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1 Introduction

Real zero preserving operators. Let P(C) denote the space of all polynomials with
complex coefficients, regarded as functions on the complex plane. The differentiation
operator D = d/dz acts on P(C); the action on the monomials is given by D zn = n zn−1

for n = 1, 2, 3, . . .. We also have the operator D∗ of multiplicative differentiation, related
toD viaD∗ = zD; the action on the monomials is given byD∗ zn = n zn for n = 0, 1, 2, . . ..
Whereas D commutes with all translations, D∗ commutes with all dilations of the complex
plane C. A third differentiation operator D] = z2D is of interest; its action on the
monomials is given by D] z

n = n zn+1 for n = 0, 1, 2, . . .. We get it by first inverting the
plane (z 7→ 1/z), then applying minus differentiation −D, and by finally inverting back
again. This means that studying D] on the polynomials is equivalent to studying the
ordinary differentiation operator D on the space of all rational functions that are regular
at all points of the extended plane with the exception of the origin.

The Gauss-Lucas theorem states that if a polynomial p(z) has its zeros contained in
some given convex set K, then its derivative Dp(z) = p′(z) has all its zeros in K as well
(unless p(z) is constant, that is). In particular, if all the zeros are real, then so are the
zeros of the derivative. Naturally, the same statement can be made for the multiplicative
derivative D∗ as well, and for D], too. In this context, we should mention the classical
theorem of Laguerre [2, p. 23], which extends the Gauss-Lucas theorem for the real zeros
case to the more general setting of entire functions of genus 0 or 1. To simplify the later
discussion, we introduce the notation P(C;R) for the collection of all polynomials with
only real zeros, including all constants. This means that the zero polynomial is in P(C;R),
although strictly speaking, it has plenty of non-real zeros. Clearly, P(C;R) constitutes a
multiplicative semi-group. Let T : P(C)→ P(C) be a linear operator. Let us say that T
is real zero preserving if T (P(C;R)) ⊂ P(C;R); it would be of interest to have a complete
characterization of the real zero preserving operators. From the above remarks, we know
that D, D∗, and D] are real zero preserving. To get some headway into this general
problem, it is helpful to have some additional information regarding the given operator
T .

The Pólya-Schur theorem for multiplicative differentiation. A natural condition
is that T should commute with a given “good” operator. This was worked out by Pólya
and Schur in 1914 [7], [6], [5, pp. 100–124], [8, pp. 56–69, pp. 88–112], in the case that T
commutes with D∗; it is a simple exercise to check that such a T has the following action
on the monomials:

T [zn] = τn z
n, n = 0, 1, 2, . . . , (1.1)

where the “eigenvalues” τn are complex constants. The description is in terms of the
function

ΦT (z) = T [ez] =
+∞∑
n=0

τn
n!
zn, (1.2)

which is – so far – only a formal power series. To formulate the Pólya-Schur result, we
need to understand which functions occur as limits of polynomials with only real zeros.
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An entire function f(z) is is said to belong to the Laguerre-Pólya class LP(C;R) if it can
be written in the form

f(z) = C eαz−βz
2
zN
∏
k

(
1− z

xk

)
ez/xk , z ∈ C, (1.3)

where α, β are real with 0 ≤ β < +∞, C is a nonzero complex number, N is a nonnegative
integer, and {xk}k is a finite or infinite sequence of nonzero real numbers with

∑
k x
−2
k <

+∞. The number β above will be referred to as the order two characteristic of the function
f . It is a theorem of Pólya [4], [5, pp. 54–70], that (a) each function f(z) in LP(C;R) is
the limit of polynomials with only real zeros in the topology of uniform convergence on
compact subsets, and that (b) if a sequence of polynomials with only real zeros converges
uniformly on any neighborhood of the origin, then either the limit vanishes identically, or
the limit is an entire function in LP(C;R). There is also the related Laguerre-Pólya class
LP(C;R+), which consists of all functions f of the form

f(z) = C eαzzN
∏
k

(
1− z

xk

)
, z ∈ C,

where −∞ < α ≤ 0, C is a nonzero complex number, N is a nonnegative integer, and all
xk’s are positive with

∑
k x
−1
k < +∞. It can be characterized as the nontrivial limits of

polynomials with positive real zeros. We also need the class LP(C;R−) of entire functions
f(z) such that f(−z) belongs to LP(C;R+), which then is the limit space for polynomials
with negative real zeros.

THEOREM 1.1 (Pólya-Schur) Let T : P(C) → P(C) be a linear operator which com-
mutes with D∗. Then T preserves real zeros if and only if the associated function ΦT (z)
defined by (1.2) belongs to the set LP(C;R+) ∪ LP(C;R−) ∪ {0}. Likewise, T maps
positive real zeros (or negative real zeros) to real zeros if and only if ΦT (z) belongs to
LP(C;R) ∪ {0}.

In the theorem, to map positive real zeros to real zeros means that T (P(C;R+)) ⊂
P(C;R), where P(C;R+) is the multiplicative semigroup of all polynomials with only
positive real zeros (including the zero polynomial); to map negative real zeros to real
zeros is defined analogously. It is not hard to show that in the setting of the above
theorem, with T a real zero preserving operator, T extends in a continuous fashion to an
operator that leaves the multiplicative semigroup LP(C;R)∪{0} invariant. The criterion
that ΦT ∈ LP(C;R+)∪LP(C;R−)∪{0} is equivalent to the following three requirements:

T [ez] ∈ LP(C;R) ∪ {0}, T
[
e−z

2]
∈ LP(C;R) ∪ {0}, T

[
z e−z

2]
∈ LP(C;R) ∪ {0}.

In other words, by the theorem, the process of checking that T (P(C;R)) ⊂ P(C;R)
reduces to verifying that T [f ] ∈ LP(C;R)∪{0} for three functions f in LP(C;R): f(z) =
ez, f(z) = e−z

2
, and f(z) = z e−z

2
. We can think of these functions as some kind of

“test points” for the problem. We should mention here that after multiplication by an
appropriate complex constant, we may split the condition ΦT ∈ LP(C;R−) appearing in
Theorem 1.1 in two conditions, namely, ΦT ∈ LP(C;R) and that the coefficients {τj}j
defined by (1.2) are nonnegative. A similar criterion characterizes ΦT ∈ LP(C;R+) in
terms of sign alternating coefficients {τj}j .
The Pólya-Benz theorem for additive differentiation. Here, we consider operators
T : P(C)→ P(C) that commute with ordinary (additive) differentiation D. An operator
T that commutes with D has a power series expansion

T =
+∞∑
n=0

T̂ (n)Dn,
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where the coefficients T̂ (n) are complex numbers; we observe that if we apply the series
to a polynomial,

Tp(z) =
+∞∑
n=0

T̂ (n)Dnp(z),

only finitely many terms in the series are nonzero, so that the lack of growth control of the
coefficients in the power series expansion causes no problems. The symbol of the operator
T is the (formal) power series

FT (z) =
+∞∑
n=0

T̂ (n) zn.

We formulate the Pólya-Benz theorem [1].

THEOREM 1.2 (Pólya-Benz) Let T : P(C) → P(C) be a linear operator which com-
mutes with D, the differentiation operator. Then T preserves real zeros if and only if
FT (z) is an entire function, which is either the zero function or belongs to the Laguerre-
Pólya class LP(C;R).

This theorem is more elementary than that of the Pólya-Schur theorem, although it
apparently was found later. However, at least part of the theorem seems to trace its
way back to Laguerre. The point we wish to make here is that in contrast with the
Pólya-Schur theorem, there is no actual function that we should check T on to get the
criterion of the theorem, but rather, a sequence of functions, the monomials p(z) = zN ,
for N = 0, 1, 2, 3, . . ., and we should let N approach +∞. Nevertheless, it makes sense to
say that the criterion checks the action of T at a single improper “test point”, which we
think of as the limit (in some sense) of the monomials zN as N → +∞.

In the context of Theorem 1.2, it is possible to extend the action of the real zero
preserving operator T continuously in such a way that T [f ] remains a well-defined entire
function whenever f ∈ LP(C;R) and β(FT )β(f) < 1

4 , where the various betas are the
order two characteristics of the indicated functions [9] (see also [3, p. 360] or [5, p. 147]);
in this case, it is easy to see that either T [f ] ∈ LP(C;R) or T [f ] = 0. The constant 1

4
appearing here is sharp.

A consequence of the Pólya-Benz theorem for multiplicative differentiation.
The fact that the Pólya-Benz theorem extends beyond the polynomials means that we
may apply it to the class of entire functions of finite exponential type with only real zeros
which have a fixed real period. Such functions have a particularly simple structure; after
applying the exponential mapping to the plane after an appropriate rotation, we obtain
the class Rs(C∗;T), which consists of rational functions with the following properties:
(1) poles (possibly multiple) only at the origin and at infinity, (2) zeros only on the unit
circle T, and (3) they take real values along T. Condition (3) means that the functions f
in Rs(C∗;T) have the following symmetry property with respect to reflection in the unit
circle:

f̄

(
1
z̄

)
= f(z), z ∈ C∗.

The set C∗ which appears in the notation stands for the multiplicative plane C \ {0}. We
write LP(C; iR) for the collection of all entire functions F (z) for which F (iz) belongs to
LP(C;R).

COROLLARY 1.3 Let F be an entire function in the class LP(C; iR). Let f be a
rational function in the class Rs(C∗;T). Then the function F (D∗)f belongs to Rs(C∗;T)∪
{0}.
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The result is a fairly immediate consequence of the Pólya-Benz theorem, and we leave
it to the interested reader to reconstruct the proof.

It would be of interest to investigate the extent to which an operator T which commutes
with D∗ and preserves Rs(C∗;T) ∪ {0} must be of the form F (D∗), with F ∈ LP(C; iR).
The usual proof of the necessity which works for the Pólya-Benz theorem seems to fail
here.

A Pólya-Schur type theorem for inverted plane differentiation. We now turn
our attention to operators T : P(C) → P(C) that commute with D], the inverted plane
differentiation operator. One shows that such an operator T is of the form

T = F (D]) + L,

where F is a complex polynomial, and L is a rank one operator of the form

L[p](z) = λ0 p̂(0) + λ1 p̂(1), p(z) =
+∞∑
n=0

p̂(n) zn,

where λ0 and λ1 are complex constants.
We turn to our main result, the characterization of the real zero preserving operators

that commute with D].

THEOREM 1.4 Let T : P(C) → P(C) be a linear operator which commutes with D].
Then T preserves real zeros if and only if it is of one of the following forms:

(a) T [p](z) = λ0 p̂(0) + λ1 p̂(1), where λ0, λ1 are complex constants, or

(b) T = αDN
# for some complex constant α and some integer N = 0, 1, 2, . . ..

This result is in striking contrast with Theorems 1.1 and 1.2, where there was a rich
fauna of real zero preserving operators that commute with D∗ or with D. The “test
points” that we should test T upon to get Theorem 1.4 are the first and second degree
polynomials with real zeros. We suggest the following terminology: a real zero preserving
operator T on the polynomials is real zero meager if the only operators that (1) commute
with it and (2) preserve real zeros are of the form αTn, for some complex scalar α and a
nonnegative integer n. In particular, we see that D] is almost real zero meager. One would
tend to suspect that most real zero preserving operators are in fact real zero meager.

We should point out the following interpretation of Theorem 1.4. Let C∞ = C∪ {∞}
denote the extended complex plane (the Riemann sphere), and for a given point λ ∈ C∞,
let R

(
C∞ \ {λ};R

)
denote the collection of rational functions with a (possibly multiple)

pole at the point λ only, whose zeros are all located along the real line. Then, if λ ∈ C\R,
the differentiation operator D does not preserve the class R

(
C∞\{λ};R

)
∪{0}. Moreover,

if λ ∈ R, thenD preservesR
(
C∞\{λ};R

)
∪{0}, but essentially all operators that commute

with D and preserve R
(
C∞ \ {λ};R

)
∪ {0} are constant multiples of powers of D. This

follows from Theorem 1.4, since after a translation (which commutes with D) we may
reduce to the case λ = 0, which is equivalent to studying D] on LP(C;R) ∪ {0}. Finally,
the remaining case λ = ∞ is treated by the Pólya-Benz theorem, which contrasts with
the other values of λ in having a rich collection of real zero preserving operators that
commute with D.

2 The inverted plane

In this section, we consider the weighted forward shift operator D# defined on P(C) by

D#p(z) = z2Dp(z) = z2p′(z).
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We show that, as for the preservation of real zeros, the operators in the commutant
of D# behave somewhat differently than those of the commutants of the additive or
multiplicative differentiation operators (D and D∗).

We turn to the description of the commutant of D#.

PROPOSITION 2.1 Let T : P(C) → P(C) be a linear operator that commutes with
D#. Then there exists a polynomial F and two constants λ0, λ1 ∈ C that are determined
uniquely by T such that

T [p](z) = F (D#)[p](z) + λ0 p̂(0) + λ1 p̂(1),

where p(z) =
∑+∞
n=0 p̂(n) zn. Moreover, if we introduce the polynomial q = T [z], then F

is given by

F (z) =
+∞∑
n=0

q̂(n+ 1)
n!

zn.

Finally, any operator T of the above form commutes with D].

Proof. We begin with the following simple observation, which is based on the fact
that

Dn
#z = n! zn+1, n = 0, 1, 2, . . . .

If p is any polynomial and r ∈ P(C) is defined by r(z) = p(D#)z, then

r(z) = p(D#)[z] =
+∞∑
n=0

p̂(n)Dn
#[z] =

+∞∑
n=0

p̂(n)n! zn+1,

and consequently, the coefficients of p and r are related via

r̂(n+ 1) = n! p̂(n), n = 0, 1, 2, . . . , r̂(0) = 0.

Now, let T be an operator that commutes with D#. As

D#T [1] = TD#[1] = 0,

it follows that T [1] = c0, with c0 a complex constant. Set q = T [z], where

q(z) =
+∞∑
n=0

q̂(n) zn,

and define

F (z) =
+∞∑
n=0

F̂ (n) zn,

where the coefficients F̂ (n) are given by

F̂ (n) =
1
n!
q̂(n+ 1), n = 0, 1, 2, . . . .

Then, by the observation made at the beginning of the proof, we have that

F (D#)[z] = q(z)− q̂(0).

Hence, the operator L = T − F (D#) satisfies

L[1] = c0 − F̂ (0), L[z] = q(z)− (q(z)− q̂(0)) = q̂(0),
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and for n = 2, 3, 4, . . .,

L[zn] =
1

(n− 1)!
(
T − F (D#)

)
Dn−1

# [z] =
1

(n− 1)!
Dn−1

# L[z] =
1

(n− 1)!
Dn−1

# [q̂(0)] = 0.

In other words, for any polynomial p, Lp(z) = λ0 p̂(0) + λ1 p̂(1), where λ0 = c0 − F̂ (0)
and λ1 = q̂(0).

Finally, it is a simple exercise to verify that an operator T of the given form

T [p](z) = F (D#)[p](z) + λ0 p̂(0) + λ1 p̂(1)

commutes with D].

REMARK 2.2 (a) We first note that the above proposition remains valid with essen-
tially the same proof if we replace the operator D# by any other weighted forward shift,
so long as we make the necessary modifications in the definition of F . Here, by a weighted
forward shift we mean an operator S : P(C)→ P(C) that satisfies

S[1] = 0, S[zn] = αn z
n+1, n = 1, 2, 3, . . . ,

for a positive weight sequence αn, n = 1, 2, 3 . . ..

(b) Given an operator T that commutes with D#, there is an alternative way to find
the polynomial F appearing in our proposition. Indeed, since for each N = 2, 3, 4, . . ., we
have TzN = F (D#)zN , it follows that

R(z) = z−NT [zN ] =
+∞∑
n=0

F̂ (n)
(N + n− 1)!

(N − 1)!
zn,

and hence

R
( z
N

)
=

+∞∑
n=0

F̂ (n)
(N + n− 1)!
Nn(N − 1)!

zn.

Now, letting N → +∞, we obtain, using for instance Stirling’s formula, that

lim
N→∞

R
( z
N

)
=

+∞∑
n=0

F̂ (n) zn = F (z).

In particular, it follows that if T preserves real zeros, then the polynomial F must have
only real zeros. Again, this reasoning remains valid for many other weighted forward
shifts. In fact, the above argument – on how to obtain the function F (z) – can be
applied to the commutant of any weighted forward shift operator S : P(C) → P(C) of
the type mentioned in part (a), provided the associated positive numbers αn have the
following property: there exists a sequence of real parameters {βN}N such that for each
n = 1, 2, 3, . . .,

n−1∑
k=0

logαN+k = nβN + o(1) as N → +∞.

For the convenience of the reader, we restate the main result.

THEOREM 1.4 Let T : P(C) → P(C) be a linear operator which commutes with D#.
Then T preserves real zeros if and only if T is of one of the following forms:

(a) T [p](z) = λ0 p̂(0) + λ1 p̂(1), where p(z) =
∑+∞
n=0 p̂(n) zn, and λ0, λ1 are complex

constants, or

(b) T = αDN
# for some complex constant α and nonnegative integer N .
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Proof. We first consider the sufficiency of the conditions (a) and (b). If T is of the
form stipulated by (a), then T maps all polynomials to constants, and therefore necessarily
preserves real zeros. By the Gauss-Lucas theorem, D# preserves real zeros, and hence
every operator T of the form stipulated by (b) preserves real zeros as well.

We turn to the necessity part. We suppose that T preserves real zeros and that it is
not the zero operator. We use Proposition 2.1 to write T in the form

T [p](z) = F (D#)[p](z) + λ0 p̂(0) + λ1 p̂(1).

If F is the zero polynomial, we are in situation (a). It remains to consider the case when
F is not the zero polynomial. We first consider constant F , that is, F (z) = F̂ (0) 6= 0.
By replacing T with a suitable constant multiple of itself, we may assume that F̂ (0) is
real. We apply T to the test functions pα(z) = (z−α)2, where α is a real parameter, and
obtain

T [pα](z) = F̂ (0)(z − α)2 + λ0 α
2 − 2λ1α;

This function has real zeros for all real α if and only if

αF̂ (0)
(
λ0 α− 2λ1

)
≤ 0

for all α ∈ R. Clearly, this implies that λ0 = λ1 = 0, making T a multiple of the
identity operator. We turn to nonconstant F . Let us first consider the test polynomials
qα(z) = z − α, with real α, and note that

T [qα](z) = T [z]− αT [1] =
+∞∑
n=0

F̂ (n)n! zn+1 + λ1 − α
(
F̂ (0) + λ0

)
. (2.1)

We claim that T [qα] cannot have real zeros for all α ∈ R unless

T [1] = F̂ (0) + λ0 = 0. (2.2)

Indeed, if d (1 ≤ d < +∞) is the degree of the polynomial F , then

1
α
T [qα]

(
α1/(d+1)z

)
→ F̂ (d) zd+1 −

(
F̂ (0) + λ0

)
as α→ +∞,

uniformly on compact subsets of C, which justifies the claim, as the right-hand side deve-
lops complex roots unless (2.2) holds. Thus, we may restrict our attention to operators T
with (2.2). Note that the function T [z] must have only real zeros, for if it were to vanish
identically, we would deduce that F (z) ≡ 0. We next consider the test polynomials

pα,β(z) = (z − α)(z − β) = z2 − (α+ β)z + αβ,

where α, β are real. Then

T [pα,β ](z) = T [z2]− (α+ β)T [z] + αβ T [1] = T [z2]− (α+ β)T [z]

should have only real zeros for all values of α, β ∈ R. Expressed differently, the rational
function

Q(z) =
T [z2]
T [z]

has the property that the preimage of the real axis is contained in the real axis. At this
point, the following special property of the operator D# plays an essential role. We have
that

T [z2] =
+∞∑
n=0

F̂ (n) (n+ 1)! zn+2, T [z] =
+∞∑
n=0

F̂ (n)n! zn+1 + λ1,
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and, consequently, T [z2] = z2DT [z] = z2T [z]′. This implies that if a1 ≤ a2 ≤ . . . ≤ ad
are the (real) roots of the polynomial T [z], then

Q(z) =
T [z2]
T [z]

= z2 T [z]′

T [z]
= z2

d∑
k=1

1
z − ak

.

We claim that the fact that Q−1(R) ⊂ R implies that

a1 = a2 = . . . = ad = 0.

To see this, assume first that ad 6= 0. Note that in view of the form of Q, this function
Q maps the real line – except for the points a1, a2, . . . , ad – into the real line. We quickly
find that

Q(x)→ +∞ as x→ a+
d , Q(x)→ +∞ as x→ +∞.

This means that on the interval ]ad,+∞[, Q(x) must assume a minimum value q0 at some
point x = b0 ∈]ad,+∞[. For q with q0 < q < +∞, there are then at least two real roots of
the equation Q(z) = q in the interval ]ad,+∞[, at least one on each side of b0. However,
for q with −∞ < q < q0, there are no real roots of the equation Q(z) = q that fall in the
interval ]ad,+∞[. It is well-known that the collection of complex roots of the equation
Q(z) = q moves continuously with the parameter q, which allows us to conclude that there
must be complex non-real roots of Q(z) = q for q < q0 close to q0. This contradicts the
assumption that Q−1(R) ⊂ R. Hence, we are left only with the possibility that ad = 0.
By a similar argument, we also have a1 = 0, so that all the roots of T [z] are at the origin,
and T [z] = β zd for some nonzero complex constant β. This implies that F (z) = α zN for
some nonzero complex constant α with N = d; moreover, we also see that λ1 = 0. The
result follows.
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