
Topological Combinatorics

* * * * * *
Anders Björner

Dept. of Mathematics
Kungl. Tekniska Högskolan, Stockholm
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Influence of R. MacPherson on topological combinatorics:

• Intersection homology
Convex polytopes (via toric varieties), toric g-vector
Bruhat order (via Schubert varieties)

• Subspace arrangements
Goresky-MacPherson formula
Application to complexity

• Oriented matroids
CD (combinatorial differential) manifolds
MacPhersonians (discrete Grassmannians)

• And more . . .
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Two topics for this talk:

• Goresky-MacPherson formula,

— with an application to complexity

• Bruhat order

— with an application of intersection cohomology
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Connections Topology ↔ Combinatorics

Simplest case: Space ↔ Triangulation

Example: The real projective plane

RP2
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c c

d

ef

↔ {abd, acf, adf, ace, abf, aef, bcd, bcf, cde, def}
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Topic 1: Goresky-MacPherson formula for subspace ar-

rangements

A
def
= collection of affine subspaces of Rd – an arrangement

MA
def
= Rd \ ∪A – its complement

LA
def
= family of nonempty intersections

of members of A, ordered by reverse

containment – its intersection semi-lattice.
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THM (”Goresky-MacPherson formula”):

H̃i(MA) ∼=
⊕

x∈LA, x>0̂

H̃codim(x)−2−i(∆(0̂, x))

*********

Proof: Stratified Morse Theory (1988)

Other proofs by several authors

*********

Here ∆(0̂, x) is the simplicial complex of

{z1, z2, . . . , zk}

such that

0̂ < z1 < z2 < · · · zk < x

called the order complex of the open interval (0̂, x) in LA.
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A small poset Values of its Möbius function µ(0̂, x)

µ(0̂, x)
def
=

∑
0̂≤y<x µ(0̂, y) µ(0̂, x) = Euler char(∆(0̂, x)) − 1

6



Special cases of G-M formula:

Hyperplane arr’ts over R → Zaslavsky’s formula for number of

connected components of MA

Hyperplane arr’ts over C → Brieskorn-Orlik-Solomon formula for

cohomology groups of MA
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Application of G-M formula

to complexity of algorithms

Given: a string of real numbers

x1, x2, . . . , xn

Sought: Efficient algorithms to decide some property of the

sequence or to restructure it using only pairwise comparisons.

The question: How many such comparisons must be made in

the worst case when using the best algorithm? This number,

c(n), is called the complexity of the problem.

Note: c(n) ≤ n2 is immediate
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Well-known examples:

1. Sorting. To rearrange the n numbers increasingly xi1 ≤ xi2 ≤

· · · ≤ xin requires Θ(n logn) comparisons.

2. Median. To find j such that xj is “in the middle” requires

Θ(n) comparisons, where 2n ≤ Θ(n) ≤ 3n.

3. Distinctness. To decide whether all entries xi are distinct

(i.e., if xi 6= xj when i 6= j) requires Θ(n logn) comparisons.
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A generalization of the distinctness problem (the k = 2 case).

The k-equal problem: for k ≥ 2, decide whether some k

entries are equal, that is, can we find i1 < i2 < · · · < ik such that

xi1 = xi2 = · · · = xik?

For example, are there nine equal entries in the following list of

numbers?

24791374685848713955196742346159463

31486772955924362854117836972581932
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Question repeated: are there nine equal entries in the following

list of numbers?

24791374685848713955196742346159463

31486772955924362854117836972581932

Answer: Yes, there are nine copies of the number “4”. Are there

ten equal entries? Answer: No.
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THM (Bj-Lovász-Yao ’92) The complexity of the k-equal prob-

lem is

Θ(n log
2n

k
).

More precisely,

C1 · n log
2n

k
≤ ck(n) ≤ C2 · n log

2n

k
,

where
C2

C1
≤ 16.

Upper bound: Sorting algorithms

Lower bound: Topological method

(involving G-M formula)
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Before sketch of lower bound argument, need more tools

Examples of interesting subspace arr’ts in codimension k − 1:

• An,k
def
= {xi1 = · · · = xik | 1 ≤ i1 < · · · < ik ≤ n}

• Dn,k
def
= {ε1xi1 = · · · = εkxik | 1 ≤ i1 < · · · < ik ≤ n, εi ∈ {±1}}

• Bn,k
def
= Dn,k ∪{xj1 = · · · = xjk−1

= 0 | 1 ≤ j1 < · · · < jk−1 ≤ n}

Note: for k = 2 get Coxeter reflection arrangements
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Computing cohomology of complement of A reduces (via G-M

formula) to computing homology of order complex of LA.

How compute homology of poset LA?

∃ combinatorial method that works surprisingly often:

lexicographic shellability
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P — a poset with 0̂ and 1̂

E(P) = {(x, y) ∈ P × P | x � y} — its covering relation

Def: An EL-labeling of P is a map λ : E(P) → Z, such that for

every interval [x, y]:

1. there is a unique maximal chain m[x,y] whose associated label

λ(m[x,y]) = (a1, . . . , ap) is increasing a1 < a2 < · · · < ap,

2. if m
′ is any other maximal chain in [x, y] then λ(m′) > λ(m[x,y])

in the lexicographic order on strings with elements from Z.

The poset P is said to be lexicographically shellable (or for short:

EL-shellable) if it admits an EL-labeling.
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EL-shellability, when applicable, reduces homology computations

for posets to a combinatorial labeling game. Call a maximal chain

0̂ = x0 � x1 � · · · � xk = x, falling if

λ(x0 � x1) ≥ λ(x1 � x2) ≥ . . . ≥ λ(xk−1 � xk).

THM (Bj-Wachs ’96) EL-shellable ⇒ ∆(0̂, x) has the homotopy

type of a wedge of spheres, for ∀x > 0̂. Furthermore, for any

fixed EL-labeling:

• H̃i(∆(0̂, x);Z) ∼= Z# falling chains of length (i + 2)

• a basis for i-dimensional (co)homology is induced by the

falling chains of length i + 2.
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Combining Goresky-MacPherson formula for MA with lexico-

graphic shellability of LA we get:

THM For arrangement A, suppose LA is EL-shellable. Then

H̃i(MA) is torsion-free, and the Betti number β̃i(MA) is equal

to the number of falling chains 0̂ = x0 � x1 � · · · � xg such that

codim(xg) − g = i.
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THM EL-shellability works for

(1) hyperplane arr’ts (over any field)

(2) An,k and Bn,k,

(3) some other cases . . .

Conjecture: Works for Dn,k.

Incidentally,

THM (Khovanov ’96) Complements of An,3 and Bn,3 are K(π,1)

spaces.

Conjecture: Complement of Dn,3 is a K(π,1) space.
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Example: EL-shellability-based computation for An,k

(Following 4 slides are based on joint work with
M. Wachs ’95 and V. Welker ’95.)
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Let Πn,k be family of all partitions of {1,2, . . . , n} that have no

parts of sizes 2,3, . . . , k − 1. Order them by refinement.

Fact: The intersection lattice of An,k is (isomorphic to) Πn,k.

134 2

1234

123 4 13 24 12 34 14 23 234 1

12 3 4 13 2 4 14 2 3 23 1 4 24 1 3 34 1 2

1 2 3 4

124 3

234 1

1234

1 2 3 4

123 4 124 3 134 2

Π4,2 Π4,3
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Labeling of LAn,k
∼= Πn,k with elements from the totally ordered

set

1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n

Covering Label

New k-block B created from singletons max(B)

Non-singleton block B merged with singleton {a} a
Two non-singleton blocks B1 and B2 merged max(B1 ∪ B2)

For instance, the following maximal chain in Π8,3 (only non-
singleton blocks are shown)

0̂ � 258 � 2458 � 137 | 2458 � 1234578 � 1̂

receives the label (8,4,7,8,6).

This is an EL-labeling of Πn,k.
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Hence,

* ∆n,k = ∆(0̂, 1̂) has homotopy type of a wedge of spheres

* the Betti numbers β̃d
n,k = rank H̃d(∆n,k;Z) satisfy

β̃d
n,k 6= 0 iff d = n − 3 − t(k − 2) for some 1 ≤ t ≤

⌊
n

k

⌋
,

and

β̃
n−3−t(k−2)
n,k = (t − 1)!

∑

0=i0≤···≤it
=n−tk

t−1∏

j=0

(n − jk − ij − 1

k − 1

)
(j + 1)ij+1−ij

=
∑

j1+···+jt=n

ji≥k

( n − 1

j1 − 1, j2, . . . , jt

) t∏

i=1

(ji − 1

k − 1

)
.
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Also,

* the Betti numbers of the complement Mn,k of An,k:

βi(Mn,k) 6= 0 ⇔ i = t(k − 2), for 0 ≤ t ≤ ⌊
n

k
⌋.
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Back to algorithmic k-equal problem: geometric point of view

(following Bj-Lovász ’94)

The k-equal problem is to determine whether a given point x =

(x1, x2, . . . , xn) ∈ Rn lies in the union of all the subspaces

xi1 = xi2 = · · · = xik.

Equivalently, does it belong to Mn,k, the complement of the k-

equal arrangement An,k.
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Let

β(Mn,k) =
n∑

i=0

rankHi(Mn,k).

Fact 1. The complexity of the k-equal problem is at least

log3 β(Mn,k).

Note: Recall computation of β(Mn,k) via ”GM+EL method”,

messy sums/products of binomial coeff’s . . .
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Let µn,k be the Möbius function computed over the poset Πn,k.

Fact 2. β(Mn,k) ≥ |µn,k|. (Again based on G-M formula)

We turn to generating functions and prove:

exp


 ∑

n≥1

µn,k
xn

n!


 = 1 + x +

x2

2!
+ · · · +

xk−1

(k − 1)!
.

This implies

Fact 3. Let α1, α2, . . . , αk−1 be the complex roots of the poly-

nomial 1 + x + x2

2! + · · · + xk−1

(k−1)!
. Then

µn,k = −(n − 1)!
(
α−n
1 + α−n

2 + · · · + α−n
k−1

)
.

26



Collecting the facts, we have:

ck(n) ≥ log3 β(Mn,k) ≥ log3 |µn,k|

Now either estimate β(Mn,k) via expressions given by EL-shelling,

or estimate |µn,k| via Fact 3.

This gives:

ck(n) ≥ . . . . . . ≥ C · n log
2n

k

Q.E.D.
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Remark : Goresky-MacPherson formula over finite fields

ℓ-adic étale cohomology Hi(X; Qℓ) versions of G-M:

Bj-Ekedahl ’97, Yan ’00, Deligne-Goresky-MacPherson ’00, . . .

Briefly: Let A be a d-dim’l subspace arr’t in Fn
q , q = pr. Let

αi,j be the eigenvalues of Frobenius acting on Hi
c(MA;Qℓ), and

Pi(t)
def
=

∏
j(1 − αi,jt). Then,

Pi(t) =
d∏

j=0

(1 − qjt)
β
⊕j
i−2j−2,

where β
⊕j
i

def
= sum over ∀x ∈ LA such that dim(x) = j of i-th

Betti number of ∆(0̂, x) (i.e., order complex homology).
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Suggestion: Étale cohomology could be a secret tool for com-

plexity theory.

Observation: Boolean function f : {0,1}n → {0,1} is simply a

subset of affine n-space over GF(2).

Program:

1. Find good description of some NP-complete f as a variety,

2. Compute the étale Betti numbers of f ,

3. Show that big Betti numbers force big Boolean circuits,

4. Conclude that NP 6= P .
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Topic 2: Bruhat order

Figures on following slides are mostly taken from the book
“Combinatorics of Coxeter Groups” by Björner–Brenti,
Springer 2005.

Help with figures by F. Incitti and F. Lutz
is gratefully acknowledged.

30



The pair (W, S) is a Coxeter group (Coxeter system) if W is a group with
presentation

{
Generators: S
Relations: (ss′)m(s,s′) = e, (s, s′) ∈ S2,

where m : S × S → {1,2, . . . ,∞} satisfies

m(s, s′) = m(s′, s) ;

m(s, s′) = 1 ⇔ s = s′.

In particular,

s2 = e, for all s ∈ S,

and

s s′ s s′ s . . .︸ ︷︷ ︸
m(s,s′)

= s′ s s′ s s′ . . .︸ ︷︷ ︸
m(s,s′)

∃ classification of finite (affine, hyperbolic) Coxeter groups: type An, Bn,
. . . etc.
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Bruhat order: For u, w ∈ W :

u ≤ w
def
⇐⇒ for ∀ reduced expressionw = s1s2 . . . sq

∃ a reduced subexpressionu = si1si2 . . . sik
,

1 ≤ i1 < . . . < ik ≤ q.

a b

ab ba

aba bab

abab = baba

e

Bruhat order of B2
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Bruhat order of B3.
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∃ analogy

Intervals [e, w] in Bruhat order ↔ Face lattices of convex polytopes

Weyl group ↔ rational polytope
Schubert variety ↔ toric variety

Kazhdan-Lusztig polynomial ↔ g-polynomial

Also: Both determine regular CW decompositions of a sphere
Intersection cohomology lurks in the background

Remark:

For all polytopes: ∃ combinatorial intersection cohomology the-
ory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: ∃ ??? combinatorial intersection cohomology theory
for all Coxeter groups (”virtual Schubert varieties”)?
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THM (Bj-Wachs’82, Bj’84) Let [u, w] be a Bruhat interval.

Then ∃ regular CW decomposition Γu,w of the (ℓ(w)− ℓ(u)− 2)-

dimensional sphere with cells σx, u < x < w, such that

dim(σx) = ℓ(x) − ℓ(u) − 1

and

σx ⊆ σz ⇔ x ≤ z.

Proof idea: via lexicographic shellability of Bruhat order
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Example: Lex. shelling of W = S3, generators S = {a, b}

a b

ab ba

aba = bab

e

Choosing “aba” as reduced expression for the top element the

induced labels of the four maximal chains are

λ(aba � ∗ba � ∗ ∗ a � ∗ ∗ ∗) = (1,2,3),

λ(aba � ∗ba � ∗b ∗ � ∗ ∗∗) = (1,3,2),

λ(aba � ab ∗ � ∗ b ∗ � ∗ ∗∗) = (3,1,2),

λ(aba � ab ∗ � a ∗ ∗ � ∗ ∗ ∗) = (3,2,1).
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1243 1324 2134

1342 2143 2314 3124

2341 3142 3214

a

a

b

b c

c

α

α

β

β γγ

δ

δ

A

A BB

C

C

Regular CW interpretation of a Bruhat interval.
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x1 x2 x3 xk

y1 y2 y3 yk

A k-crown.

All Bruhat intervals of length 3 are k-crowns, k ≥ 2.

Finite case ⇒ only k = 2,3,4 possible.

(And for type H also k = 5.)

38



THM (Dyer’91). For each m, there exist only finitely many iso-

morphism classes of length m intervals in finite Coxeter groups.

THM (Hultman’03). There are 24 types of length 4 intervals in

finite Weyl groups.

Only 7 of them occur in the symmetric groups.

All 24 show up in F4.
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A Bruhat interval of length 4

(rendered as a CW complex)
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

All length 4 intervals that appear in finite Weyl groups.

41



Shape of lower interval [e, w]:

fw = {fw
0 , fw

1 , . . . , fw
m},

m
def
= ℓ(w)

fw
i

def
= number of elements x ≤ w of length i.

Note: Analogy with f-vector of convex polytope
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Known for f-vector of simplicial (d + 1)-dimensional polytope:

(1) fi ≤ fj if i < j ≤ d − i. In particular,

• f0 ≤ f1 ≤ · · · ≤ fd/2 and fi ≤ fd−i

(2) f3d/4 ≥ f(3d/4)−1 ≥ · · · ≥ fd

(3) The bounds d/2 and 3d/4 are best possible.

Conjecture: (2) is true for all polytopes.
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Does it make sense to ask such questions for fw-vectors of

Bruhat intervals [u, w]?

Perhaps . . . — consider this:

THM (Carrell-Peterson ’94) A Shubert variety Xw is rationally

smooth

⇔

fw
i = fw

m−i for all i
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THM (Bj-Ekedahl ’04) For the fw-vector fw = {f0, f1, . . . , fm}

of interval [e, w] in a (Kac-Moody) Weyl group:

(1) fi ≤ fj if i < j ≤ m − i. In particular,

• f0 ≤ f1 ≤ · · · ≤ fm/2 and fi ≤ fm−i

(2) If finite then also f∗ ≥ f∗+1 ≥ · · · ≥ fm (*= to be explained)

Conjecture: This is true for all Coxeter groups.

45



7

1

3

5

7

1

4

fw-vector of Bruhat interval [e, w]
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Idea of proof of (1):

For X = Xw, H∗(X, Qℓ) → IH∗(X, Qℓ) is an H∗(X, Qℓ)-module map
⇒ for i ≤ j ≤ m − i it commutes with multiplication by c1(L)j−i

⇒ commutative diagram

H2i(X, Qℓ) −−→ IH2i(X, Qℓ)y∩c1(L)j−i

y∩c1(L)j−i

H2j(X, Qℓ) −−→ IH2j(X, Qℓ).

The horisontal maps are injective and the right vertical map is an injection
by hard Lefschetz. Hence the left vertical map is injective, giving

fw
i = dimQℓ

H2i(X, Qℓ) ≤ dimQℓ
H2j(X, Qℓ) = fw

j .
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For monotonicity at upper end (part (2)), all we can prove is

For ∀k > 1 ∃Nk such that for ∀ finite Weyl group and ∀w ∈ W

such that m = ℓ(w) ≥ Nk:

fm−k ≥ fm−k+1 ≥ · · · ≥ fm

Question: Does there exist α < 1 such that

f⌊αm⌋ ≥ f⌊αm⌋+1 ≥ · · · ≥ fm

for all w in all Coxeter groups?

Conjecture: Yes, and α = 3/4 will work
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Let Invol(W )
def
= involutions of W with induced Bruhat order.

Studied by Richardson-Springer ’94, Incitti ’03, Hultman ’04.

Has wonderful properties as poset, much as W itself:

pure, regular CW spheres for the classical Weyl groups (via EL-

shellability), intervals= homology spheres in general, . . .

Poset rank function: rk(w) = ℓ(w)+aℓ(w)
2 ,

where aℓ(w) is absolute length
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3412

4123

2314
3124

3214
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4231

4213

1234

1342 1423

2143

1243 1324

23411432

2431
3241 4132

3421 4312

2413 3142

3412

2143

1324

1234

1432

1243

4231

3214

2134

4321

Involutions in S4 Invol(S4)
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Happy Birthday, Bob !
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