Topological Combinatorics

\author{

* * * * * *
 Anders Björner
 Dept. of Mathematics
 Kungl. Tekniska Högskolan, Stockholm
}

```
    ******
    MacPherson 60 - Fest
Princeton, Oct. 8, 2004
```

Influence of R. MacPherson on topological combinatorics:

- Intersection homology

Convex polytopes (via toric varieties), toric g-vector Bruhat order (via Schubert varieties)

- Subspace arrangements

Goresky-MacPherson formula Application to complexity

- Oriented matroids

CD (combinatorial differential) manifolds MacPhersonians (discrete Grassmannians)

- And more...

Two topics for this talk:

- Goresky-MacPherson formula, - with an application to complexity
- Bruhat order
- with an application of intersection cohomology

Connections Topology \leftrightarrow Combinatorics

Simplest case: Space \leftrightarrow Triangulation

Example: The real projective plane

Topic 1: Goresky-MacPherson formula for subspace arrangements

$\mathcal{A} \stackrel{\text { def }}{=}$ collection of affine subspaces of \mathbb{R}^{d} - an arrangement
$M_{\mathcal{A}} \stackrel{\text { def }}{=} \mathbb{R}^{d} \backslash \cup \mathcal{A}$ - its complement
$L_{\mathcal{A}} \stackrel{\text { def }}{=}$ family of nonempty intersections
of members of \mathcal{A}, ordered by reverse containment - its intersection semi-lattice.

THM (' Goresky-MacPherson formula'"):

$$
\widetilde{H}^{i}\left(M_{\mathcal{A}}\right) \cong \bigoplus_{x \in L_{\mathcal{A}}, x>\hat{0}} \widetilde{H}_{\operatorname{codim}(x)-2-i}(\Delta(\widehat{0}, x))
$$

$* * * * * * * * *$
Proof: Stratified Morse Theory (1988)
Other proofs by several authors

Here $\Delta(\hat{0}, x)$ is the simplicial complex of

$$
\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}
$$

such that

$$
\widehat{0}<z_{1}<z_{2}<\cdots z_{k}<x
$$

called the order complex of the open interval ($\widehat{0}, x$) in $L_{\mathcal{A}}$.

A small poset

$$
\mu(\widehat{0}, x) \stackrel{\text { def }}{=} \sum_{\hat{0} \leq y<x} \mu(\widehat{0}, y) \quad \mu(\widehat{0}, x)=\text { Euler } \operatorname{char}(\Delta(\widehat{0}, x))-1
$$

Special cases of G-M formula:

Hyperplane arr'ts over $\mathbb{R} \rightarrow$ Zaslavsky's formula for number of connected components of $M_{\mathcal{A}}$

Hyperplane arr'ts over $\mathbb{C} \rightarrow$ Brieskorn-Orlik-Solomon formula for cohomology groups of $M_{\mathcal{A}}$

Application of G-M formula to complexity of algorithms

Given: a string of real numbers

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Sought: Efficient algorithms to decide some property of the sequence or to restructure it using only pairwise comparisons.

The question: How many such comparisons must be made in the worst case when using the best algorithm? This number, $c(n)$, is called the complexity of the problem.

Note: $c(n) \leq n^{2}$ is immediate

Well-known examples:

1. Sorting. To rearrange the n numbers increasingly $x_{i_{1}} \leq x_{i_{2}} \leq$ $\cdots \leq x_{i_{n}}$ requires $\Theta(n \log n)$ comparisons.
2. Median. To find j such that x_{j} is "in the middle" requires $\Theta(n)$ comparisons, where $2 n \leq \Theta(n) \leq 3 n$.
3. Distinctness. To decide whether all entries x_{i} are distinct (i.e., if $x_{i} \neq x_{j}$ when $i \neq j$) requires $\Theta(n \log n)$ comparisons.

A generalization of the distinctness problem (the $k=2$ case).

The k-equal problem: for $k \geq 2$, decide whether some k entries are equal, that is, can we find $i_{1}<i_{2}<\cdots<i_{k}$ such that $x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{k}}$?

For example, are there nine equal entries in the following list of numbers?

Question repeated: are there nine equal entries in the following list of numbers?

24791374685848713955196742346159463
31486772955924362854117836972581932

Answer: Yes, there are nine copies of the number "4". Are there ten equal entries? Answer: No.

THM (Bj-Lovász-Yao '92) The complexity of the k-equal problem is

$$
\Theta\left(n \log \frac{2 n}{k}\right)
$$

More precisely,

$$
C_{1} \cdot n \log \frac{2 n}{k} \leq c_{k}(n) \leq C_{2} \cdot n \log \frac{2 n}{k}
$$

where

$$
\frac{C_{2}}{C_{1}} \leq 16
$$

Upper bound: Sorting algorithms
Lower bound: Topological method (involving G-M formula)

Before sketch of lower bound argument, need more tools

Examples of interesting subspace arr'ts in codimension $k-1$:

- $\mathcal{A}_{n, k} \stackrel{\text { def }}{=}\left\{x_{i_{1}}=\cdots=x_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}$
- $\mathcal{D}_{n, k} \stackrel{\text { def }}{=}\left\{\varepsilon_{1} x_{i_{1}}=\cdots=\varepsilon_{k} x_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq n, \varepsilon_{i} \in\{ \pm 1\}\right\}$
- $\mathcal{B}_{n, k} \stackrel{\text { def }}{=} \mathcal{D}_{n, k} \cup\left\{x_{j_{1}}=\cdots=x_{j_{k-1}}=0 \mid 1 \leq j_{1}<\cdots<j_{k-1} \leq n\right\}$

Note: for $k=2$ get Coxeter reflection arrangements

Computing cohomology of complement of \mathcal{A} reduces (via G-M formula) to computing homology of order complex of $L_{\mathcal{A}}$.

How compute homology of poset $L_{\mathcal{A}}$?
\exists combinatorial method that works surprisingly often:
lexicographic shellability
P - a poset with $\hat{0}$ and $\hat{1}$
$\mathcal{E}(P)=\{(x, y) \in P \times P \mid x \triangleleft y\} \quad$ - its covering relation
Def: An EL-labeling of P is a map $\lambda: \mathcal{E}(P) \rightarrow \mathbb{Z}$, such that for every interval $[x, y]$:

1. there is a unique maximal chain $\mathbf{m}_{[x, y]}$ whose associated label $\lambda\left(\mathbf{m}_{[x, y]}\right)=\left(a_{1}, \ldots, a_{p}\right)$ is increasing $a_{1}<a_{2}<\cdots<a_{p}$,
2. if \mathbf{m}^{\prime} is any other maximal chain in $[x, y]$ then $\lambda\left(\mathbf{m}^{\prime}\right)>\lambda\left(\mathbf{m}_{[x, y]}\right)$ in the lexicographic order on strings with elements from \mathbb{Z}.

The poset P is said to be lexicographically shellable (or for short: EL-shellable) if it admits an EL-labeling.

EL-shellability, when applicable, reduces homology computations for posets to a combinatorial labeling game. Call a maximal chain $\hat{0}=x_{0} \triangleleft x_{1} \triangleleft \cdots \triangleleft x_{k}=x$, falling if

$$
\lambda\left(x_{0} \triangleleft x_{1}\right) \geq \lambda\left(x_{1} \triangleleft x_{2}\right) \geq \ldots \geq \lambda\left(x_{k-1} \triangleleft x_{k}\right)
$$

THM (Bj-Wachs '96) EL-shellable $\Rightarrow \Delta(\hat{0}, x)$ has the homotopy type of a wedge of spheres, for $\forall x>\widehat{0}$. Furthermore, for any fixed EL-labeling:

- $\quad \widetilde{H}_{i}(\Delta(\widehat{0}, x) ; \mathbb{Z}) \cong \mathbb{Z} \#$ falling chains of length $(i+2)$
- a basis for i-dimensional (co)homology is induced by the falling chains of length $i+2$.

Combining Goresky-MacPherson formula for $M_{\mathcal{A}}$ with lexicographic shellability of $L_{\mathcal{A}}$ we get:

THM For arrangement \mathcal{A}, suppose $L_{\mathcal{A}}$ is EL-shellable. Then $\widetilde{H}^{i}\left(M_{\mathcal{A}}\right)$ is torsion-free, and the Betti number $\widetilde{\beta}^{i}\left(M_{\mathcal{A}}\right)$ is equal to the number of falling chains $\hat{0}=x_{0} \triangleleft x_{1} \triangleleft \cdots \triangleleft x_{g}$ such that $\operatorname{codim}\left(x_{g}\right)-g=i$.

THM EL-shellability works for
(1) hyperplane arr'ts (over any field)
(2) $\mathcal{A}_{n, k}$ and $\mathcal{B}_{n, k}$,
(3) some other cases ...

Conjecture: Works for $\mathcal{D}_{n, k}$.

Incidentally,

THM (Khovanov '96) Complements of $\mathcal{A}_{n, 3}$ and $\mathcal{B}_{n, 3}$ are $K(\pi, 1)$ spaces.

Conjecture: Complement of $\mathcal{D}_{n, 3}$ is a $K(\pi, 1)$ space.

Example: EL-shellability-based computation for $\mathcal{A}_{n, k}$

(Following 4 slides are based on joint work with M. Wachs '95 and V. Welker '95.)

Let $\Pi_{n, k}$ be family of all partitions of $\{1,2, \ldots, n\}$ that have no parts of sizes $2,3, \ldots, k-1$. Order them by refinement.
Fact: The intersection lattice of $\mathcal{A}_{n, k}$ is (isomorphic to) $\Pi_{n, k}$.

$\Pi_{4,2}$

$\Pi_{4,3}$

Labeling of $L_{\mathcal{A}_{n, k}} \cong \Pi_{n, k}$ with elements from the totally ordered set

$$
\overline{1}<\overline{2}<\cdots<\bar{n}<1<2<\cdots<n
$$

Covering
New k-block B created from singletons
Label $\max (B)$
Non-singleton block B merged with singleton $\{a\}$ Two non-singleton blocks B_{1} and B_{2} merged

```
a
max(\mp@subsup{B}{1}{}\cup\mp@subsup{B}{2}{})
```

For instance, the following maximal chain in $\Pi_{8,3}$ (only nonsingleton blocks are shown)

$$
\widehat{0} \triangleleft 258 \triangleleft 2458 \triangleleft 137 \mid 2458 \triangleleft 1234578 \triangleleft \hat{1}
$$

receives the label $(8,4,7, \overline{8}, 6)$.
This is an EL-labeling of $\Pi_{n, k}$.

Hence,

* $\Delta_{n, k}=\Delta(\hat{0}, \hat{1})$ has homotopy type of a wedge of spheres
* the Betti numbers $\widetilde{\beta}_{n, k}^{d}=\operatorname{rank} \widetilde{H}_{d}\left(\Delta_{n, k} ; \mathbb{Z}\right)$ satisfy

$$
\widetilde{\beta}_{n, k}^{d} \neq 0 \text { iff } d=n-3-t(k-2) \text { for some } 1 \leq t \leq\left\lfloor\frac{n}{k}\right\rfloor
$$

and

$$
\begin{aligned}
\widetilde{\beta}_{n, k}^{n-3-t(k-2)} & =(t-1)!\sum_{\substack{0=i_{0} \leq \cdots \leq i_{t} \\
=n-t k}} \prod_{j=0}^{t-1}\binom{n-j k-i_{j}-1}{k-1}(j+1)^{i_{j+1}-i_{j}} \\
= & \sum_{\substack{j_{1}+\cdots+j_{t}=n \\
j_{i} \geq k}}\binom{n-1}{j_{1}-1, j_{2}, \ldots, j_{t}} \prod_{i=1}^{t}\binom{j_{i}-1}{k-1} .
\end{aligned}
$$

Also,

* the Betti numbers of the complement $M_{n, k}$ of $\mathcal{A}_{n, k}$:

$$
\beta^{i}\left(M_{n, k}\right) \neq 0 \quad \Leftrightarrow \quad i=t(k-2), \text { for } 0 \leq t \leq\left\lfloor\frac{n}{k}\right\rfloor \text {. }
$$

Back to algorithmic k-equal problem: geometric point of view (following Bj-Lovász '94)

The k-equal problem is to determine whether a given point $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ lies in the union of all the subspaces

$$
x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{k}}
$$

Equivalently, does it belong to $M_{n, k}$, the complement of the k equal arrangement $\mathcal{A}_{n, k}$.

Let

$$
\beta\left(M_{n, k}\right)=\sum_{i=0}^{n} \operatorname{rank} H^{i}\left(M_{n, k}\right)
$$

Fact 1. The complexity of the k-equal problem is at least $\log _{3} \beta\left(M_{n, k}\right)$.

Note: Recall computation of $\beta\left(M_{n, k}\right)$ via "GM+EL method", messy sums/products of binomial coeff's...

Let $\mu_{n, k}$ be the Möbius function computed over the poset $\Pi_{n, k}$.
Fact 2. $\beta\left(M_{n, k}\right) \geq\left|\mu_{n, k}\right|$. (Again based on G-M formula)
We turn to generating functions and prove:

$$
\exp \left(\sum_{n \geq 1} \mu_{n, k} \frac{x^{n}}{n!}\right)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k-1}}{(k-1)!}
$$

This implies
Fact 3. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}$ be the complex roots of the polynomial $1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k-1}}{(k-1)!}$. Then

$$
\mu_{n, k}=-(n-1)!\left(\alpha_{1}^{-n}+\alpha_{2}^{-n}+\cdots+\alpha_{k-1}^{-n}\right)
$$

Collecting the facts, we have:

$$
c_{k}(n) \geq \log _{3} \beta\left(M_{n, k}\right) \geq \log _{3}\left|\mu_{n, k}\right|
$$

Now either estimate $\beta\left(M_{n, k}\right)$ via expressions given by EL-shelling, or estimate $\left|\mu_{n, k}\right|$ via Fact 3.
This gives:

$$
c_{k}(n) \geq \ldots \ldots \geq C \cdot n \log \frac{2 n}{k}
$$

Q.E.D.

Remark : Goresky-MacPherson formula over finite fields

ℓ-adic étale cohomology $H^{i}\left(X ; \mathbb{Q}_{\ell}\right)$ versions of $\mathrm{G}-\mathrm{M}$:
Bj-Ekedahl '97, Yan '00, Deligne-Goresky-MacPherson '00, ...

Briefly: Let \mathcal{A} be a d-dim'l subspace arr't in $\mathbb{F}_{q}^{n}, q=p^{r}$. Let $\alpha_{i, j}$ be the eigenvalues of Frobenius acting on $H_{c}^{i}\left(M_{\mathcal{A}} ; \mathbb{Q}_{\ell}\right)$, and $P_{i}(t) \stackrel{\text { def }}{=} \Pi_{j}\left(1-\alpha_{i, j} t\right)$. Then,

$$
P_{i}(t)=\prod_{j=0}^{d}\left(1-q^{j} t\right)^{\beta_{i-2 j-2}^{\oplus j}}
$$

where $\beta_{i}^{\oplus j} \stackrel{\text { def }}{=}$ sum over $\forall x \in L_{\mathcal{A}}$ such that $\operatorname{dim}(x)=j$ of i-th Betti number of $\Delta(\hat{0}, x)$ (i.e., order complex homology).

Suggestion: Étale cohomology could be a secret tool for complexity theory.

Observation: Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is simply a subset of affine n-space over $G F(2)$.

Program:

1. Find good description of some NP-complete f as a variety,
2. Compute the étale Betti numbers of f,
3. Show that big Betti numbers force big Boolean circuits,
4. Conclude that $N P \neq P$.

Topic 2: Bruhat order

Figures on following slides are mostly taken from the book "Combinatorics of Coxeter Groups" by Björner-Brenti, Springer 2005.

Help with figures by F. Incitti and F. Lutz is gratefully acknowledged.

The pair (W, S) is a Coxeter group (Coxeter system) if W is a group with presentation

$$
\begin{cases}\text { Generators: } & S \\ \text { Relations: } & \left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e,\left(s, s^{\prime}\right) \in S^{2}\end{cases}
$$

where $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ satisfies

$$
\begin{gathered}
m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \\
m\left(s, s^{\prime}\right)=1 \Leftrightarrow s=s^{\prime}
\end{gathered}
$$

In particular,

$$
s^{2}=e, \quad \text { for all } s \in S
$$

and

$$
\underbrace{s s^{\prime} s s^{\prime} s \ldots}_{m\left(s, s^{\prime}\right)}=\underbrace{s^{\prime} s s^{\prime} s s^{\prime} \ldots}_{m\left(s, s^{\prime}\right)}
$$

\exists classification of finite (affine, hyperbolic) Coxeter groups: type A_{n}, B_{n}, . . . etc.

Bruhat order: For $u, w \in W$:

$$
\begin{aligned}
u \leq w \stackrel{\text { def }}{\Longleftrightarrow} & \text { for } \forall \text { reduced expression } w=s_{1} s_{2} \ldots s_{q} \\
& \exists \text { a reduced subexpression } u=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}} \\
& 1 \leq i_{1}<\ldots<i_{k} \leq q
\end{aligned}
$$

Bruhat order of B_{2}

Bruhat order of B_{3}.
\exists analogy

Intervals $[e, w]$ in Bruhat order	\leftrightarrow	Face lattices of convex polytopes
Weyl group	\leftrightarrow	rational polytope
Schubert variety	\leftrightarrow	toric variety
Kazhdan-Lusztig polynomial	\leftrightarrow	g-polynomial

Also: Both determine regular CW decompositions of a sphere Intersection cohomology lurks in the background

Remark:

For all polytopes: \exists combinatorial intersection cohomology theory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: \exists ??? combinatorial intersection cohomology theory for all Coxeter groups ("virtual Schubert varieties")?

THM (Bj-Wachs'82, Bj'84) Let $[u, w]$ be a Bruhat interval. Then \exists regular CW decomposition $\Gamma_{u, w}$ of the $(\ell(w)-\ell(u)-2)$ dimensional sphere with cells $\sigma_{x}, u<x<w$, such that

$$
\operatorname{dim}\left(\sigma_{x}\right)=\ell(x)-\ell(u)-1
$$

and

$$
\sigma_{x} \subseteq \overline{\sigma_{z}} \quad \Leftrightarrow \quad x \leq z .
$$

Proof idea: via lexicographic shellability of Bruhat order

Example: Lex. shelling of $W=S_{3}$, generators $S=\{a, b\}$

Choosing "aba" as reduced expression for the top element the induced labels of the four maximal chains are

$$
\begin{aligned}
& \lambda(a b a \triangleright * b a \triangleright * * a \triangleright * * *)=(1,2,3), \\
& \lambda(a b a \triangleright * b a \triangleright * b * \triangleright * * *)=(1,3,2), \\
& \lambda(a b a \triangleright a b * \triangleright * b * \triangleright * * *)=(3,1,2), \\
& \lambda(a b a \triangleright a b * \triangleright a * * \triangleright * * *)=(3,2,1) .
\end{aligned}
$$

Regular CW interpretation of a Bruhat interval.

All Bruhat intervals of length 3 are k-crowns, $k \geq 2$.

Finite case \Rightarrow only $k=2,3,4$ possible.
(And for type H also $k=5$.)

THM (Dyer'91). For each m, there exist only finitely many isomorphism classes of length m intervals in finite Coxeter groups.

THM (Hultman'03). There are 24 types of length 4 intervals in finite Weyl groups.

Only 7 of them occur in the symmetric groups.
All 24 show up in F_{4}.

A Bruhat interval of length 4 (rendered as a CW complex)

All length 4 intervals that appear in finite Weyl groups.

Shape of lower interval $[e, w]$:

$$
f^{w}=\left\{f_{0}^{w}, f_{1}^{w}, \ldots, f_{m}^{w}\right\}
$$

$m \stackrel{\text { def }}{=} \ell(w)$
$f_{i}^{w} \stackrel{\text { def }}{=}$ number of elements $x \leq w$ of length i.

Note: Analogy with f-vector of convex polytope

Known for f-vector of simplicial $(d+1)$-dimensional polytope:
(1) $f_{i} \leq f_{j}$ if $i<j \leq d-i$. In particular,

- $f_{0} \leq f_{1} \leq \cdots \leq f_{d / 2} \quad$ and $\quad f_{i} \leq f_{d-i}$
(2) $f_{3 d / 4} \geq f_{(3 d / 4)-1} \geq \cdots \geq f_{d}$
(3) The bounds $d / 2$ and $3 d / 4$ are best possible.

Conjecture: (2) is true for all polytopes.

Does it make sense to ask such questions for f^{w}-vectors of Bruhat intervals [u, w]?

Perhaps ... - consider this:

THM (Carrell-Peterson '94) A Shubert variety X_{w} is rationally smooth
\Leftrightarrow
$f_{i}^{w}=f_{m-i}^{w}$ for all i

THM (Bj-Ekedahl '04) For the f^{w}-vector $f^{w}=\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ of interval $[e, w]$ in a (Kac-Moody) Weyl group:
(1) $f_{i} \leq f_{j}$ if $i<j \leq m-i$. In particular,

- $f_{0} \leq f_{1} \leq \cdots \leq f_{m / 2} \quad$ and $\quad f_{i} \leq f_{m-i}$
(2) If finite then also $f_{*} \geq f_{*+1} \geq \cdots \geq f_{m}$ ($*=$ to be explained)

Conjecture: This is true for all Coxeter groups.

f^{w}-vector of Bruhat interval $[e, w]$

Idea of proof of (1):
For $X=X_{w}, H^{*}\left(X, \mathbb{Q}_{\ell}\right) \rightarrow I H^{*}\left(X, \mathbb{Q}_{\ell}\right)$ is an $H^{*}\left(X, \mathbb{Q}_{\ell}\right)$-module map \Rightarrow for $i \leq j \leq m-i$ it commutes with multiplication by $c_{1}(\mathcal{L})^{j-i}$
\Rightarrow commutative diagram

The horisontal maps are injective and the right vertical map is an injection by hard Lefschetz. Hence the left vertical map is injective, giving

$$
f_{i}^{w}=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \leq \operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 j}\left(X, \mathbb{Q}_{\ell}\right)=f_{j}^{w} .
$$

For monotonicity at upper end (part (2)), all we can prove is

For $\forall k>1 \exists N_{k}$ such that for \forall finite Weyl group and $\forall w \in W$ such that $m=\ell(w) \geq N_{k}$:

$$
f_{m-k} \geq f_{m-k+1} \geq \cdots \geq f_{m}
$$

Question: Does there exist $\alpha<1$ such that

$$
f_{\lfloor\alpha m\rfloor} \geq f_{\lfloor\alpha m\rfloor+1} \geq \cdots \geq f_{m}
$$

for all w in all Coxeter groups?

Conjecture: Yes, and $\alpha=3 / 4$ will work

Let Invol $(W) \stackrel{\text { def }}{=}$ involutions of W with induced Bruhat order.

Studied by Richardson-Springer '94, Incitti '03, Hultman '04.

Has wonderful properties as poset, much as W itself: pure, regular CW spheres for the classical Weyl groups (via ELshellability), intervals= homology spheres in general, ...

Poset rank function: $\quad \operatorname{rk}(w)=\frac{\ell(w)+a \ell(w)}{2}$, where $a \ell(w)$ is absolute length

Happy Birthday, Bob!

