile
guidance will be in focus.
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It is a well-established fact in numerical analysis, that a proper distribution of grid
points is crucial for both the accuracy of the approximating solution, and the computational
effort (see e.g. [3, 4]). In general, grid adaption is carried out by some combination of
re-distribution (strategically moving the nodes), refinement (adding/deleting nodes), or
employing higher order numerical schemes in regions where the local accuracy needs to be
improved (consult e.g. [5]). In most cases however, there exist a trade-off between accuracy
and efficiency in terms of computational effort. In this paper, the focus is on improving
accuracy for a given efficiency requirement. More precisely, once the number of nodes in
the temporal discretization has been decided (depending on e.g. computational resources),
the question of optimal node distribution is raised. Although adaptive grid methods -
which mainly concern node distribution in the spatial domain - have been an active field
for the last couple of decades, to the best of our knowledge, utilizing them for adaptive
node distribution (in the temporal domain) and on-line trajectory optimization has not
been considered elsewhere.

This paper is organized as follows. In Section B.2 some background material regarding
computational methods for solving optimal control problems is presented. Subsequently in
Section B.3, we advocate that in any computationally efficient method, node distribution
should be a part of the optimization process and show that the receding horizon control
(RHC) method can be considered as an outcome of such a paradigm. In Section B.4, the
benefits of utilizing the suggested method are confirmed by a missile guidance example.
Finally, this paper is concluded in Section B.5 with some expository remarks.

B.2 Computational Optimal Control

Consider the following trajectory optimization or Optimal Control Problem (OCP):

minimize
u J =

∫ T

0
L(x, u)dt + Ψ(x(T ))

s.t. ẋ = f(x, u)
g(x, u) ≤ 0

x(0) ∈ Si

x(T ) ∈ Sf ,

where the state x ∈ R
n, the control u ∈ R

m, and the constraints g : R
n × R

m → R
p.

All mappings in this paper are assumed to be smooth and the dynamical system complete
so that every control input, u(·), results in a well-defined trajectory, x(·). An underlying
assumption however is that due to imperfect information, the kinematic constraints, as well
as the target set, might change drastically during the course of flight. Consequently, we can
not use the family of techniques that rely on off-line generation of a trajectory database
for on-line interrogation [6–9]. Also, assuming the problem originates from a complex,
real-world application, the existence of analytical solutions is disregarded, thus seeking fast
computational algorithms for solving the OCP.

Problem Transcription

For the actual design of the computational algorithm, the infinite dimensional problem of
choosing a control function in a given space, have to be turned into a finite dimensional
optimal parameter selection problem, i.e. a non-linear mathematical programming problem
(NLP). This process of representing the continuous time functions by a finite number of
parameters, is referred to as transcription and is typically achieved by either temporal
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discretization or finite sum of known basis functions1 [12]. Since this latter transcription
method leads to implicit constraints and gradient expressions, which in turn may give
increased computational complexity, the focus in this paper will be on transcription methods
based on temporal discretization.

It is further conceptually important to differ between direct and indirect transcription
methods (see Figure B.1). For a given OCP, indirect methods, which are based on the cal-

Nλ
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Lagrange multipliers
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OCP OCP

OCP

λ

N
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Figure B.1: Direct and indirect transcription methods.

culus of variations, start off by introducing the Hamiltonian and formulating the optimality
conditions according to the Pontryagin Maximum Principle (PMP). They then proceed by
transcribing the associated two point boundary value problem (TPBVP) (denoted OCPλ

in Figure B.1). In contrast, direct methods transcribe the OCP directly, hence turning it
into a large NLP (denoted OCPN in Figure B.1). The dual to this NLP and the Lagrange
multipliers may be achieved by way of the Lagrangian and the Karush-Kuhn-Tucker (KKT)
conditions. The direct- and indirect methods have a particular simple relation for the so
called complete methods [13], for which transcription and dualization indeed commutes, so
that the Lagrange multipliers of the NLP are a multiple of the discretized values of the
adjoint variables associated with the PMP.

Although indirect methods are considered to produce more accurate results, they are
not typically used to solve problems having complex dynamics or constraint set. Neither
are they suitable for problems where the underlying OCP is considered to be changeable
in terms of the final manifold, Sf and/or the constraint set, g(x, u). This is mainly due
to the possibly ill-conditioned properties of the TPBVP, but also the occasionally tedious
derivation of the necessary conditions via PMP. Bearing in mind the type of problems
considered in this paper, the focus will therefore be on direct transcription methods.

In most direct methods (see e.g. [12] and the references therein), transcription is achieved
by a priori partition of the time interval into a prescribed number of subintervals whose
endpoints are called nodes. The NLP variables may then be taken as the value of the
controls and the states at these nodes. The integral cost functional and the constraint
set are discretized similarly and approximated by any preferred quadrature rule (consult
e.g. [3, 14]). Finally, additional constraints are imposed on the NLP variables so that the
state equations are fulfilled at the so called collocation points.

1Certain choices for basis functions, blur the distinction between the two mentioned transcription meth-
ods (see e.g. [10, 11]).
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B.3 Adaptive Node Distribution

It is a well-established fact in numerical analysis, that a proper distribution of grid points
is crucial for both the accuracy of the approximating solution, and the computational effort
(see e.g. [3,4]). Consequently, the use of adaptive grid methods has for long been an essential
element in the sphere of numerical solution of partial differential equations (PDE) as well
as ordinary differential equations (ODE) [15]. Despite being an active field for the last
couple of decades, to the best of our knowledge, utilizing adaptive grid methods for finding
on-line solutions to the trajectory optimization problem has not been considered elsewhere.
The basic idea is that by concentrating the nodes and hence computational effort in those
parts of the grid that require most attention (e.g. areas with sharp non-linearities and large
solution variations), it becomes possible to gain accuracy whilst retaining computational
efficiency. This can be regarded as one of the explanations to the success of the receding
horizon control (RHC) or model predictive control (MPC) methods (see e.g. [16,17]). Here,
the doubtful viability of long term optimization under uncertain conditions is adhered, so
that instead of solving the OCP on the full interval [0, T ], one repeatedly solves it on the
interval [tc, tc+Tp] instead. Here tc denotes the current time instance and Tp is the planning
horizon. However, even in the RHC case, the sub-horizon OCP on [tc, tc +Tp] is most often
solved based on, if not equidistant (uniform), but at least a priori temporal discretization
techniques.

In general, there exist three types of grid adaption techniques [5]:
1. h-refinement : strategically adding extra nodes to the existing grid in order to improve

local grid resolution.
2. p-refinement : employing higher order numerical schemes in regions where the local

accuracy needs to be improved.
3. r-refinement : maintaining a fixed number of nodes, but relocating them strategically

over the interval.
Generally, trajectory optimization run-times are critically depending on the number of
variables in the NLP. These in turn, are proportional to the number of nodes in the temporal
discretization, hence-forth denoted N . How the solution time varies as a function of N is
depending on the structure of the considered problem, adopted solution method and not
the least: the particular NLP solver used. Figure B.2 illustrates the average, and maximum
run-times of NPOPT; the solver used for all simulations here-within. NPOPT is an updated
version of NPSOL; a sequential quadratic programming (SQP) based method for solving
NLPs [18]. It is worth mentioning, that the average and maximum have been taken both
over a number of planning horizons (typically 10 different values) and iterations (typically
100−150 iterations per planning horizon). This in order to isolate the relation between the
number of nodes and the solution run-times.

The essence of Figure B.2 is that the choice of N , is to a large extent restricted by
real-time computational requirements. Hence, it is extremely important to keep N as low
as possible when aiming at constructing computationally efficient methods for trajectory
optimization. Therefore, it is the idea of r-refinement that suits our purposes best. To this
end, let p = [t1, · · · , tN ] ∈ R

N denote a partition of [0, T ],

0 = t1 < t2 < · · · < tN−1 < tN ≤ T.

Adaptive grid methods are then based on either equidistribution of a monitor function, or
functional minimization (FM) [4, 5, 19].

The equidistribution principle (EP) requires a chosen positive definite monitor function
(or weight), w, to be equidistributed over all subintervals. Mathematically, the EP can be
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Figure B.2: The increasing average and maximum run-times of NPOPT as a function of
N . Computations are performed on a shared Linux cluster, using one of its four 2.80 GHz
Intel Xeon processors.

expressed in various equivalent forms, e.g.:

mi(p)=

∫ ti+1

ti

w dt−
∫ T

0
w dt

N − 1
= 0, i = 1, · · ·, N−1,

mi(p)=

∫ ti

ti−1

w dt−
∫ ti+1

ti

w dt = 0, i = 2, · · · , N−1.

As an example, w ≡ 1 gives rise to the frequently used uniform (equidistant) discretiza-
tion method. Other commonly employed monitor functions include the “arclength monitor
function”, w =

√
ε + ẋ2 (claimed to be the most efficient among all choices), and “curvature

monitor function”, w = (ε+ ẍ2)
1
4 . Here the design-parameter, ε ≥ 0, decides how dense the

nodes are lumped in the circumvent of areas with large solution variations.
The functional framework to grid generation (FM), is based on the principle of specifying

a measure of the grid quality. Traditionally, principles as smoothness, orthogonality and
clustering properties of the grid are included in the functional, I(p), [4,19]. Minimizing I(p)
will produce an optimal partition with respect to the chosen grid quality measure.

Based on the two existing frameworks for adaptive grid generation (EP and FM), we
now outline a generalized approach. Regardless the choice of w, we remark that node
allocation by the EP, can be determined by imposing a number of grid constraints, m(p) ≤ 0.
These constraints are to be augmented with the original constraints, g(x, u). Note that this
approach introduces constraints and state variables (namely p) in the augmented NLP.
However, it also enable us to use a partition with smaller number of nodes compared with
an a priori and fixed discretization method, so that the total number of variables and
constraints might still be reduced. The idea is then to formulate the problem of node
distribution as a constrained optimization problem:

minimize
p

I(p) (B.1)

s.t. m(p) ≤ 0,
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which is to be augmented with the underlying NLP. From (B.1) it is plainly seen that EP
and FM are merely special cases of the suggested approach. We conclude this section by
giving examples of the usage of this approach.

Example B.1. Setting di = ti+1 − ti, i = 1, · · · , N − 1, the solution to the following
optimization problem:

minimize
d I(d) =

∑N−1
i=1 di − ε ln di

s.t. m(d) =
∑N−1

i=1 di − T ≤ 0 (di ≥ 0),

is the equidistant RHC discretization scheme with ε deciding the step length (and hence
planning horizon). This follows since if (N − 1)ε ≤ T , then

∇iI(d) = 1− ε

di

= 0 =⇒ di = ε.

Example B.2. The linear constraint

m(d) =

ε1(N−1)
∑

i=1

di − ε2T ≤ 0,

reflects the objective of distributing ε1 parts of the nodes in the first ε2 parts of the time
interval.

The main reason for being interested in this types of constraints lies along the line of
thought of RHC/MPC approaches; that is considering current information as perishable so
that it is favorable to concentrate the nodes in the near future.

B.4 Design Study: Missile Guidance

Traditionally, the problem of steering a missile to its target is broken down into (at least)
two subproblems: the problem of trajectory optimization and the problem of auto-pilot
design. This can be viewed as a control system having two degree of freedom; an inner
loop (the auto-pilot) and an outer loop (the trajectory optimizer) (see Figure B.3). The

Auto−pilot

PlantOptimizer
Trajectory

Constraints

ObjectivesPSfrag replacements uref

xref

uc

u y

Figure B.3: Two level separation of the missile guidance problem.

trajectory optimizer provides a feasible feed-forward control and reference trajectory that
is optimal in some specified sense with respect to e.g. time to intercept or intercept velocity,
and subject to constraints on e.g. terminal aspect angle (given by warhead efficiency and
target vulnerability) or path segment location (dictated by tactical considerations). It is
then the task of the auto-pilot to perform the trajectory following.

By virtue of this separation, only suboptimal solutions can in general be found, but the
advantage is that the details of the dynamics of the missile only enters into the trajectory
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optimization part of the problem as (relatively simple) conditions on the reference trajectory.
In this work, the existence of an auto-pilot is assumed, so that the focus will solely be on
the trajectory optimization part.

By means of standard approximation procedures in flight-community (see e.g. [20, 21]),
the six-degree-of-freedom (6DoF) equations of motion of the missile in R

3, can be reduced
to 3DoF planar movement in two orthogonal subspaces, namely the pitch-, and yaw-plane.
Since the 3DoF equations of motions in these planes are similar and decoupled, in what
follows, just the pitch-plane dynamics will be considered.

The 3DoF equations of motion in the pitch plane consider the rotation of a body-fixed
coordinate frame, (Xb, Zb) about an Earth-fixed inertial frame, (Xe, Ze) (see Figure B.4).
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Figure B.4: Missile system variables.

The governing dynamic equations are

u̇ =
Fx

m
− qw − g sin θ

ẇ =
Fz

m
+ qu + g cos θ

q̇ =
M

Iy

θ̇ = q

ẋe = u cos θ + w sin θ

że = −u sin θ + w cos θ,

where u and w are the Xb and Zb components of the velocity vector, xe and ze denote the
position of the missile in the inertial frame (Xe, Ze), q is the pitch angular rate, θ denotes
the pitch angle, m is the missile mass, g is the gravitational force, while Iy denotes the
pitching moment of inertia. The system inputs are the applied pitch moment, M , together
with the aerodynamic forces, Fx, Fz, acting along the Xb and Zb axis respectively. During
the simulations we adopt the constants given in Reference [22] and set m = 204.02 kg,
g = 9.8 m/s2 and Iy = 247.437 kg m2.

Referring to Figure B.5, the first simulation shows the terminal guidance part of a
missile trajectory optimization problem. The missile starts off horizontally from (0, 10)
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aiming at a target in (700, 0) with terminal aspect angle − π
2 . Figure B.5 depicts the

reference trajectories with the missile velocities (in the inertial frame) indicated by small
line segments. In the adaptive case, an EP based on the arclength monitor function is used.
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Figure B.5: Reference trajectories: static (◦) and adaptive (�).

Seeing beyond the unequal axis scales, the nodes have been distributed more evenly over
different path segments. In fact, there are 7 nodes/100 m path segment in the adaptive
case, while the same figure varies between 5− 13 in the static case.
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Figure B.6: The accuracy of the approximating control.

Figure B.6 shows the optimal control approximation error as a function of N . It can
be noted that, for a given N , the extra degree of freedom provided by distributing the
nodes is used constructively to improve accuracy. This illustrates the soundness of the
proposed approach. Moreover, Figure B.6 reveals the nonuniform convergence rate of the
approximation error which - in our particular case - is seen to be minimized for N = 25.
The reason for this is the pronounced nonlinearity of the considered NLP together with
the fact that the used optimization routine (NPOPT) is a local optimizer, i.e. does not
guarantee convergence to a global minimum. It is therefore not possible to expect that a
higher value on N should always yield a better trajectory approximation.
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As previously mentioned, in general, there is a trade-off between accuracy and efficiency
in terms of computational effort. Once we have observed that re-distributing the nodes
improves the accuracy of the approximation, one might wonder how this effects the compu-
tation time. Figure B.7 shows the average CPU-time used in the simulations for different
values on N . It can be noted that adopting the proposed adaptive node distribution scheme,
does not bring any increase in the average computational time. We believe that the non-
linearity of the original set of equations describing the motion of the missile, is one of the
main reasons for this.
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Figure B.7: The average CPU-time for the uniform- and adaptive grid generation scheme
as a function of N .

B.5 Concluding Remarks

The main purpose of this paper has been to advocate the use of adaptive grid generation
techniques for on-line trajectory planning. In this work, we have chosen to concentrate on
the use of the so called r-refinement technique; that is strategically re-distributing a given
number of nodes over the time domain. The main reason for this has been the pronounced
inter-relation between the number of nodes in the temporal discretization and trajectory
optimization run-times.

It is argued that in any computationally efficient method, node distribution should be a
part of the optimization process. This, in order to minimize the discretization error and gain
accuracy, without bringing any drastic increase in the computational effort. Here-within,
re-distributing the nodes have been formulated as a constrained optimization problem; to
be included in the underlying NLP.

The missile guidance problem considered, showed that the extra degree of freedom pro-
vided by distributing the nodes is used constructively to improve accuracy. These advan-
tages accrue particularly in the case when having a nonlinear dynamic system at hand. The
reason for this being that having the node positions as variables in the underlying NLP,
turns a linear system into a bilinear one, which may then give rise to an undesirable increase
in computational complexity.
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Abstract

An important class of non-uniformly observable systems comes from applications
in mobile robotics. In this paper, the problem of active observer design for such
systems is considered. The set of feasible configurations and the set of output flow
equivalent states are defined. It is shown that the inter-relation between these two sets
may serve as the basis for design of active observers. The proposed observer design
methodology is illustrated by considering a unicycle robot model, equipped with a set
of range-measuring sensors.

Keywords: Nonlinear Observer Design, Active Observers, Non–uniformly Observable
Systems, Mobile Robotic Systems.

C.1 Introduction

S
ince 1970’s there has been an extensive study on the design of observers for nonlinear
control systems, [1–7]. It is known that for such systems, observability does not only

depend on the initial conditions, but also on the exciting control. Most current methods,
such as observers with linearizable error dynamics [3] and high gain observers [6, 7], lead
to the design of an exponential observer. As a necessary condition for the existence of a
smooth exponential observer, the linearized pair must be detectable [5]. In fact, most of
the existing nonlinear observer design methods are only applicable to uniformly observable
nonlinear systems. This is witnessed in [8], where it is pointed out that one of the key
questions in nonlinear control is “how to design a nonlinear observer for nonlinear systems
whose linearization is neither observable nor detectable”.

An important class of non-uniformly observable systems comes from applications in
mobile robotics. For such systems, due to environmental restrictions and the way the
sensors function, constraints have to be put on the control. This thus presents an interesting
issue: how to design an exciting control to maximize the rate of convergence for an observer,
namely how to design an active observer. Maximizing “observability” has been an important
issue in the field of active perception in robotics and computer vision [9]. However, study
from the systems and control point of view in terms of observer design still lacks, [10].

75



76 Paper C

This paper considers the problem of active observer design for mobile robotic systems
and an alternative design method is presented. The disposition is as follows; In Section C.2,
a brief review on nonlinear observability and observers is given. This would set stage for our
study on observability and active observer design for mobile robotic systems in Section C.3.
To illustrate the concepts introduced in Section C.3.1, a case study is given in Section C.4.
The simulation results thereof are presented in Section C.5 and finally, some concluding
remarks are made in Section C.6.

C.2 Preliminaries

Consider the nonlinear control system

Σ :

{
ẋ = F(x, u) (system dynamics)
y = h(x) (system output)

with state x ∈ X , control u ∈ U and output y ∈ Y. Here X ,U and Y are smooth manifolds
of dimension n, p and m respectively. All mappings in this paper, are assumed to be smooth.
If Σ is complete, the composed mapping from u(·) to y(·) is referred to as the input-output
map of Σ at x0 [11]:

IOΣ
x0

: u(·) 7→ y(·).
The most common definitions of the observability properties of Σ then boil down to the
injectivity properties of IOΣ

x0
with respect to the initial condition, x0. Consider two states,

x1 and x2, being equivalent (denoted x1 ∼ x2) if and only if they have the same input-output
map for all admissible inputs, i.e.

x1 ∼ x2 ⇐⇒ IOΣ
x1

(u(·)) = IOΣ
x2

(u(·)), ∀u(·) ∈ U .

Further, let I(x0) denote the equivalence class of x0, i.e. let I(x0) = {x ∈ X : x ∼ x0}.
Based on this, we arrive at the following two definitions [12,13].

Definition C.1 (Indistinguishability). Two states, x1 and x2 are said to be indistinguish-
able if and only if they are equivalent.

Definition C.2 (Observability). Σ is said to be observable at x0 if I(x0) = {x0}. It is
further said to be observable if I(x) = {x} for all x ∈ X .

It is notable that the equivalence relation on X , and hence observability, is a global
concept in two senses:

Property C.1. All states in X are to be distinguished from each other.

Property C.2. The generated trajectories are unrestricted.

Also, observability is an infinite-horizon concept, since:

Property C.3. There is no upper bound on the time-interval that has to be considered in
order to distinguish points.

Consequently it is possible to introduce various restrictions, or relaxations on Defini-
tion C.2. Some of these modifications are considered below.1

Given a system Σ and an open set Ω ⊆ X , the restriction ΣΩ refers to a control system
with state space Ω, defined by the restriction of F and h to Ω × UΩ and Ω respectively.
Here UΩ denotes the subset of all admissible inputs that generates trajectories that lie in
Ω.

1The observability nomenclature is not standardized. In this article, the terms used by Hermann and
Krener in [12] and Respondek in [13] are merged.
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Definition C.3 (Ω-indistinguishability). Two initial states, x1, x2 ∈ Ω are said to be Ω-
indistinguishable if

IOΣΩ

x1
(u(·)) = IOΣΩ

x2
(u(·)), ∀u(·) ∈ UΩ.

This relation will be denoted x1
∼
Ω x2 and IΩ(x).

Definition C.4 (Strong observability). The system Σ is said to be strongly observable at
x0 if for every open neighborhood Ω of x0, IΩ(x0) = {x0}. Σ is called strongly observable
if it is strongly observable for all x ∈ X .

Note that strong observability implies observability since IΩ(x) = {x} for all Ω ⊆ X
gives I(x) = {x} for the special choice of Ω = X .

Definition C.5 (Weak observability). The system Σ is called weakly observable at x0 if
there exist a neighborhood of x0, N(x0), such that I(x0) ∩ N(x0) = {x0}. Σ is weakly
observable if it is weakly observable at every x ∈ X .

Definition C.6 (Instant observability). The system Σ is said to be instantaneously observ-
able at x0 if there exist a neighborhood N(x0), such that for every open neighborhood Ω of
x0 contained in N , IΩ(x0) = {x0}. Σ is called instantaneously observable if it is so at every
x0 ∈ X .

For the dynamical system, Σ, an observer may be defined as follows (cf. [1, 4, 14]).

Definition C.7 (Observer). A dynamical system with state manifold Z, input manifold
U × Y, together with a mapping F̂ : (Z × U × Y) → TZ is an observer for the system Σ,
if there exists a smooth mapping Ψ : X → Z, such that the diagram shown in Figure C.1,
commutes and the error trajectory x(t)− x̂(t) converges to zero as t→∞.
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Figure C.1: Commutative diagram defining an observer.

In diagram C.1, Ψ∗ denotes the tangent mapping, π is projection upon a Cartesian
factor, while τ denotes the projection of the tangent bundle.

According to Definition C.7, the objective when designing a general observer, is to track
Ψ(x), rather than x itself. Note that the same observer dynamics, F̂ , may allow several
different full observer mappings, Φ, and that in general, a full state observer

Σ̂ :

{

ż = F̂(z, u, y)
x̂ = Φ(z, u, y)

may not be put in the form ˙̂x = Ξ(x̂, u, y).



78 Paper C

C.3 Mobile Robotic Systems

One distinguishing feature of mobile robots is the use of exteroceptive sensors for sensing
the environment and aid localization. The output of Σ is next extended to more explicitly
incorporate exteroceptive sensor readings. Bearing in mind the particular applications
encountered in the robotics community, it seems convenient to split the state vector, x ∈ X ,
into two parts; one defining the state of the platform in its work-space,W, and the other only
in its configuration-space, C, so that x = (xw, xc) ∈ W×C = X . The work-space of the robot,
W, is assumed to be a smooth and connected manifold of dimension nw ∈ {1, 2, 3}. However,
the configuration-space, C, might have arbitrary dimension, nc, and includes typically the
description of the internal states of the platform.

Consider control-affine dynamic systems of form:

Σrob :







ẋw = fw(x) + gw(x)u
ẋc = fc(x) + gc(x)u

y = h̃(x, sθ(x))
q = θ(sθ),

where xw ∈ W, xc ∈ C, u ∈ U and y ∈ Y. We use sθ(x) to indicate the interaction of the
sensors with the environment but also to emphasize the dependence of the output on the
environmental map, θ. In this paper, the case where the components of the environment
(e.g. surrounding terrain, obstacles or walls) can be modeled as a single, connected, (nw−1)-
dimensional smooth manifold (hyper-surface) in W will be in focus. It is further assumed
that this hyper-surface can be parameterized as

q = θ(sθ), sθ ∈ S ⊆ R
(nw−1),

where θ is known. This last assumption relates to one of the fundamental problems in
robotics, namely the simultaneous localization and map building problem (SLAM), where
one tries to reconstruct the environmental map, θ, and the full state vector, x, at the same
time. By assuming the map to be given, we focus on a subproblem in SLAM, namely
the re-localization problem where the state vector, x, is to be reconstructed based on a
combination of exteroceptive and introceptive sensor-readings.

Example C.1. Consider a nonholonomic vehicle equipped with a range sensor mounted
along its direction of orientation, φ. It moves inside an elliptic field, with half-axes c1 and
c2, centered at the origin of W. Then the hyper-surface

(q1

c1

)2

+
(q2

c2

)2

− 1 = 0,

models the surrounding in R
2. It can be parameterized by the angle τ ∈ S1, so that

q =

[
q1

q2

]

=

[
c1 cos(τ)
c2 sin(τ)

]

= θ(sθ),

with sθ = [τ c1 c2]. The control system can be modeled as

ẋ1 = u1 cos(φ)
ẋ2 = u1 sin(φ)

φ̇ = u2

y = (c1 cos(τ)− x1) cos(φ) + (c2 sin(τ)− x2) sin(φ),
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where (x1, x2) ∈ R
2 is the position of the reference point on the robot, φ ∈ S1 denotes

its orientation and the two control inputs, u1 and u2 are the robot’s linear- and lateral
velocities respectively. In addition, τ as a function of the state is implicitly defined by

c2 sin(τ)− x2

c1 cos(τ)− x1
= tan(φ).

Example C.2. Consider a nonholonomic mobile robot equipped with a centrally mounted
video camera. The environment consists of the goal flag and the start flag. The task for the
robot is to map the environment while localizing itself in the map. Naturally, one of the
easiest ways to construct a coordinate system is to set the goal flag as the origin and set
the start flag on the x1-axis, i.e. with coordinates (d0, 0). If we assume that on the image
plane what we can identify is the distance of the vertical line feature to the center and the
focal length of the camera is one, then the output of the system can be expressed as

y1 = tan(φ− atan(−x2, d0 − x1))
y2 = tan(φ− atan(−x2,−x1)).

C.3.1 Observability and Active Observers

As pointed out in Section C.2, observability is an infinite-horizon concept (Property C.3).
To adapt this for the area in mind, the following is suggested.

Definition C.8 (Small-time observability). Anonlinear system, Σrob, is said to be small-
time observable at x1, if for any x2 ∈ X and T > 0, there exists a control, u(·) ∈ U and
t0 ≤ T , such that

h̃(x(t0, x1, u(·)), sθ) 6= h̃(x(t0, x2, u(·)), sθ).

It is further said to be small-time observable if it is so at every x1 ∈ X .

Remark C.1. Although not made explicit, modified versions of Definition C.8 (i.e.
weakly/strongly small time observability) can be obtained in apparent manners.

To stress the distinction between the newly introduced definition and those of Sec-
tion C.2, recall that Ω-distinguishability, the underlying concept of Definition C.4, only
involves separation of points in the restricting Ω. In extension, the term “instantaneously”
in Definition C.6 has to be interpreted in two senses; namely that a point can be instantly
distinguished from its instant neighbors. Therefore, there is no natural setting for solely
modifying Property C.3, without necessarily modifying Property C.1 and/or C.2. In con-
trast, small-time observability requires instant distinction of x1 from all other states x2 ∈ X ,
or in the case of weakly small-time observability, instant distinction of x1 from all x2 in
some open neighborhood of x1. Hence, they only restrict the time-interval that have to be
considered in order to find deviating output.

Given the environmental map θ(sθ), the sensor measurements are considered as a map-
ping, h̃ : X → Y. For a given measurement, y ∈ Y, the inverse image of y under h̃ is the
set of all x ∈ X such that h̃(x, sθ) = y. In general, X and Y do not have the same cardinal
number so that a measurement might correspond to more that one state in X .

Definition C.9 (Set of feasible states). The set of feasible states with respect to y, denoted
FSy, is defined as the inverse image of y under h̃ in the state-space, i.e.

FSy = {x ∈ X : h̃(x, sθ) = y}.
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To introduce a measure of how well a certain point in the state-space matches a given
measurement, a functional or value-function is needed:

Definition C.10 (Value-function). A non-negative functional,

Vy : X → R
+,

such that,
x ∈ FSy ⇐⇒ Vy(x) = 0,

is called a value-function.

It is notable that Definition C.10 is well-suited for scenarios where one might have noisy
measurements. In such cases, the feasible states may consist of all x, such that Vy(x) ≤ ε,
for some ε ∈ R

+.
By utilizing the value-function, it is possible to drive the state estimation within the

set of feasible states, FSy. This will be shown in greater detail in Section C.4. Next, we
focus on the problem of localizing the actual state within this set. In order to distinguish
the states in FSy, it is necessary that the system output do not remain constant, i.e. the
exciting control has to be designed such that ẏ 6= 0. For each point x0 ∈ X , it is possible
to associate another set to it consisting of all points that have the same output flow.

Definition C.11 (Set of output flow equivalent states). Given any admissible control,
u(·) ∈ U , for each state x0 ∈ X , the set of states that are output flow equivalent to x0

under u(·), denoted OFu
x0
, is defined as all states x1 ∈ X , such that there exists T > 0 such

that for all t ∈ [0 T ],

h̃(x(t, x1, u(·)), sθ)− h̃(x1, sθ) ≡ h̃(x(t, x0, u(·)), sθ)− h̃(x0, sθ).

By means of the two sets defined in this section, it is possible to put constraints on the
exciting control.

Proposition C.1. Given x0 ∈ X , if there exists an exciting control, u0(·) ∈ U , and a
neighborhood, N(x0) such that

FSy ∩ OFu0

x0
∩N(x0) = {x0}, (C.1)

then the system is weakly small-time observable at x0.

Proof. We prove by contradiction. Suppose the system is not weakly small-time observable
at x0, i.e.

∃ x1 ∈ N(x0)\x0 and T > 0 : ∀t ∈ [0 T ] and ∀u(·) ∈ U ,

h̃(x(t, x1, u(·)), sθ) ≡ h̃(x(t, x0, u(·)), sθ). (C.2)

For the special choice of t = 0, Equation (C.2) gives

h̃(x1, sθ) = h̃(x0, sθ) = y, (C.3)

meaning that x1 ∈ FSy. Consider then the special choice of u(·) = u0(·), which together
with Equation (C.3) and Definition C.11 implies that x1 ∈ OFu0

x0
. Hence we have shown

that assuming (C.2) implies the existence of x1 such that

(x1 ∈ N(x0)\x0) ∧ (x1 ∈ FSy) ∧ (x1 ∈ OFu0

x0
), ⇔

FSy ∩ OFu0

x0
∩N(x0) 6= {x0}.
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Constraint (C.1) serves as the basis for design of active observers.
Proposition C.1 also provides an intuitive interpretation of the concept of small-time

observability. Namely, if from the knowledge of the measurement, y(t) (which defines FSy)
and its derivative flow at time t (which defines OFu

x) one can uniquely determine the state,
x(t), then a dynamical system is said to be small-time observability.

C.4 Observer Design Study

In this section, we revisit the robot model from Example C.1. The sensor readings however
will differ. It is now assumed that the robot is equipped with l range-measuring sensors,
oriented at angles αi, i = 1, · · · , l with respect to φ. Referring to Figure C.2, sensor i
measures distance ρi against some smooth closed curve, θ : S1 → R

2, that models the
terrain. Each sensor is directed along a ray making an angle of φ + αi with the x1-axis.
Thus the outputs for the system are

yi = ρi, i = 1, · · · , l.
PSfrag replacements
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Figure C.2: The unicycle robot equipped with l range-measuring sensors.

The goal is to reconstruct the full state, x, based on sensor readings ρ = (ρ1, · · · , ρl).
As remarked in conjunction with Definition C.7, the objective when designing a general
observer is to track z = Ψ(x), rather than x itself. To this end, it is noted that the problem
of reconstructing x in this particular problem, is equivalent to the reconstruction of vehicle
orientation, φ, and the parameter values, si ∈ S1, i = 1, · · · , l, corresponding to the points
on the curve measured against. It is so since the relative orientation angle of each sensor,
αi, is known. Setting the observer state

z = Ψ(x) = [s1, · · · , sl, φ]T ∈ Z,

the following geometrical relationship between x and z holds:

θ(si) = [x1, x2]
T + ρiR(φ+αi)e1, i = 1, · · · , l, (C.4)

where e1 = [1 0]T and Rα denotes the rotation matrix,

Rα =

[
cos(α) sin(α)
− sin(α) cos(α)

]T

.



82 Paper C

Aiming at constructing an appropriate value-function that can aid the observer design, for
each sensor i, define a mapping vi : Z → R

2 according to

vi(z) = θ(si)− ρiR(φ+αi)e1.

Intuitively, vi(z) points out where measurement i indicates that the vehicle is located in
R

2. Next, define vij : Z→R
2 as

vij(z) = vi(z)− vj(z),

which indicates the difference between the vehicle location estimated by measurements ρi

and ρj . Finally, the value-function is defined as

Vρ(z) =
l−1∑

i=1

∑

j>i

vij(z)T vij(z).

The non-negative value-function, Vρ(z), serves as a measure of how well z, matches a set of
measurements, ρ. To see this, it is noticed that Vρ(z) = 0 implies that in the observer state,
z (which naturally corresponds to a state, x ∈ X , by relation (C.4)), the vehicle precisely
measures the distances ρi against the points θ(si), i = 1, · · · , l. In the other direction, clearly
if ρ are the measured distances and z is the actual observer state, then vi(z) = [x1, x2]

T ,∀i,
and hence Vρ(z) = 0. This allows us to specify the set of feasible states by means of the
value-function, as discussed earlier.

As for the set of output flow equivalent states, from (C.4) we obtain

0 = θ′(si)
T Rφ(u1e2 + ρ̇iRαi

e2 − ρiu2Rαi
e1) , Qi,

by first differentiating with respect to time and then multiplying by θ′(si)
T Rπ

2
from the

left. Then, the mapping defined by

Q = [Q1, · · · , Ql]
T = 0,

characterizes the set of output flow equivalent states for this system. Under suitable assump-
tions on the exciting control, the sensor orientations and the environmental map (see [15]
for details), it can be shown that this set and the set of feasible states together fulfill the
condition of Proposition C.1, which implies that we are bound to have weakly small-time
observability.

Putting it all together, the following observer dynamics is proposed for this particular
problem:

ż = −kV

[∂Vρ

∂z

]T

− kQ

[∂Q

∂z

]T

Q, (C.5)

where kV , kQ > 0 are suitably chosen observer gains.
To complete the observer design, the full observer mapping, Φ, is to be decided (cf.

Figure C.1). By relation (C.4), any parameter value, si, together with φ, suffice for recon-
structing x. Thus there are several choices for Φ. However, in the case of faulty measure-
ments, different parameter values might give inconsistent state estimation, why for instance
a simple vector average can be chosen.

The following proposition addresses the convergence properties of the proposed observer.

Proposition C.2. Assume the control and it’s first derivative are both bounded. Then
the estimation error of the proposed observer (C.5) is locally bounded and can be made
arbitrarily small by tuning the observer parameters, kV and kQ.
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Proof. Set k = kV = kQ. Consider then the time dependent Lyapunov function candidate

V (z, t) = Vρ +
1

2
QT Q ∈ R

+,

which is locally positive definite around the true trajectory. The time dependency originates
from the collective contribution of u, θ, ρ and their rates of change. Due to the differentia-
bility assumptions (on u and the smoothness of the other mappings), V is also continuously
differentiable and decrescent. The total derivate of V along the observer dynamics (C.5)
becomes

V̇ =
∂V

∂z
ż +

∂V

∂t
=

[∂Vρ

∂z
+ QT ∂Q

∂z

]

ż + K(t) = −k‖∂Vρ

∂z
+ QT ∂Q

∂z
‖2 + K(t).

Here, K(t) denotes the collective contribution of u, θ, ρ and their rates of change. By the
differentiability assumptions, this term is bounded. Since the condition of Proposition C.1
is fulfilled, the first term is locally negative definite. Therefore, the size of the design
parameter k, bounds and tunes the estimation error.

C.5 Simulations

In this section we consider the case when the robot is equipped with two range-measuring
sensors (l = 2) and moves inside the same elliptic field as considered in Example C.1. In
what follows, x and z will denote the true states while x̂ and ẑ will denote the estimations
of them. All true states will be plotted with blue/dashed lines, while estimations will be
graphed in red/solid. The robot starts off from x(0) = [1, −1, π

2 ]T , which corresponds to
z(0) = [ 23π

4 , 242π
1101 , π

2 ]T in the Z−space. The observer is initialized at ẑ(0), a randomly
generated point in the vicinity of z(0). The observer gains are set to kV = 5, kQ = 1.

Figure C.3 shows the trajectory of the components of z(t) (in dashed/blue) and ẑ(t)
(in solid/red). This, together with Figure C.4, where the relative errors have been plotted,
shows the convergence of the observer in the Z-space.

Of more practical importance however, is the convergence of x̂(t) to x(t) in the state-
space, X . Figures C.5 and C.6 show the observation and relative errors as measured after
mapping ẑ into x̂ by means of the full observer mapping, Φ.

Noisy Measurements

Next, attention is paid to the case when the presence of measurement noise is recognized.
The noise parameter has been chosen such that the relative measurement errors amount to
approximately 5%. Referring to Figure C.7, it can be noted how the observer rejects the
disturbance and tracks the true observer state quite well even in the presence of measurement
errors. This statement is verified when considering the time history of x(t) and x̂(t) in the
state-space (Figure C.8). In cases when (C.4) is inconsistent for i = 1 and 2, a simple
vector average has served as the estimated position. One desirable property of this choice is
that a true measurement from one sensor can be used constructively to compensate for the
faulty measurement of the other one. Thus we notice in Figure C.8 that, in the presence
of measurement noise, the position estimation is much better than the estimation of the
orientation angle, φ.
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Figure C.3: Observation error in Z-space.
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Figure C.4: Relative error in Z-space.

C.6 Concluding Remarks

In this paper, the extension of the concepts of observability and observer design to the field
of mobile robotics is considered. Such systems have several distinguishing features. Firstly,
mobile robots are typically non-uniformly observable systems so that the observer gains, as
well as its convergence properties will depend on the system input. In addition, because of
the interaction of the exteroceptive sensors with the environment, the convergence of the
observer typically will also depend on the environment. Therefore, in order to succeed in
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Figure C.5: Observation error in X -space.
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Figure C.6: Relative error in X -space.

reconstructing the state, the exciting control has to be chosen in a deliberate manner, i.e. an
active observer has to be designed. Finally, since most existing observer design techniques
are only applicable to uniformly observable nonlinear systems, alternative approaches that
aid the observer design are needed. The set of feasible configurations, its relation with the
value-function, the set of output flow equivalent states, and the inter-relation between these
two sets, provide such a setting. The design study presented here-within, serves to illustrate
the use of these concepts in the observer design process.
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Figure C.7: Observation error in Z-space with noise.
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Figure C.8: Observation error in X -space with noise.
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Abstract

In this paper, a geometrically intrinsic observer for Euler-Lagrange systems is de-
fined and analyzed. This observer is an generalization of the observer recently proposed
by Aghannan and Rouchon. Their contractivity result is reproduced and comple-
mented by a proof that the region of contraction is infinitely thin. However, assuming
a priori bounds on the velocities, convergence of the observer is shown by means of
Lyapunov’s direct method in the case of configuration manifolds with constant curva-
ture. The convergence properties of the observer are illustrated by an example where
the configuration manifold is the three-dimensional sphere, S

3.

Keywords: Nonlinear Observers, Intrinsic Observers, Differential Geometric Meth-
ods, Euler-Lagrange Systems, Contraction Analysis, Nonlinear Systems Theory.

D.1 Introduction

F
eedback control design techniques require knowledge about at least some parts of
the state vector. If all the state variables necessary for the control system can not

be directly measured, which is a typical situation in complex systems, we must aim at
obtaining an estimate of the unknown state variables. For a dynamical system, an observer
is another dynamical system whose task is to reconstruct missing state information, while
only using available measurements. The input to the observer is the output of the original
system (which may include its input), and the observer is expected to produce as output
an estimate of some state function of the original system.

Consider the nonlinear dynamical system

Σ :

{
ż = F(z, u)
y = h(z, u)

with state z ∈ Z , control u ∈ U and output y ∈ Y. Here, Z,U and Y are smooth manifolds.
All mappings in this paper, are assumed to be smooth.
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Definition D.1 (Observer). A dynamical system with state manifold W, input manifold
Y, together with a mapping F̂ : (W ×Y)→ TW is an observer for the system Σ, if there
exists a smooth mapping Ψ : Z → W, such that the diagram shown in Figure D.1 (the
dashed arrow excluded), commutes. The observer gives a full state reconstruction if there
is a mapping Z : (W × Y) → Z such that the full diagram in Figure D.1 is commutative
( cf. [1] and [2]).

PSfrag replacements

Z W

Ψ∗
τZ

πZ
Z × U

(Ψ ◦ πZ , h)
W ×Y

τW

πW

TZ TW

Z

F F̂

Figure D.1: Commutative diagram defining an observer.

In diagram D.1, Ψ∗ denotes the tangent mapping, π is projection upon a Cartesian
factor, while τ denotes the projection of the tangent bundle.

According to definition D.1, the objective when designing a general observer, is to track
Ψ(z), rather than z itself. The special case when Ψ equals the identity mapping andW = Z,
is often referred to as an identity observer. Also, note that the same observer dynamics,
F̂ , may allow several different full observer mappings, Z, and that in general, a full state
observer

Σ̂ :

{

ẇ = F̂(w, y)
ẑ = Z(w, y)

may not be put in the form ˙̂z = Ξ(ẑ, y).
As a consequence of this definition, an observer has the following property:

Property D.1. w(t0) = Ψ(z(t0)) at some time instance t0, yields w(t) = Ψ(z(t)) for all
t ≥ t0.

It is also reasonable to require the additional property:

Property D.2. As time proceeds, the trajectories w(t) and Ψ(z(t)) converges1 for every
input.

This second property, i.e. the convergence properties of the observer, may be demon-
strated in different ways. If G is a Riemannian metric on W, whose Lie derivative along
the vector field F̂ , is negative for every input, y, (LF̂G < 0), then the Riemannian distance
between any two trajectories tends to zero (cf. [3]). This is a property of the control system
W alone. In conjunction with property D.1, this implies property D.2. More precisely, we
have that

d

dt

∫

Υt

F̂
ρ0

ds =

∫

Υt

F̂
ρ0

1

2
(LF̂G)(

dτ

ds
,
dτ

ds
)ds,

1“Convergence” in some metric sense, or – for relatively compact trajectories – in a purely topological

sense.
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so if LF̂G < 0, then

inf

∫ w2(t)

w1(t)

ds ≤
∫

Υt

F̂
ρ0

ds ≤
∫

ρ0

ds , inf

∫ w2(0)

w1(0)

ds.

PSfrag replacements
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F̂ρ0

ρt

Figure D.2: The length of the geodesic curve ρt, between two trajectories decreases if
LF̂G < 0.

However, the assumption that the observer dynamics is contractive, is very restrictive and
in most cases, property D.2 has to be shown by means of direct Lyapunov methods.

In this paper, we study the observer design problem for a class of nonlinear systems,
viz. Euler-Lagrange systems, where the output of the system is assumed to be the gener-
alized position and force, and the goal is to reconstruct the generalized velocities. An often
practiced solution to the problem of reconstructing the velocity variables is to numerically
differentiate the known position measurements. This approach however, fails to perform
for high and fast varying velocities, but naturally also when the position measurements are
corrupted by noise.

The Euler-Lagrange equations are intrinsic and may be written in a coordinate-free
way [4]. It is natural to keep this coordinate independence in the observer design as well.
The Riemannian geometric point of view has influenced part of control theory, e.g. optimal
control and control design. However, the impact on observer design, has been modest.

In [5], the authors successfully adopt the formerly mentioned contraction analysis ap-
proach to address convergence of an intrinsic observer for Euler-Lagrange systems with
position measurements. These results have been specialized to the case of left invariant
systems on Lie groups in [6]. In the present paper, we extend the results of [5] by using
Lyapunov theory to show convergence in the constant curvature case, whenever we have a
priori given bounds on the state variables. In the case of physical (mechanical or electrical)
Euler-Lagrange systems, this assumption is a realistic one.

The organization of this paper is as follows. Section D.2 is devoted to introducing
some preliminary concepts of tangent bundle geometry (Section D.2.1) and Euler-Lagrange
systems (Section D.2.2). The design of the observer is the subject of Section D.3, while
Section D.4 is devoted to the convergence properties of it. Finally, these properties are
illustrated in Section D.5, where we present some simulation results.
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D.2 Preliminaries

D.2.1 Tangent Bundle Geometry

This paper assumes a previous knowledge of classical tensor analysis as well as familiarity
with coordinate-free concepts like tangent bundle, Lie derivatives and affine connections
(consult e.g. [7] or [8] ). Throughout the paper, Einstein summation convention is used
(i.e. we sum over all indices appearing repeatedly), partial derivatives are indicated with
a comma, U,i = ∂U

∂xi , while covariant derivatives of contravariant tensors are indicated
with a bar, F i

|j = F i
,j + Γi

kjF
k. If gij are the components of a Riemannian metric, gij

denotes the components of the dual (“inverse”) metric, and the components of the Levi-
Civita connections (the Christoffel symbols) are given by Γi

jk(x) = 1
2gil(glj,k + gkl,j − gjk,l).

By gradU , we mean the vector field gijU,j
∂
∂xi . The curvature tensor, R, is defined by

R(X,Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z.

With the index ordering conventions from [7], the type (1, 3) tensor R has components

R i
j kl

∂

∂xi
= R(

∂

∂xl
,
∂

∂xk
)
∂

∂xj
,

so that
R i

m jk = Γi
mj,k − Γi

mk,j + Γi
nkΓn

mj − Γi
njΓ

n
mk,

and the the Ricci identity,
Y i

|j|k − Y i
|k|j = R i

m jkY m, (D.1)

holds2.
We now review some less well-known constructions, namely lifting geometrical struc-

tures on a manifold X to geometrical structures on its tangent bundle, TX (cf. [9]). These
operations will be helpful while studying the convergence properties of the observer through
contraction analysis (section D.4.3). Let x be local coordinates on X and (x, v) the corre-
sponding induced coordinates on TX .

• The vertical lift of a vector field Y = Y i ∂
∂xi on X , is the vector field on TX given by

Y V = Y i ∂
∂vi .

• The horizontal lift of Y depends on the choice of a connection and is the vector field on
TX given by Y H = Y i(∂

∂xi − Γm
li vl ∂

∂vm ) .

• The geodesic spray is a vector field
O

Z on TX , uniquely constructed from a connection ∇
on X as

O

Z= vi ∂
∂xi − Γi

jkvjvk ∂
∂vi .

If φ is a differential form on X , τ ∗φ denotes its pullback to TX . A differential 1-form φ
on X , also defines a scalar function I(φ) on TX given by I(dxi) = vi (This notation is not
standard. The letter I stands for identification, since a covector φ, in a sense, already is a
function on the tangent vectors). The I construction extends to higher order tensors.

Expressions for the bracket between these lifted vector fields are listed in Table D.1.
These expressions will be used for the component–wise contraction analysis in Section D.4.3.

2It holds whenever the connection is torsion-free, which the Levi-Civita connections is.
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[·, ·] Y H Y V
O

Z

XH [X,Y ]H −(∇XY )V
I((R(·, X)−∇X))V

XV −[Y H, XV] 0 XH − I(∇X)V

O

Z −[Y H,
O

Z] −[Y V,
O

Z] 0

Table D.1: Brackets of the lifted vector fields.

Given a Riemannian metric, g, on X , there is a family of natural metrics on TX given
by

G(XH + Y V, XH + Y V) = τ∗(ag(X,X) + bg(Y, Y ) + 2cg(X,Y )),

where a, b and c are constants, or in general, functions of gijv
ivj . The case a = b = 1 and

c = 0, was studied in [10]. The generalized Sasaki metric reads

G =

[
dxi

Dvi

]T

⊗
[

a c
c b

]

gij

[
dxj

Dvj

]

,

where Dvi = dvi +Γi
jkvjdxk. Here, [dxi,Dvi] is the coframe dual to the frame [ ∂

∂xi

H

, ∂
∂xi

V

].
At the origin of a geodesic normal coordinate system, the Lie derivatives of the coframe,

equal

LY V

[
dxi

Dvi

]

=

[

0 0

Y i
|j 0

] [
dxj

Dvj

]

(D.2)

LY H

[
dxi

Dvi

]

=

[
Y i

|j 0

R i
k jl vk Y l 0

] [
dxj

Dvj

]

LO

Z

[
dxi

Dvi

]

=

[

0 δi
j

R i
k jl vk vl 0

] [
dxj

Dvj

]

LI(R(·,Y ))V

[
dxi

Dvi

]

=

[

0 0

(R i
m klY

l)|j vk vm (R i
j kl+R i

k jl)Y
lvk

][
dxj

Dvj

]

.

D.2.2 Euler-Lagrange Systems

Consider a system with generalized position coordinates, x, and generalized velocities, v, for
which we are able to define kinetic- and potential energy. For such systems, the following
scalar function,

L(x, v) , T (x, v)− U(x),

where T (x, v) and U(x) denote the kinetic- and potential energy respectively, defines the
Lagrangian of the system. In this work, we focus our attention on systems whose kinetic
energy function is of the form

T (x, v) =
1

2
gij(x)vivj ,

where gij is a Riemannian metric on the configuration manifold, X . The Euler-Lagrange
differential equations, which we assume govern the motion of the considered system, define
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a dynamical system on the state space, Z = TX , the tangent bundle of the configuration
manifold, X , and are given by

ẋi = vi,
d

dt
(
∂L

∂vi
)− ∂L

∂xi
= gijF

j , i = 1, . . . , n,

where F j are the external forces acting on the system, which may be interpreted as the
input. We further assume that we have direct measurements on the position variables and
forces. Combining this with the expression for the Lagrangian, the system can be written,
in local coordinates, as

Σ0 :







ẋi = vi, i = 1, . . . , n
v̇i = −Γi

jk(x)vjvk − gijU,j + F i

y = h(x, v, F ) = (x, F ).

In terms of the absolute time-derivative, Dtv
i = dvi

dt
+Γi

jkvj dxk

dt
, system Σ0 can equivalently

be written as

Σ :







ẋi = vi

Dtv
i = −gijU,j + F i

y = (x, F ).

Using the introduced lifting operations, the dynamics of system Σ, is given by the vector
field

F =
O

Z −(gradU)V + F V

D.3 Observer Design

For the class of systems, Σ, described in Section D.2.2, we now introduce a full state identity
observer, Σ̂.

Referring to Figure D.3, we let (ξ, η) denote the state of the observer, S(x, ξ) = 1
2dist(x, ξ)2,

Sβ = ∂S
∂ξβ and Rα = I(R(·, gradS))α = R α

β γιη
βSγηι, where R α

β γι is the curvature tensor.

In addition, Φα denotes the parallel transport of F i along the geodesic curve, ρ, from x to ξ.
The parallel transport operator, K i

α, has the following properties, which are easily verified
in Fermi coordinates:

Ki
α|βSβ = 0. (D.3)

Ki
αSα = −Si (D.4)

Ki
αKj

βgαβ = gij (D.5)

Upon introducing this notation, the following observer dynamics is suggested for Σ:

ξ̇α = ηα −AgαβSβ , α = 1, . . . , n

Dtη
α = −BgαβSβ − gαβU,β + Φα + CRα, (D.6)

where A,B and C are observer gains, possibly depending on S and |η|g. Note that when
ξ = x, then Sβ = 0 and Ki

α = δi
α (the Kronecker delta), hence (D.6) satisfies the diagram

property of definition D.1. As observer output mapping, Z, we may for instance use Z1 =
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PSfrag replacements

X

x

Φ

ξ

ξ̇
η

v v̂

Sx

Sξ

ρF

Figure D.3: The system- and observer variables, are denoted by Latin and Greek letters
respectively.

(ξα, ηα), or Z2 =(xi,Ki
αηα). Choosing the latter approach3, the velocities, vi, are estimated

as
v̂i = Ki

αηα. (D.7)

Thus, putting (D.6) and (D.7) together, the following observer, Σ̂, is suggested for Σ

Σ̂ :







ξ̇α = ηα −AgαβSβ

Dtη
α = −BgαβSβ − gαβU,β + Φα + CRα

v̂i = Ki
αηα

Using the introduced lifting operators, the dynamics of the observer is governed by the
vector field

F̂ =
O

Z −A(gradS)H −B(gradS)V − (gradU)V + ΦV + CR

where R = Rα ∂
∂vα . It is notable that in the case of flat metric, Σ̂ reduces to the well-known

Luenberger observer.
The observer Σ̂, is essentially the same as the one introduced in [5], see also [6]. We

here allow the observer gains to vary and have a choice of moving force terms between U
and F , which are treated differently in our observer. This latter freedom will however not
be exploited in the present paper. In Section D.4.3, we follow [5], by choosing C = 1 and
the output mapping Z1, while in Section D.4.4 we use a general C and Z2.

D.4 Convergence Analysis

In this section, convergence issues are treated by means of contraction analysis (Section D.4.3)
and, in the case of constant curvature, by means of a conventional Lyapunov method (Sec-
tion D.4.4). To this end however, we devote Section D.4.1 and D.4.2 to deriving expressions
for the variation of some quantities along a geodesic.

D.4.1 Transport Equations

Letting Sα = gαβSβ , the Hamilton-Jacobi equation σ|ασ|βgαβ = 1, for σ =
√

2S, implies

SαSα − 2S = 0, (D.8)

3In the face of noisy measurements, it might be advantageous to consider Z1 instead.
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Taking the covariant derivative of (D.8), utilizing the fact that the Levi-Civita connection
is torsion-free (Sα|β = Sβ|α) and raising the first index, we have

Sβ

|αSα − Sβ = 0. (D.9)

Then, combining (D.3), (D.4), (D.8) and (D.9), it follows that

Si
|βSβ − Si = 0. (D.10)

The covariant derivative of (D.9) gives

Sβ

|α|γSα+Sβ

|αSα
|γ−Sβ

|γ = (Sβ

|α|γ − Sβ

|γ|α)Sα + Sβ

|γ|αSα + Sβ

|αSα
|γ − Sβ

|γ = 0.

Utilizing Ricci’s identity, Sβ

|α|γ − Sβ

|γ|α = R β
ι αγSι, we get

Sβ

|γ|αSα = Sβ

|γ −R β
ι αγSιSα − Sβ

|αSα
|γ . (D.11)

In a similar fashion, we obtain

Ki
β|γ|αSα = R ε

β αγKi
εS

α + Ki
β|αSα

|γ . (D.12)

It should be possible to derive Grönwall-like estimates of Sβ

|γ and Ki
β|γ from (D.11)

and (D.12). In the present paper, however, we focus on spaces of constant curvature.

D.4.2 Constant Curvature

In the case when X has constant curvature, i.e. when

R β
ι αγ = κ(δβ

γ gια − δβ
αgιγ), (D.13)

equation (D.11) may be explicitly solved for Sβ

|γ by means of the Ansatz

Sβ

|γ = Υ1(S)δβ
γ + Υ2(S)SβSγ . (D.14)

Multiplying with Sγ from the right and using (D.9) immediately yields that Υ1+2SΥ2 = 1.
Substituting this back into (D.11), it reads

(2SΥ′
1 + 2Sκ + Υ2

1 −Υ1)(δ
β
γ −

1

2S
SβSγ) = 0,

from which we obtain

Υ1(S) =







√
2κS cot

√
2κS if κ > 0

1 if κ = 0
√

2|κ|S coth
√

2|κ|S if κ < 0,

and as stated earlier,

Υ2(S) =
1−Υ1(S)

2S
.

Remark D.1. The formulas when κ ≤ 0, are the analytical continuation of the formula
when κ > 0. In the sequel, only the κ > 0 form is given.
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Considering the parallel transport operator, we make the Ansatz

Ki
α = Υ3(S)Si

|α + Υ4(S)SiSα. (D.15)

Multiplying (D.15) with Sα from the right and using (D.4), and (D.10), we obtain Υ3 +
2SΥ4 = −1. Substituting this back in the Ansatz (D.15) and utilizing property (D.3), we
get

Ki
α|βSβ

(
2SΥ′

3 + Υ3 −Υ3Υ1

)
(Si

|α −
1

2S
SiSα) = 0.

Solving for Υ3(S), we arrive at

Υ3(s) = − sin
√

2κS√
2κS

,

and consequently,

Υ4(s) = − 1

2S
(1 + Υ3(S)) = −κ

√
2κS − sin

√
2κS

(
√

2κS)3

which yields the final expression for the parallel transport

Ki
α = − sin

√
2κS√

2κS
Si

|α − κ

√
2κS − sin

√
2κS

(
√

2κS)3
SiSα.

Noticing Remark D.1, we differentiate (D.15) with respect to ξβ and obtain

Ki
α|β = Υ′

3(S)SβSi
|α + Υ3(S)Si

|α|β + Υ′
4(S)SβSiSα + Υ4(S)Si

|βSα + Υ4(S)SiSα|β .

Regarding the first and fourth term, from (D.15), we have

Si
|α =

1

Υ3(S)

[
Ki

α + Υ4(S)siSα

]
.

The third term is satisfactory, while Sα|β in the fifth term can be calculated via (D.14) and
equals

Sα|β = Υ1(S)gαβ + Υ2(S)SαSβ . (D.16)

Paying attention to the second term, since we have

Si
|α|β = gijSα|β|j , (D.17)

we differentiate (D.16) with respect to xj , yielding

Sα|β|j = Υ′
1(S)Sjgαβ + Υ′

2(S)SjSαSβ + Υ2(S)Sα|jSβ + Υ2(S)SαSβ|j .

Substituting this back into (D.17), we get

Si
|α|β = Υ′

1(S)Sigαβ + Υ′
2(S)SiSαSβ + Υ2(S)Si

|αSβ + Υ2(S)SαSi
|β .

Combining the obtained expressions here–above, with those of Υ1,Υ2,Υ3 and Υ4 presented
earlier, gives us the final expression

{
Ki

α|β = Υ(S)(Sigαβ + Ki
βSα),

Υ(S) = κ
tan 1

2

√
2κS√

2κS
.

(D.18)

By manipulating (D.18), with the roles of x and ξ reversed, we also obtain

Kj

α|βKα
mKβ

k =Kj

α|kKα
m =Υ(S)(Sjgkm − δj

mSk). (D.19)
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D.4.3 Contraction Theory

Let A,B and C be constants. Then the computations, when examining whether LF̂G is
negative definite or not, can be done component-wise, that is

LF̂G = LO

Z
G−AL(gradS)HG−BL(gradS)VG− L(gradU)VG + LΦVG + CLRG.

Using the formulas (D.2), we arrive at

LF̂G =

[
dξα

Dηα

]T

⊗M
[

dξβ

Dηβ

]

, (D.20)

where the matrix

M=

(
a c
c b

)(
Mαβ Nαβ

Pαβ Qαβ

)

+

(
Mβα Pβα

Nβα Qβα

)(
a c
c b

)

,

has components given by

Mαβ = −ASα|β
Nαβ = gαβ

Qαβ = C(Rβαγι + Rγαβι)S
ιηγ

Pαβ = Yαβγιη
γηι + ARγαβιη

γSι −BSα|β − Uα|β + gmnFmKn
α|β ,

with Yαβγι = (Rγαβι − C(RγαειS
ε)|β).

In the case when we set C = 1 and S = 0, we have, Sα|β = gαβ , Sι = 0 and Kn
α|β = 0,

andM becomes

M =

[
−2(aA + cB)gαβ − 2cUα|β Dαβ

Dαβ 2cgαβ

]

,

where Dαβ = (a − bB − cA)gαβ − bUα|β . From this it is possible to derive conditions for
contractivity. When U ≡ 04, the observer dynamics is contractive for suitable a, b and c.
This is in accordance with the results in [5]. However, whenever S > 0 and Yαβγιη

γηι 6= 0
for some η, then

M =

[
2c b
b 0

]

Yαβγιη
γηι +O(η). (D.21)

Based on these calculations, the following result can be formulated.

Theorem D.1. The contracting neighborhood of the set S = 0 shown in [5], is infinitely
thin as |η|g →∞.

Proof. We outset from (D.21) and show that for η large enough, the matrix preceding
Yαβγιη

γηι and hence LF̂G is indefinite. To this end, note that
[

a c
c b

]

> 0 =⇒ b > 0.

Consider the determinant of the matrix of interest:
∣
∣
∣
∣

2c b
b 0

∣
∣
∣
∣
= −b2 < 0.

4It is always possible to move terms between U and F .
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It then follows that [
a c
c b

]

> 0 =⇒
[

2c b
b 0

]

is indefinite.

Therefore, as |η|g →∞, LF̂G becomes indefinite.

D.4.4 Lyapunov Approach

We now investigate the convergence of Σ̂, in the case of constant curvature. We also put
U ≡ 0 and let B be a constant. For the Lyapunov function candidate

V (x, v, ξ, v̂) =
1

2
gij∆vi∆vj + BS(x, ξ),

with ∆vi = (vi − v̂i), the total derivative becomes

V̇ = gij∆vi(Dtv
j −Dtv̂

j) + BSiẋ
i + BSαξ̇α, (D.22)

along the system dynamics of Σ and Σ̂. Now,

Dtv̂
j = Dt(K

j
αηα) = Kj

α|kẋkηα + Kj

α|β ξ̇βηα + Kj
αDtη

α

= Kj

α|kvkηα + Kj

α|β ξ̇βηα + Kj
α

[
−BgαβSβ + Φα + CRα

]

where we have used the system dynamics of Σ and Σ̂. From D.4 we obtain

−BKj
α gαβSβ

︸ ︷︷ ︸

Sα

= BSj .

Also, noting that Kj
αΦα = F j , we can continue the calculations as

Dtv̂
j = Kj

α|kvkηα + Kj

α|β ξ̇βηα + BSj + F j + CKj
αRα. (D.23)

Concentrating on the last term in (D.23), from (D.13) and (D.19) it follows that

Kj
αRα = κΥ−1(S)Kj

α|kKα
mv̂kv̂m.

Next, we pay attention to the second term in (D.23) and notice that

Kj

α|β ξ̇βηα = Kj

α|β
[
ηβ −AgβγSγ

]
ηα = Kj

α|βηβηα = Kj

α|βKβ
k v̂kKα

mv̂m = Kj

α|kKα
mv̂kv̂m,

where the equalities origin from the dynamics of Σ̂, (D.3), ηα = Kα
mv̂m and (D.19) respec-

tively. Then by substituting ηα = Kα
mv̂m in the first term as well, (D.23) can be seen to

equal

Dtv̂
j = Kj

α|kKα
mv̂m

[
vk + v̂k + CκΥ−1(S)v̂k

]
+ BSj + F j .

With C = −2κ−1Υ(S), we arrive at the final expression

Dtv̂
j = Kj

α|kKα
mv̂m∆vk + BSj + F j . (D.24)

Consider next the last terms in the total derivative (D.22). From (D.4), in conjunction
with dynamics of Σ̂ and the Hamilton-Jacobi equation (D.8), it follows that

Sαξ̇α = −Ki
αSi(η

α −AgαβSβ) = −Siv̂
i −AgαβSαSβ = −Siv̂

i −ASβSβ = −Siv̂
i − 2AS.
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Substituting these modified terms back into (D.22) yields

V̇ = gij∆vi
[

��F
j −Kj

α|kKα
mv̂m∆vk −BSj −��F

j
]
+ BSiv

i + B
[
− Siv̂

i − 2AS
]

= −gij∆viKj

α|kKα
mv̂m∆vk −Bgij∆viSj + BSi∆vi − 2ABS

= −gij∆viKj

α|kKα
mv̂m∆vk −����

BSi∆vi +����
BSi∆vi − 2ABS

= −gij∆viKj

α|kKα
mv̂m∆vk − 2ABS.

By using (D.19), we arrive at

V̇ = −gij∆viΥ(S)
[
Sjgkm − δj

mSk

]
v̂m∆vk − 2ABS

= −Υ(S)
[
gkmSi − gimSk

]
v̂m∆vi∆vk − 2ABS. (D.25)

Theorem D.2. If it is known that supt |v(t)|g ≤ vmax , the injectivity radius of the manifold

is greater than ρ everywhere, A >
√

2B−1S− 1
2 |Υ(S)|(vmax + |η|g)2|η|g, B > ( vmax

ρ
)2 and

C = −2κ−1Υ(S), then the observer Σ̂ initiated at ξ(0) = x(0), η(0) = 0 converges.

Proof. Let the design parameter B be fixed and determined with some objective in mind5.
As will be illustrated, it is sufficient to choose A properly in order to turn V̇ negative
definite. To this end, consider

−Υ(S)
[
gkmSi − gimSk

]
v̂m∆vi∆vk≤ |Υ(S)|

[

|gkmSiv̂
m∆vi∆vk|+ |gimSkv̂m∆vi∆vk|

]

.

From (D.8) and the assumption supt |v(t)|g ≤ vmax, it follows that

|gkmSiv̂
m∆vi∆vk| ≤

√
2S|η|g(vmax + |η|g)2,

where the conservative worst case scenario is assumed. The same bound is obtained for

|gimSkv̂m∆vi∆vk|.
Therefore, the following inequality holds

V̇ ≤ 2|Υ(S)|
√

2S|η|g(vmax + |η|g)2 − 2ABS.

Then straightforward calculations show that choosing

A >
√

2B−1S− 1
2 |Υ(S)|(vmax + |η|g)2|η|g,

yields V̇ < 0. Hence, asymptotic convergence of the estimation error to zero, follows from
Lyapunov’s direct method.

Let us then consider the choice of B. The chosen initialization point, yields V (0) =
1
2gijv

i(0)vj(0) ≤ 1
2v2

max. At any arbitrary time instance t, it then follows that

V (t) =
1

2
gij∆vi∆vj + BS ≤ 1

2
v2
max,

which implies BS ≤ 1
2v2

max. Since S = 1
2d(x, ξ)2, by requiring B > ( vmax

ρ
)2 we obtain

d(x, ξ) ≤ vmax√
B

< ρ,

which guarantees that d(x, ξ) stays smaller than the injectivity radius at all time instances.

5In our case, the objective will be to ensure that d(x, ξ) is strictly less than the injectivity radius at all
times. This is important in order to keep the derivatives of S = 1

2
d(x, ξ)2 well-defined.
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D.5 Example

Let X be the unit 3-sphere parameterized by x1, x2 ∈ [0, π] and x3 ∈ [0, 2π]. This is a space
of constant curvature κ = 1. The metric is given by

g.,. =





1 0 0
0 sin2 x1 0
0 0 sin2 x1 sin2 x2





which implicitly gives the distance function, S, as

cos
√

2S = cosx1 cos ξ1 +

sinx1 sin ξ1[cos x2 cos ξ2 + cos(x3 − ξ3) sin x2 sin ξ2].

The exterior forces, F , are given by −gradW , where W = sin x1 cos x2 cosx3 and U ≡ 0.
We define an observer Σ̂ by the choices A = 3 1+S√

S+10−7
, B = 3 and C = −1. Figure D.4

show the convergence of the observer when the initial data are







x1(0) = ξ1(0) = 1
x2(0) = ξ2(0) = 0.7
x3(0) = ξ3(0) = 2







v1(0) = 2.25
v2(0) = 1.25
v3(0) = 4







v̂1(0) = 0
v̂2(0) = 0
v̂3(0) = 0.

Similar simulation results have also been obtained in the cases of the hyperbolic plane
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Figure D.4: The solid line refers to the original system, while the dashed line represents the
observer.

(constant negative curvature) and the inverted pendulum on a cart (zero curvature).
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D.6 Concluding Remarks

The observer presented in this paper, requires the explicit computation of the distance
function, S, as well as the parallel transport operator, K, which is prohibitive unless the
configuration manifold is extremely simple, e.g. manifolds of constant curvature, Lie groups
(cf. [6]) etc. For more general spaces, schemes of approximation are called for (cf. [5]).

D.7 References

[1] Van der Schaft, A., “On nonlinear observers,” IEEE Trans. Automat. Control , Vol. AC-
30, No. 12, Dec. 1985, pp. 1254–1256.

[2] Thau, F., “Observing the state of non-linear dynamic systems,” International Journal
of Control , Vol. 17, 1973, pp. 471–479.

[3] Lohmiller, W. and Slotine, J., “On contraction analysis for non-linear systems,” Auto-
matica J. IFAC , Vol. 34, No. 6, 1998, pp. 683–696.

[4] Hamberg, J., “Controlled lagrangians, symmetries and conditions for strong matching,”
Lagrangian and Hamiltonian methods for nonlinear control , edited by N. Leonard and
R. Ortega, Elsevier, 2000, pp. 62–67.

[5] Aghannan, N. and Rouchon, P., “An intrinsic observer for a class of Lagrangian sys-
tems,” IEEE Trans. Automat. Control , Vol. 48, No. 6, 2003, pp. 936–945.

[6] Maithripala, D., Berg, J., and Dayawansa, W., “An intrinsic observer for a class of
simple mechanical systems on a Lie group,” Proc. of the IEEE American Control Con-
ference, 2004, pp. 1546–1551.

[7] Lovelock, D. and Rund, H., Tensors, differential forms, and variational principles,
Dover Publications, New York, 2nd ed., 1989.

[8] Abraham, R. and Marsden, J. E., Foundations of mechanics, Benjamin/Cummings
Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978, Second edition,
revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman.

[9] Yano, K. and Ishihara, S., Tangent and cotangent bundles: differential geometry , Mar-
cel Dekker Inc., New York, 1973, Pure and Applied Mathematics, No. 16.

[10] Sasaki, S., “On the differential geometry of tangent bundles of Riemannian manifolds,”
Tôhoku Math. J. (2), Vol. 10, 1958, pp. 338–354.


	
	Kinodynamic Trajectory Planning
	Computational Optimal Control
	Observers for Nonlinear Systems
	Definition
	Convergence Analysis
	Properties and Classification
	Coordinate Transformations
	Observability and Observers
	Reader's Guide
	Remark on Notation
	Main Contributions
	Work Division
	References
	Online Trajectory Planning for Aerial Vehicles
	Introduction
	Preliminaries
	Problem Formulation
	Safety Maneuver and Task Completion
	Environment Representation and Terminal Cost
	Optimality and Computational Load
	Simulations
	Simultaneous Arrival of Multiple Vehicles
	Conclusion
	References
	Adaptive Node Distribution for Online Trajectory Planning
	Introduction
	Computational Optimal Control
	Adaptive Node Distribution
	Design Study: Missile Guidance
	Concluding Remarks
	References
	Active Observers for Mobile Robotic Systems
	Introduction
	Preliminaries
	Mobile Robotic Systems
	Design Study
	Simulations
	Concluding Remarks
	References
	Riemannian Observers for Euler-Lagrange Systems
	Introduction
	Preliminaries
	Observer Design
	Convergence Analysis
	Example
	Concluding Remarks
	References










