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Abstract We introduce a notion of mean porosity for measures and
obtain dimensional bounds for mean-porous and porous measures. As
a corollary we generalize to all porous Borel measures the estimate
obtained recently by J.-P. Eckmann, E. Jarvenpia, and M. Jarvenpaa
for porous measures satisfying the doubling condition.

We also discuss various generalizations of this notion and possible
applications.

1 Introduction

The main purpose of this paper is to establish dimension and multi-
fractal spectra estimates for porous measures. Dimensional properties
of porous sets were extensively studied before: it is well known, that
if every “piece” of a set in R% has a “hole,” its dimension admits an
upper bound in terms of the relative size of the holes. It is hardly
possible to obtain sharp estimates, so one is after the correct asymp-
totics when the holes are either big or small. If holes have size close
to maximal, then the set must have dimension close to d — 1, as was
shown by P. Mattila in [Mat], and the correct asymptotics was found
by A. Salli in [S]. For any porous set the dimension has to be strictly
smaller than d. For a larger class of mean porous sets, the correct
asymptotics of dimension estimate in terms of (small) size of holes
and percentage of scales, having holes, was established by P. Koskela
and S. Rohde in [KR].

Many measures, appearing as results of iterative constructions or
dynamical considerations, are also porous (i.e. very nonuniformly dis-
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tributed), thus it would be interesting to describe their dimensional
properties. The first paper on this subject [EJJ] was written recently
by J.-P. Eckmann, E. Jarvenpaa, and M. Jarvenpaa. They introduced
a notion of porous measure, and proved a dimension estimate (similar
to that of A. Salli) for porous measures, satisfying the doubling con-
dition. We prove the same estimate for all Borel measures. We also
introduce a more general class of mean porous measures and prove
for them dimension estimates, which are analogues of estimates of
Salli and Koskela-Rohde for sets. Along the way we generalize Salli’s
estimate to mean porous sets.

First we informally present the definitions and our results. For
detailed definitions and formulations (which become technical since
dimension and porosity admit many flavors) see the Sections 2.2
and 2.3.

Porosity and dimension. We say that a measure y is a-porous if
every ball Bop has an “a-hole,” i.e. a ball B,g C Byg such that
w(Bar)/p(B2r) = o(1), R — 0. We introduce mean (o,k)-porous
measures as those for which k € [0,1] proportion of exponentially
shrinking concentric balls have “a-holes.” By dim,(u) we denote the
packing dimension of a measure . For precise definitions see the Sec-
tion 2, whereas possible generalizations are discussed in the Section 6.

Theorem 1 There are positive constants Cy and Cy depending only
on d such that for any finite mean («,k)-porous Borel measure i on
R? the following estimates hold

Cq
dim,(p) <d—Kk+ ———
() log(1 — o]
dimy, () < d — Cyra?
particularly, if p is a-porous,
Cy
dim,(p) <d -1+ ————
9 log(1 — a)]

dim,(p) < d — Caa .

Remark 1 There are two definitions of porosity: upper and lower, and
correspondingly one obtains estimates on upper and lower packing
dimensions — see the Section 5 for details. The third estimate above
was obtained in [EJJ] for measures satisfying the doubling condition'.

! When this paper was distributed, we received a new preprint [JJ] of
E. Jérvenpdd and M. Jarvenpdd, where estimate dim,(pu) <d —1+0(1), a -1
for general measures was proved by a method different from ours.
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It is interesting when porosity is close to maximal, and has the correct
order when a * 1. Similarly the fourth estimate has the correct order
when a N\ 0.

In deriving the Theorem 1, we will use the following estimates for
Minkowski dimension of porous sets. The first is our generalization
of Salli’s estimate, and the second one is due to Koskela-Rohde [KR].

Theorem 2 There is a positive constant C depending only on d such
that for any bounded uniformly mean (o,k)-porous set E C RY the
following holds

Lo
|log(1 — o)
Theorem 3 (Koskela, Rohde) There is a positive constant C de-

pending only on d such that for any bounded uniformly mean (a,k )-
porous set E C R¢ the following holds

dimy/(E) < d— Cra® .

In obtaining their estimate, J.-P. Eckmann, E. Jarvenpiai, and
M. Jarvenpia applied the following scheme: they have shown that
for a porous measure satisfying the doubling condition there exists a
porous set of positive measure, and then applied Salli’s result. They
have noted (see the Example 4 in [EJJ]) that the last statement might
fail for non-doubling measures. We apply a similar approach, show-
ing that every measure satisfies the “mean-doubling condition” (i.e.
is doubling on most scales — see the Section 4), and deducing in the
Proposition 1 that for a porous measure there exists a mean porous
(with percentage of porous scales arbitrarily close to one) set of pos-
itive measure. Then we apply our generalization of Salli’s result to
mean porous sets (or Koskela-Rohde theorem for another estimate).
The latter is proven by modification of Salli’s methods and new in-
ductive argument. The Proposition 1 seems to be of independent
interest, in full generality it states that if a measure is mean porous,
then there is subset of positive measure, which is mean porous with
asymptotically the same percentage of porous scales.

dimpy(FE) < d—&

Organization of the paper. In the Section 2 we give precise defini-
tions of mean-porous sets and measures and different definitions of a
dimension of a measure. In the Section 3 we prove our generalization
of Salli’s theorem and sketch the proof of Koskela-Rohde’s theorem.
In the Section 4 we prove that all Borel measures satisfy the “mean-
doubling condition” and in the Section 5 we prove the Theorem 1.
In the Section 6 we discuss possible generalizations of the porosity
notions, extensions of our theorems, and perspective applications.
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2 Notation and definitions
2.1 Porosity of sets

We denote by B(z,r) a closed ball of radius r centered at z and
by B°(z,r) a similar open ball. Let £ C R" be a bounded set and
0 < a,p < 1. We say that E is a-porous at point x for scale logy(1/t)
if there exists a point y such that B(y,at) " E = () and |z — y| < t.
Throughout the proofs o will be fixed so we will write just porous
without mentioning «. For convenience we shall also say that F is
porous for scale ¢ but always when we write about some parts of
scales we mean logarithmic scales.

Denote by A,(z) the annulus Ay (z) ={y e R" : 27" < |z —y| <
27"F1}. We say that there is a hole near z for scale n if there is a
point y in annulus A, (z) such that E N B(y, a|z —y|) = 0. We say
that E is (a, p)-porous at a point z if for sufficiently large N at least
pN scales among scales n = ng(z)+1,...,n¢(z)+ N have a hole near
z. Next, E is mean (a, p)-porous if it is mean («, p)-porous at every
point = € F.

If no(z) are uniformly bounded from above, we say that E is
uniformly mean (a,p)-porous.

2.2 Porosity of measures

We say that a Borel measure y is mean(a,k )-porous at point x if for all
sufficiently small € > 0 there exists a starting scale ry = ry(€, z) such
that for at least kN values of © among 79,7027 %, ..., 702 V! there
exists a point z such that B(z,ar) C B(z,2r) and u(B(z,ar)) <
ep(B(z,2r)). We say that p is mean (a,k)-porous if it is (a,k)-porous
at p-almost all points x.

If for every e we can chose ry independently of z then we say that
measure p is uniformly mean-porous.

The so defined porosity can be more precisely called upper poros-
ity, to distinguish from lower porosity, when one requires condition
above to hold for positive measure u of points z.

2.8 Dimension of measures

Like porosity, dimension of a measure can be defined in several ways.
One can calculate (various) dimensions of the sets of full (or big)
measure or the sets of positive (may be small) measure.
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One defines upper and lower packing dimensions of a measure (see

[F, p. 171] for more detailed discussion) as

(dimp)*(p) := liné inf{dimy(F) : u(E°) < €}

€E—
= inf{dimp(E) : u(E£°) = 0},

(dimp)«(p) := inf{dimy(E) : u(E) > 0} < (dimyp)*(p)
one can also define upper and lower Hausdorff dimensions in this
way. Here and below we will use dimj,, dimy, and dimy to denote

packing, Hausdorff, and upper Minkowski dimensions of a set (see [F,
pp- 19-23]). We remind that always dimpF < dim,E < dimyF.

3 Dimension of mean-porous sets

First we note that the Theorems 2 and 3 admits the following corol-
lary, since a mean porous set can be represented as a countable union
of uniformly mean porous sets and dimy(UE;) = supdim,(FE;) <
sup dimy;(E;), we arrive at the following

Corollary 1 There are positive constants C1 and Cy, depending on
d only, such that for every bounded mean (o, )-porous set E C R?
one has

|log(1 — )] ’
dim,(E) < d — Cyra® .

dimp(F) <s=d—

In [S] A. Salli proved a result similar to the Theorem 2 for porous
sets which corresponds to taking k = 1 in our theorem (mean uni-
formly (,1)-porous sets in our terminology are ((1+«)/2,7g)-porous
in his). We use most of Salli’s techniques adapting them to our situa-
tion. We reproduce without proofs two geometrical lemmas from [S]
and prove one lemma which is a modification of the Lemma, 3.3 from
[S].

First we define some layers around sets. Let £ C R* and r > 0.
In what follows we shall denote

Me(E,r) ={z € R": d(z,FE) <r},
M(E,r) ={z e€R": d(z,E) <r}.

Lemma 1 Write C(s) = {z € R? : d(z,E) > s} and V(s) =
M°(C(s),s). If E is porous at point x for scale t then

x € M (0V(at),t(l —a)).
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Proof This lemma is a modification of the Lemma 3.3 in [S] and we
use the same technique.

If E is porous for scale ¢ at point = then there is a point y such
that B(y,at) N E =0 and |z — y| < t. This means that y € C(«t)
and B°(y,at) C V(at). Since y is in V(at) and z is obviously not,
the line segment from z to y contains some point of OV (at), say v.
Since B°(y, at) C V(at), |v —y| > ot we have

d(z,0V(at)) < |z —v|=|z—y|—|ly—v| <t—at = (1 — a)t,
which proves the lemma.
Corollary 2 If E is a-porous for scale r at a point b then
ENB(b,pr) Cc M0V (r(1 —2p)),28r) N B(b, Br),
where B =1 — a.

Proof 1t is easy to see that if F is a-porous for scale r in point b then
E is (1 — 28)-porous for scale r in every point of B(b, 5r). Hence if
a € B(b,pr) N E then a € M(0V (r(1 — 25)),2rpB) N B(b,Br). So

EnNB(b,pr) Cc MOV (r(1 —28)r),2rB) N B(b, Br).

Lemma 2 Let V = M°(C,r) where C C R andr > 0. Let € > 0 and
b € R? be arbitrary. Then there is a compact convex set K C B(b, er)
such that

M(9V,e?r)N B(b,er) C M(0K,3e*r)N K.
Proof See Lemma 2.6 in [S].

Lemma 3 Let a € R, r > 0, 0 < § < 1, and suppose that K C
B(a,r) is a convex set. Then

|M (0K, dr)| < cé|B(a,r)]
where ¢ = ¢(n) < 0o is a constant.
Proof See Lemma 2.4 in [S].

Proof ( Theorem 2) Let f = 1 — . Let E be porous for scale r at
point b. By the Corollary to the Lemma 1 ENB(b, Br) C M (0V (r(1—
23)),28r) N B(b, Br). Denote (1 —243) by t and 8/(1 —28) by €? and

rewrite previous inclusion using new notation

E N B(b,e’t) ¢ M(OV (t),2€%t) N B(b, €*t).
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If 3 is sufficiently small then €2 < €v/2 hence by the Lemma, 2

MV (t),2€%t) N B(b, €2t) C M(dV (t),26%t) N B(b, ev/2t)
C M(OK,6e*) N K

where K C B(b,ev/2t). So we have E N B(b, €’t) C M (0K, 6€t) and
by the Lemma 3

|M(E N B(b,€%t), *t)| < |M(8K,7e*t)| < c—=|B(b, eV/2t)].

|B
f (1)

Let Q(b,7) be a cube with side length r and with faces parallel to
coordinate planes.

Note that if intersection in the left hand side of (1) is not empty
then we can change balls to cubes

et €t et et
M (ENQ(b, f) \F)‘ < CelM(E N Q(b, f) 1/4)\
So taking new € = \/ﬂ/((l — 28)4/n) we obtain
|M(E N B(b,ét),e%t)| < Ce|M(E N B(b, €%t), et)|. (2)

We write Q € “Porous” if E is porous for scale re~2 in point b
where () is a cube, r is the side length of (), and b is the center of Q.

Take small ¢ with ¢! € N. Divide space into cubes with side
length er, after that we divide each cube into € cubes with side
length €%r, and so on. Let @ and Qs be two cubes from this grid.
We shall write @)1 < Q2 if @1 C Q2 and the side length of @1 is €
times shorter then the side length of Q2. We denote by [(Q) the side
length of Q.

Obviously Ugr«oM(ENQ',1(Q") = M(EN Q,€el(Q)) and every
point of the set on the right hand side is covered by the sets on the
left hand side no more then ¢(d) times. So we have an estimate on
measures

|M(ENQ,el(Q)] < Q§Q (M(ENQ,IQ"))]
c(n)|M(ENQ,e(Q))]-
Combining this inequality with (2) we get for “Porous” @
|M(E N Q(b,er),e®r)| < cel M(E N Q(b,er), er)|, (4)
and by inclusion it is obvious that for every @

|M(ENQ(b,er),é®r)| < |M(E N Q(b,er),er)|. (5)
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Combining (3) with (4) and (5) we get

¢ “Porous”,
€ “Porous”.

3 IMENQ,UQ)) < { C|M(ENQ,1Q))

| Q
=, CeM(ENQ,UQ)| Q

(6)

To simplify the following we shall abbreviate
|M(ENQ,HQ))| = B(Q),

1 Q) = er
1(Q)=4C Q¢ “Porous” ,
Ce @ € “Porous”

a(Q) =TI17(Q;) where Q < Qp <--- < Q1 < Qo.
j

Note that the constant C' depends on dimension only and is indepen-
dent of e.
Rewriting (6) with new notations we get

5 Q) 8@

Combining this inequality for all “descendants” of k-th generation of
a cube @y with side length er we obtain

B(Q)
> —== < B(Qo)- (7)
UQ)=e*+1r, QCQo Q) "

Take 51 = 30 then if set E is (1 — f8)-porous for scale n then
E is (1 — f31)-porous for all scales ¢t € [27"71,27"]. We can write
all previous estimates for ;. Fix any point b € E and denote by
Gn = Gn(b) the set

{w : log;jor <w < N +logy jor, E is (1 — 33) — porous
for scale w at point b}.

Since F is mean (a, k)-porous, length(Gy) > &N for all r if N is
sufficiently large.

We want to estimate a(Q) for a given small cube with side length
e*t1r. Let b be center of Q and I[(Q) = €17 so Q is a cube of k-th
generation. We want to know how many scales among €®r,..., r are
(1 — 3B)-porous.

Note that we had no assumptions about . If we change r to r277
we just shift our selected scales. It is easy to see that for every point
b there exists j < log; pe such that if we take ro(NN) = r2 ¢ as the
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size of the first cube then at least x(k — 1) among scales €*r1,...,r;
will be (1 — 38)-porous. So if 7 = ro(N) then a(Q) < Ck teslk—1)
hence

B(Q) < B(Q(b, ebro(k))) < Ch—Denlk—1)
< CDerk=1)B(Q(b, ero(k))) < C-Derk=1)B(Q,).

Finally combining this estimate with (7) we obtain

CE Dk g(Qg) > 3 B(Q) > |M(E N Qo, " tir)].
(Q)=ek+1r, QCQo

Summing over all such )y we obtain

|M(E,+1r)| < (Ce®) kY |M(E,er)|  for all sufficiently large k.
(8)

For an arbitrary small ¢ let k& be such that ¢ € (2, ¢**1r] then
|M(E,t)| < |M(E,e**1r)|. Hence by (8)

|M(E,t)| < (Ce)* V| M(B, er)]. (9)
Write
s=d— K+ log(C)/|loge| < d — k + Cy/|logf| = s’
so that €4=% = Ce”* this gives
t\4* :
(Cer) k1) = (b—1)(d=s) o (E) < Ot < ot
Combining this with (9) we obtain
|M(E,t)| < C1|M(E, er)[t4 = const 4. (10)

It is a well known fact that (10) implies dimy(E) < '. For reader’s
convenience we sketch the proof.

Since the e-cubes contained in the /ne-neighborhood of E cover
E completely, one can write

N(B, ) < e | M(E, yie)|
where N(E, €) is the number of e-cubes needed to cover E. Thus

logN (E, €) <o

T (B = 1
dimyy(E) 50 P [loge|
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Proof ( Theorem 3) This theorem was proved in [KR| with x = 1/2,
and we sketch modification of their proof for arbitrary «.

First we claim that there is a constant ¢ depending on dimension
d only such that for any porous F there exists a family B of pairwise
disjoint open balls B C M(E,1) with the property that for every
integer j and every x € M(E,277),

> X(2)

BeB

) > cikj - (11)

an

To prove the claim consider a Whitney decomposition of R¢ \ E.
Divide every Whitney cube into M? cubes (M is a large constant
depending only on d). Let B be a family of balls inscribed into these
cubes. If there is a hole near point x € E for scale n then there exists
B = B(y,r) € B such that B C A,(z) and B(z,277) C B(y,cr/c).
Since F is mean (q,k)-porous we obtain the claim.

To prove the Theorem we will use the following inequality which
is a well known consequence of the Hardy-Littlewood theorem:

If B is a family of balls in R® and p > 0, then

/<ZXB/’”($)> dm<<01 >R/<ZXB >kdx (12)

Rd \BEB BeB

for all k > 1, where C; = C1(d).
We want to prove that

|M(E,279)| < e1| M(E,1)|27 2% (13)

for all j > 1 with constants ¢; and ¢y depending on d only. It is a
well known fact that this inequality implies the desired estimate of
dimension.

It is sufficient to show that for some constant ~y

/ exp(yo Y x(

1 5(2)dr) < el M(B, 1)

<
o

M(E,2-7) BeB
because
exp(yad ZX (2)B (z)) > exp(yrcija?)
on M(E,277).
Write

=7a’ Y x(

BeB

£
a
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Then
/ exp (u(z))dzr <
M(E,2-7)
u(z)*
< / exp(u(w))d:vgz / (k') dz
M(E,1) k21n(E,1) .
u(z)*
< |[M(E,1)| + dx
ME D+ 2 R/ N
ad k
< M@+ P[5 (@)
k>1 Y Ry BeB

Using (12) we obtain

< |M(E,1)| (1 +Y %ﬂ) :

Since the last series converges for sufficiently small v we have
obtained the desired estimate and finished the proof of Theorem.

4 Mean-doubling condition

In this Section we prove that any Borel measure satisfies the doubling
condition on almost all scales at all points outside a small exceptional
set.

Let © be a finite Borel measure supported on a bounded set in
R?, z be any point, k be a large number, and i € [1,...,n]. For
convenience we suppose that y is supported in the unit ball and that
full measure is equal to 1.

Fix a large constant C' and small p. Denote by E, the set of
points z such that for more then pn values of 7 € [1,...,n] we have
Cu(B(z,k%) < u(B(z,k~*1)). Then u(B(z,k ")) < C ™. Cover
support of p by 2¢k™¢ balls of radius k=™ such that every point is
covered no more than c¢(d) times. The measure of the union of balls
satisfying Cu(B(z,k~™)) < C~" is no more than (2%/"k?C—P)". So
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w(Ey,) < c(d)2%(k?C~P)". Denoting U, E,, by Ec we can write

00 d
< d(pig-oyn — AA2°Q
u(Ee) < 3 el k'ory = AL, (14)
where Q = k¢C~,.

What is R? \ E¢? It is the set of points z such that for all n > 1
the number of i € [1,...n] with Cu(B(z,k7%)) > u(B(z, k")) is
at least (1 — p)n. If k and p are given we can chose C large enough
to make p(E¢) as small as we want.

5 Dimension of porous measures

Proposition 1 Let p be a finite mean (o,k)-porous Borel measure
on RY. Then for any positive 6 and o there is a set B such that
u(B€) < o and B is mean (a — 6,k — §)-porous. If u is lower mean
porous then there is a set B such that u(B) > 0 and B is mean
(o — 6,k — 0 )-porous.

Proof For convenience we can assume that p is supported in unit
cube and that full measure is 1. Fix small ¢ > 0. Let A = {z €
spt(p) : p is mean (o — §, k)-porous at z} where § > 0. If § is suffi-
ciently small then p(A) > 1 — /2. Take k = 46~! and p = 6. Then
by (14) we can chose C so large that u(E¢) < 0/2. Write B = A\ E¢
then u(B) > 1 — 0. We want to prove that B is mean (a — 20,k — p)-
porous.

Let z be any point of B, by definition of A for sufficiently small
e and 7o there exists point z such that B(z,(a — é)r) C B(z,2r)
and u(B(z, (@ — §)r)) < eu(B(z,2r)) for at least kN values of r =
70, -..,702 N1, We will prove that

B(z,(a—=28r)NB =10 (15)

for at least (k—0) N among N scales. So we will prove that B is mean
(a — 2§,k — d)-porous.

To prove (15), we assume that there exists y € B(z, (a—26)r)NB.
Then

u(B(y,0r)) < p(B(z, (e — 0)r)) < eu(B(z,2r)) < eu(B(y,4r)).

By definition of E¢ if N is large enough then for (1 — §)N scales
among N scales starting from scale r(z) the right hand side is less
then Ceu(B(y, 6r)) what leads us to contradiction since we can chose
€ very small.

If 4 is lower porous then similar argument gives B of positive
measure.
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Theorem 1. There are positive constants C1 and Cy depending
only on d such that for any finite mean (a,k)-porous Borel measure
p on R the following holds

. C1
dim,,)* <d—-k++—7——,
( P) (,U,) |10g(1 . Oé)'
(dimy)* () < d — Cara? |
particularly, if p is a-porous,
. C1
dim,)* <d—-14 ————

(dimy)*(u) < d — Caa? .

Proof Fix small § and o then by the Proposition 1 there is a set B
such that x(B¢) < ¢ and B is mean (o — d,k — §)-porous. By the
Corollary 1

inf{dimy(F) : p(F) >1 -0} <d—r+0+Ci/[log(l —a+9)|,
inf{dim,(E) : w(E) > 1 -0} < d— Ca(k — 8)(a — §)*

since § and o can be arbitrary small we obtain desired estimate on
dimension of measure.

Remark 21f u is lower mean porous then the same estimates hold for
lower packing dimension (dimy)..

Corollary 3 Let p be a finite lower mean («,k)-porous Borel measure
on R%. Then there are positive constants C1 and Cy depending only
on d such that the following holds

. Ch
dimy),(p) <d—k+ ———,
(dimy) . (1) < d — Cara?,
particularly, if p is lower a-porous,
. C1
dimy),(p) <d -1+ —————,

(dimy), (1) < d — Caa.
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Remark 3 For a uniformly mean porous measures we can find a uni-
formly mean porous set with arbitrary large (or positive if we consider
lower porosity) measure. So we obtain the same estimates for

(dimpg)*(p) = gin(l) inf{dimy(E) : u(E°) < €}

—3

and (in the case of lower porosity)
(dimpp)«(p) = inf{dimp(E) : p(E) > 0}.

Upper Minkowski measure is not countably additive so upper
Minkowski dimension for measures admits two a priori different def-
initions:

lim inf{dimy (E) : p(E°) < €} # inf{dimy(E) : u(E) = 0}.

e—0

The following example shows that corresponding estimate for the
second quantity does not hold.

Ezample 1 Let measure p be a sum of §-measures:

1
ni

o
u= 0

logn

Then g is uniformly 1-porous and lim._ o inf{dimy(E) : p(E¢) <
e} = 0, while inf{dimy(F) : u(E¢) =0} = 1.

6 Appendix: On the definition of porosity

Porosity of measure as defined above is a very strong condition: we
restrict ourselves to measures, dimension of whose compact support
is strictly smaller than the dimension of the space. There are many
naturally arising measures, which do not fall into this category, but
whose dimension is nevertheless strictly smaller than the dimension
of the space since they are “unevenly distributed.”

Two important categories not completely covered by our defini-
tions are Gibbs measures for dynamical systems and harmonic mea-
sures for domains in R%.
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6.1 Gibbs measures and weak porosity

If we divide a cube into k? cubes with equal side length then their
Lebesgue measures would be equal. If a measure y is absolutely con-
tinuous with respect to Lebesgue measure then almost everywhere
similar property holds asymptotically at small scales.

If a measure is required to violate such property then we can
expect it to be very singular, perhaps with dimension strictly smaller
than d.

We formulate this principle as follows: Borel measure p in R? is
(1/k,e) weak porous if for any k-adic cube @ there is a k-adic cube
Q' C Q with k times smaller side length such that p(Q') < eu(Q)/k%.

This means that there is a subcube that carries smaller proportion
of measure than it would for uniform distribution.

The definition can also be relaxed by introducing “mean” ver-
sion or requiring the property to hold only around almost all points
and only for sufficiently small cubes. If € is small, this definition is
equivalent (up to a multiplicative change in constants) to a similar
definition involving balls.

The condition above is interesting since it is weaker than the usual
condition for porosity, but one still can obtain estimates for dimension
and multifractal spectra of such measures.

Theorem 4 There exist a positive constant C and a positive function
A(e, k) depending on d only, such that for any finite (1/k,e)-weak
porous Borel measure u on R the following holds

dimp(p) < d— A(e, k). (16)
Moreover y
log(3a—)
A(G,k)/‘w as 6\10,
and
2

Ale, k) > (1 - 6)2m ;

when € s close to 1.

Proof We will estimate multifractal spectra, see [F, chapter 11] and
[Mak], which are continua of parameters comprehensively character-
izing fine structure of measures (particularly they determine the di-
mension). We will estimate the packing spectrum m,(t) of the measure
u which is defined by

mu(t) = sup{ ¢ : for all § > 0 there is a § — packing{B}
such that Y diam(B)!u(B)? > 1},
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where J-packing is the collection of disjoint balls with diameters less
than §.

We will follow the so called “fractal approximation” principle,
which says that in such problems extremal objects are self-similar.

We start with a weakly porous measure y and show that it can
be modified to be self-similar (Cantor-type) weakly porous measure
v with larger spectrum o := 7, > 7,. The spectrum o will be the
solution of some specific functional equation.

First note that applying a Besicovitch covering argument, we can
use in the definition of the packing spectrum k-adic cubes instead of
balls. Observe also that if there is a d-packing (of cubes) such that
Y UQ) u(Q) > 1 then there is a finite J-packing with the same prop-
erty. Finally note that if we take any k-adic cube from this packing
and divide it into subcubes then > --- will increase. Thus we can
reduce this d-packing to one with equal sized cubes and > --- > 1.

This argument shows that one can equivalently define 7, by

mu(t) = nhanéo mu(t,n),
where 7, (t,n) is the “spectrum at scale n:”

= sup{q: Y_UQ)'n(@Q)? > 1} =sup{g: k"> u(@Q)?>1},

where the sum is taken over all k-adic cubes with the side length k~".

Denote by C,,(Q) the collection of k™ disjoint subcubes of Q with
the side length £™ times smaller than the side length of Q. Set yg := p.

We construct inductively a sequence of measures y;, preserving
porosity and increasing spectrum. When ;4 is constructed, we rear-
range it at scale [ to obtain the next measure y;. Namely for every @) €
Ci—1(Qo) we choose some Q' € C1(Q) with p_1(Q") < ek~ (Q).
Such Q' exists because p;_1 is porous. Then we define y; on @) setting

(o) = dua(a) 2 fora €@ € (@),
where
" kK —e . " ' /
)\(Q)::kd_1 if Q" #Q, and A\(Q') :=e.

Porosity is clearly preserved by this procedure. It is also easy to see
that

my, (t,n) =m,,_, (t,n) forn <lI,
and by concavity of 27, ¢ < 1 (which is the only relevant case, since
m(t) <1)

Ty (t,n) > my,,  (t,n) forn >1.
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Thus spectra 7(¢,n) can only increase with .

Our measures u, converge to a “Cantor-type” measure v which
can be described in the following way: for every m < n exactly
() (k% — 1)™ of cubes in C,(Qo) have measure ¢™p"~™ where

k? — ¢
9= 7dd 1)’
kd(kd —1)

pzﬁ-

This description does not define v uniquely, but all such measures
have the same spectrum. Moreover, for every n

m,(t,n) = mu(t,n) [i>n > wu(t,n),
so we infer that

o(t) = nlglgo T (t,n) > m,(t).

Using the description of measure v it is easy to estimate its spec-
trum at a given scale:

mZ”::O diam(Qj)tV(Qj)a =k f: (T’:L) (g% (k% — 1))mpa(n—m)

m=0
= k=" (g (k" = 1) +p*)",
which gives us an equation describing o (t)

_log(g°® (k¢ — 1) +p°®)

t
log k

It is then not difficult to see that A(e, k) :=d — 1/|0'(0)| satisfies
asymptotics of Theorem 4. For any measure dimpp = 1/|m;,(0+)] (for
further details see [F, 11] and [Mak, p. 226]), so (16) holds since both
m(t) and o(t) are convex functions and hence |m),(0+)[ > [o(0+)].
Estimates of A(e, k) we obtain by estimating o'(0).

Our motivation for the definition of weak porosity comes from
dynamical systems, where many relevant measures appear to satisfy
it (and sometimes even the stronger definition). Under fairly general
conditions one can expect the following dichotomy:

Dichotomy A Gibbs measure is either absolutely continuous, or
weakly porous (and hence satisfies dimension and spectra estimates

of the Theorem /).
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This (unrigorous) principle can be proved in many situations, and
we sketch its proof for the dynamical system 7" : z — kxmodl on
the unit interval Ij.

Indeed, assume that p is a Gibbs measure, i.e. it is associated to
some Holder potential ¢ (for this and other facts see [Bow]). Denote
by P the pressure of ¢ and set Sp¢(z) := ;-L:_é (T7zx). Then Bowen’s
formula says that whenever |z — y| < k™", one can estimate the
Jacobian of the measure u with respect to the iterate T™ of the map
T by

dp(z)

m = exp(Spé(y) — nP), (17)

up to some multiplicative constant C' = C(¢).

When p is not absolutely continuous, its distribution at some scale
will be very uneven, which can be spread by (17) to all smaller scales,
since constant C' is independent of n.

More specifically, if for all k-adic intervals I one has u(I)/I(I) >
ﬁu(Io), then p has a non-trivial absolutely continuous part (with
density bounded away from zero). But measure y is ergodic, and its
absolutely continuous part is invariant, so in this case measure y has
to be absolutely continuous.

Thus if measure y is not absolutely continuous, we can find an
interval I with p(I)/I(I) < 5zzp(lo). If I is of length k¢, the latter
means that u is “(k~¢,1/(2C?)) weak porous at scale zero.” Taking
preimages and using the equation (17), we obtain that the measure
p is (k—¢,1/2) weak porous, thus proving the dichotomy.

6.2 Harmonic measure and Bourgain’s dichotomy

Harmonic measure is one of the fundamental objects in analysis, since
it is related to Dirichlet problem for Laplacian, Riemann uniformiza-
tion map (if £2 C C is simply connected), equilibrium distribution for
Newtonian (or logarithmic in R?) potential, etc.

For a domain 2 C R% and a base point = € £2 harmonic measure
wy on 0f2 is defined as a hitting probability of Brownian motion
started z. One needs to assume that (2 is Greenian (i.e. boundary
012 is sufficiently “thick,” e.g. dimdf2 > d — 2 is sufficient).

Harmonic measures for different base points will be mutually ab-
solutely continuous, so we will just write w for harmonic measure
since all geometric properties do not depend on the base point.

Compact support of w is the whole boundary 0f2, which might
have maximal dimension and even positive volume. But w tends to
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concentrate on parts of the boundary well accessible from within the
domain, so one might hope to obtain some porosity-type properties.

Since compact support of w can have positive volume, w is not
porous. One can also see that it is not porous even under weaker
definition from 6.1. Divide a unit cube into £ = k% cubes of equal size,
then there is a domain {2 whose harmonic measure is equidistributed
among these cubes. Rescaling and gluing such examples, one can
construct domains {2 with “very non-porous” harmonic measure.

To produce such an example, consider domain 2 := R? \ U‘;'-:lBj,
where B; are balls of radii r; centered at the centers of small cubes.
Then ¢ : (r1,...,7¢) = (w(B1),-..,w(By)) is a continuous map from
the tetrahedron {r; > 0, "7, = £} C R? to the tetrahedron {w; >
0,>w;j=1}C R?4. Moreover, any face or edge of the first tetrahedron
(which is given by requiring a few parameters to vanish: {r;, =--- =
73, = 0}) is mapped into the corresponding face or edge of the second
one (since harmonic measure of a zero radius ball vanishes). An easy
topological argument shows then that the map ¢ is onto, thus there
is a choice of radii such that w(B;) = --- = w(By) = 1/L.

In the example above the harmonic measure is equidistributed
among ¢ = k% small cubes, so there is no porosity at this scale. But
in most of these cubes the balls will be very small, r; < 1/1, and one
can observe metric porosity: Hausdorff content of the support of w in
some small cube is much smaller than its size.

This was formalized by J. Bourgain in [Bou], where he proved
that dimpw < d — €4 for some constant €5 > 0. He used the following
version of porosity:

Lemma 4 (Bourgain’s dichotomy, Lemma 2 in [Bou]) For any
d there is p < d and large k such that for every domain {2 with
boundary inside the unit cube Iy and each cube I C Iy one of the
following properties holds

(D) m, (92 NI, U1 /k) < |T]P/*

(L) Jegww(J)l/"’IJll/2 < w22

Here |I| denotes the volume of I, £(I) is the splitting of I into col-
lection of k% equal cubes, and mp(-,d) is the p-dimensional Hausdorff
content measured with k-adic cubes of sizes < 4.

This lemma, shows that for any cube one can either obtain

(D) ( local estimate of the Hausdorff dimension of 0f2), meaning that
compact support of w is metrically small (but no hole of a size
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adiam(I) is guaranteed, 02 might look like a very “thin,” but
dense “dust”) or

(L) ( localization of harmonic measure), which is another way to say
that there is a small sub-cube in £(I) with disproportionally small
concentration of w, just like in 6.1.

One can generalize the definition of porosity along the lines of
Bourgain’s dichotomy, and obtain estimates of dimension of such
measures similarly to our paper. But it turns out that there are more
technical complications: to obtain good estimates on the multifractal
spectra of w, one has to go further, not only requiring existence of
holes, but also controlling their number. For harmonic measure this
was formalized by P. Jones and N. Makarov in [JM] (see also the
survey paper by Makarov [Mak]).

It would be nice to have a unified definition of porosity, covering
all the mentioned cases, and implying good dimension and spectra
estimates. Unfortunately, it seem that such a general definition would
be too technical.
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