A QUESTION ON THE CRITICAL POINTS OF A REAL POLYNOMIAL

MATTHEW CHASSE

Abstract

A question is posed for the locations of critical points of a real polynomial. It has been answered in the negative by two Swedish high-school students: Cesar Höjeberg (Stockholm) and Lisa Lokteva (Borås).

1. Statement of Question

For a polynomial $f \in \mathbb{R}[z]$, let $Z_{\lambda}(p)$ be the number of zeros of p which lie in the half-plane $\{z \in \mathbb{C}: \operatorname{Im} z>\lambda\}$

Question 1. For any $f \in \mathbb{R}[z]$, is it true that $Z_{\lambda}\left(p^{\prime}\right) \leq Z_{\lambda}(p)$ for all $\lambda>0$?
By Rolle's Theorem, the answer to Question 1 holds for the case $\lambda=0$, so it has not been included. If the answer to Question 1 is true, it is clear that the symmetry of the zeros of f must play a role in its proof.
Example 1. The polynomial $p(z)=z\left(z^{2}-1\right)(z-4 i)$ has only one zero in the half-plane $\operatorname{Im} z>1 / 2$, while its derivative $p^{\prime}(z)$ has three. Thus, the statement in Question 1 does not hold for an arbitrary polynomial in $\mathbb{C}[z]$.

The answer to Question 1 is yes when p has at most one pair of complex conjugate zeros by the Gauss-Lucas Theorem and Rolle's Theorem.

Answer: Cesar Höjeberg and Lisa Lokteva have found that the answer to Question 1 is no, with the following (counter) example

$$
p(x)=-78-6 x-98 x^{2}+21 x^{3}-82 x^{4}-67 x^{5}+15 x^{6}-64 x^{7}
$$

Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, SWEDEN

E-mail address: chasse@kth.se

