## Optimality conditions

- $\mathbf{F o N o c}=$ First-order Necessary optimality conditions
- $\mathbf{S o N o c}=$ Second-order Necessary optimality conditions
- SoSoc $=$ Second-order Sufficient optimality conditions
- Assume $f, g$ and $h \in \mathcal{C}^{2}$. Also assume that $x^{*}$ is a regular point.

Optimality conditions for unconstrained problems

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} \quad f(x)
$$

- FoNoc: $\nabla f\left(x^{*}\right)=0$.
- SoNoc: FoNoc and $\nabla^{2} f\left(x^{*}\right) \succeq 0$.
- SoSoc: SoNoc and $\nabla^{2} f\left(x^{*}\right) \succ 0$.

Optimality conditions for linear equality constrained problems

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- FoNoc: $A x^{*}=b$ and $Z^{T} \nabla f\left(x^{*}\right)=0$.
- SoNoc: FoNoc and $Z^{T} \nabla^{2} f\left(x^{*}\right) Z \succeq 0$.
- SoSoc: SoNoc and $Z^{T} \nabla^{2} f\left(x^{*}\right) Z \succ 0$.
where $Z$ denotes a matrix (not unique) whose columns form a base of $\mathcal{N}(A)$. e.g. let $A=(B N)$, then a

$$
Z=\binom{-B^{-1} N}{I}
$$

- An alternative of FoNoc is: $A x^{*}=b$ and $\nabla f\left(x^{*}\right)=A^{T} \lambda^{*}$, where $\lambda^{*}$ is a Lagrangian multiplier vector.


## Optimality conditions for linear inequality constrained problems

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & A x \geq b
\end{array}
$$

- FoNoc: $A x^{*} \geq b$ and $\nabla f\left(x^{*}\right)=A_{A}^{T} \lambda_{A}^{*}, \lambda_{A}^{*} \geq 0$.
- SoNoc: FoNoc and $Z_{A}^{T} \nabla^{2} f\left(x^{*}\right) Z_{A} \succeq 0$.
- SoSoc: SoNoc and $Z_{+}^{T} \nabla^{2} f\left(x^{*}\right) Z_{+} \succ 0$.
where $A_{A}$ correspond to the active constraints in $A x^{*} \geq b$ (i.e. $A_{A} x^{*}=b_{A}$ ). where $Z_{A}$ is a matrix whose columns form a base of $\mathcal{N}\left(A_{A}\right)$. where $Z_{+}$is a matrix whose columns form a base of $\mathcal{N}\left(A_{+}\right)$. where $A_{+}$is a matrix of the rows of $A_{A}$ for which $\lambda_{A}^{*}>0$.

Optimality conditions for equality constrained problems

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g(x)=0
\end{array}
$$

- FoNoc: $g\left(x^{*}\right)=0$ and $\nabla f\left(x^{*}\right)=A\left(x^{*}\right)^{T} \lambda^{*}$.
- SoNoc: FoNoc and $Z\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z\left(x^{*}\right) \succeq 0$.
- SoSoc: SoNoc and $Z\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z\left(x^{*}\right) \succ 0$.
where

$$
A(x)=\left(\begin{array}{c}
\nabla g_{1}(x)^{T} \\
\vdots \\
\nabla g_{m}(x)^{T}
\end{array}\right)
$$

where $\mathcal{L}(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)$
where $Z\left(x^{*}\right)$ is a matrix whose columns form a base of $\mathcal{N}\left(A\left(x^{*}\right)\right)$.
Optimality conditions for inequality constrained problems

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g(x) \geq 0
\end{array}
$$

- FoNoc: $g\left(x^{*}\right) \geq 0$ and $\nabla f\left(x^{*}\right)=A_{A}\left(x^{*}\right)^{T} \lambda_{A}^{*}, \lambda_{A}^{*} \geq 0$.
- SoNoc: FoNoc and $Z_{A}\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z_{A}\left(x^{*}\right) \succeq 0$.
- SoSoc: SoNoc and $Z_{+}\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z_{+}\left(x^{*}\right) \succ 0$.
where $A_{A}$ correspond to the active constraints in $g\left(x^{*}\right) \geq 0$ (i.e. $j: g_{j}\left(x^{*}\right)=0$ ).
where $Z_{A}\left(x^{*}\right)$ is a matrix whose columns form a base of $\mathcal{N}\left(A_{A}\left(x^{*}\right)\right)$.
where $Z_{+}$is a matrix whose columns form a base of $\mathcal{N}\left(A_{+}\right)$.
where $A_{+}\left(x^{*}\right)$ is a matrix of the rows of $A_{A}\left(x^{*}\right)$ for which $\lambda_{A}^{*}>0$.
Optimality conditions for inequality and equality constrained problems

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g(x) \geq 0 \\
& h(x)=0
\end{array}
$$

- FoNoc: $g\left(x^{*}\right) \geq 0, h\left(x^{*}\right)=0$ and $\nabla f\left(x^{*}\right)=A\left(x^{*}\right)^{T} \lambda^{*}$,
$\lambda_{i}^{*} \geq 0 \forall i \in \mathcal{I}, \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0 \forall i \in \mathcal{I}$, (where $\mathcal{I}$ is the inequalities).
Please contact Axel (aringh@kth.se) if you find an error.

