OPTIMALITY CONDITIONS

- **FoNoc** = First-order Necessary optimality conditions
- **SoNoc** = Second-order Necessary optimality conditions
- **SoSoc** = Second-order Sufficient optimality conditions
- Assume f, g and $h \in C^2$. Also assume that x^* is a regular point.

Optimality conditions for unconstrained problems

 $\underset{x \in \mathbb{R}^n}{\min} \quad f(x)$

- FoNoc: $\nabla f(x^*) = 0.$
- SoNoc: FoNoc and $\nabla^2 f(x^*) \succeq 0$.
- SoSoc: SoNoc and $\nabla^2 f(x^*) \succ 0$.

Optimality conditions for linear equality constrained problems

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\min } & f(x) \\ \text{subject to} & Ax = b \end{array}$$

- FoNoc: $Ax^* = b$ and $Z^T \nabla f(x^*) = 0$.
- SoNoc: FoNoc and $Z^T \nabla^2 f(x^*) Z \succeq 0$.
- SoSoc: SoNoc and $Z^T \nabla^2 f(x^*) Z \succ 0$.

where Z denotes a matrix (not unique) whose columns form a base of $\mathcal{N}(A)$. e.g. let A = (B N), then a

$$Z = \left(\begin{array}{c} -B^{-1}N\\I\end{array}\right).$$

• An alternative of **FoNoc** is: $Ax^* = b$ and $\nabla f(x^*) = A^T \lambda^*$, where λ^* is a Lagrangian multiplier vector.

Optimality conditions for linear inequality constrained problems

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & Ax \ge b \end{array}$$

- FoNoc: Ax* ≥ b and ∇f(x*) = A^T_Aλ^{*}_A, λ^{*}_A ≥ 0.
 SoNoc: FoNoc and Z^T_A∇²f(x*)Z_A ≥ 0.
 SoSoc: SoNoc and Z^T₊∇²f(x*)Z₊ ≻ 0.

where A_A correspond to the active constraints in $Ax^* \ge b$ (i.e. $A_Ax^* = b_A$). where Z_A is a matrix whose columns form a base of $\mathcal{N}(A_A)$. where Z_+ is a matrix whose columns form a base of $\mathcal{N}(A_+)$. where A_+ is a matrix of the rows of A_A for which $\lambda_A^* > 0$.

Optimality conditions for equality constrained problems

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & g(x) = 0 \end{array}$$

- FoNoc: $g(x^*) = 0$ and $\nabla f(x^*) = A(x^*)^T \lambda^*$.
- SoNoc: FoNoc and $Z(x^*)^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) Z(x^*) \succeq 0$. SoSoc: SoNoc and $Z(x^*)^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) Z(x^*) \succ 0$.

where

$$A(x) = \begin{pmatrix} \nabla g_1(x)^T \\ \vdots \\ \nabla g_m(x)^T \end{pmatrix}$$

where $\mathcal{L}(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x)$ where $Z(x^*)$ is a matrix whose columns form a base of $\mathcal{N}(A(x^*))$.

Optimality conditions for inequality constrained problems

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & g(x) \ge 0 \end{array}$$

- FoNoc: g(x*) ≥ 0 and ∇f(x*) = A_A(x*)^Tλ^{*}_A, λ^{*}_A ≥ 0.
 SoNoc: FoNoc and Z_A(x*)^T∇²_{xx}L(x*, λ*)Z_A(x*) ≥ 0.
 SoSoc: SoNoc and Z₊(x*)^T∇²_{xx}L(x*, λ*)Z₊(x*) > 0.

where A_A correspond to the active constraints in $g(x^*) \ge 0$ (i.e. $j : g_j(x^*) = 0$). where $Z_A(x^*)$ is a matrix whose columns form a base of $\mathcal{N}(A_A(x^*))$. where Z_+ is a matrix whose columns form a base of $\mathcal{N}(A_+)$. where $A_+(x^*)$ is a matrix of the rows of $A_A(x^*)$ for which $\lambda_A^* > 0$.

Optimality conditions for inequality and equality constrained problems

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\minininize} & f(x) \\ \text{subject to} & g(x) \ge 0 \\ & h(x) = 0 \end{array}$$

• FoNoc: $g(x^*) \ge 0$, $h(x^*) = 0$ and $\nabla f(x^*) = A(x^*)^T \lambda^*$, $\lambda_i^* \ge 0 \ \forall i \in \mathcal{I}, \ \lambda_i^* g_i(x^*) = 0 \ \forall i \in \mathcal{I}, \ (\text{where } \mathcal{I} \text{ is the inequalities}).$

Please contact Axel (aringh@kth.se) if you find an error.