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ABSTRACT

Let T : R[x] → R[x] be a linear operator such that T [xk] = γkx
k for all

k = 0, 1, 2, . . . , where γk ∈ R. The real sequence {γk}∞k=0 is called a multiplier

sequence if for any p ∈ R[x], having only real zeros, T [p] also has only real zeros.

A characterization of all multiplier sequences that can be interpolated by rational

functions is given. This partially solves a problem of G. Csordas and T. Craven,

who asked for a characterization of all the meromorphic functions, Y (k), such that

{Y (k)}∞k=0 is a multiplier sequence.

An eight-year-old conjecture of I. Krasikov is proved. Several discrete ana-

logues of classical inequalities for polynomials with only real zeros are obtained, along

with results which allow extensions to a class of transcendental entire functions in the

Laguerre-Pólya class. A study of finite difference operators which preserve reality of

zeros is initiated, and new results are proved.

Composition theorems and inequalities for polynomials having their zeros

in a sector are obtained. These are analogs of classical results by Pólya, Schur, and

Turán. In addition, a result of Obreschkoff is used to show that the Jensen poly-

nomials related to the Riemann ξ-function have only real zeros up to degree 1017.

Sufficient conditions are established for a linear transformation to map polynomials

having zeros only in a sector to polynomials of the same type, and some multivariate

extensions of these results are presented. A complete characterization is given for

linear operators which preserve closed (“strict”) half-plane stability in the univariate

Weyl algebra. These results provide new information about a general stability prob-

lem posed formally by G. Csordas and T. Craven. In his 2011 AMS Bulletin article,

D. G. Wagner describes recent activity in multivariate stable polynomial theory as

“exciting work—elementary but subtle, and with spectacular consequences.” Wagner

points out that many of the recent advancements in the theory of multivariate stable

polynomials are due to the pioneering work of J. Borcea and P. Brändén. These re-

sults play an important role in the investigation of linear stability preservers in this

dissertation.
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Several different approaches to characterizing linear transformations which

map polynomials having zeros only in one region of the complex plane to polynomials

of the same type are explored. In addition, an open problem of S. Fisk is solved,

and several partial results pertaining to open problems from the 2007 AIM workshop

“Pólya-Schur-Lax problems: hyperbolicity and stability preservers” are obtained.
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Chapter 1

Preamble

Let P denote the set of all hyperbolic polynomials; that is, all polynomials

that have only real zeros. A transformation, T : R[x]→ R[x] is said to be a real zero

preserver or a hyperbolicity preserver if T (P) ⊂ T (P) ∪ {0}. In their seminal 1914

paper, G. Pólya and J. Schur [86] classified all diagonal linear hyperbolicity preservers

T such that T [xk] = γkx
k, where γk ∈ R, for all k ∈ N∪{0}. This result of Pólya and

Schur followed important contributions of Gauss, Lucas, Hermite, Poulain, Turán,

and Laguerre. A multivariate polynomial, p, is called stable with respect to a given

region Ω ⊂ Cn, if p is non-zero whenever all of its variables are in Ω. A resurgence

in the study of hyperbolicity and stability preserving transformations has begun a

renaissance in the theory [11, 12, 29, 30]. In particular, J. Borcea and P. Brändén [9]

recently characterized all linear hyperbolicity and open half-plane stability preservers

on the spaces of real and complex multivariate polynomials (for the univariate case see

Chapter 4 or [11]). An excellent 2011 Bulletin article by D. G. Wagner [97] details the

emerging theory of stability, which has already found numerous applications [7,15,16].

Zero localization problems which are ultimately related to questions of stability and

hyperbolicity arise in many different areas; we list a few of these below.

i. Control of Linear Systems ([2, p. 465], [69]). The transfer function of a

linear system is a rational function, where the locations of the zeros and poles

describe the behavior of the system. In particular, the transfer function for a

stable linear system possesses poles only in the left half-plane.
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ii. Matrix Theory ([83, p. 136], [57, p. 345, 406]). If A is an n × n Hermitian

matrix or a strictly totally positive matrix, then p(λ) = det(A−λI) has only real

zeros. If K(x) is a density function, then necessary and sufficient conditions for

K(x−y) to be a totally positive kernel can be stated by requiring the reciprocal

of the bilateral Laplace transform of K belong to an appropriate class of entire

functions having only real zeros. The polynomial p(x) =
∑n

k=0 akx
k has only

real negative zeros if and only if the Toeplitz matrix {ai−j}i,j, where ak = 0 for

k < 0, is totally positive.

iii. The Lee-Yang Theory of Phase Transitions ([8,67,72,100]). In statistical

mechanics, the Lee-Yang program for analyzing phase transitions relies directly

on the zero loci of the partition functions associated with the thermodynamic

systems under consideration.

iv. Combinatorics and Graph Theory ([17–20, 44, 96]). The spanning tree

polynomial of a finite connected graph has only real zeros. Sequences that

are unimodal or log-concave can be generated by entire functions having only

real zeros. Weighted planar networks share an intimate connection with totally

positive matrices, which in turn are related to entire functions having only real

zeros.

The theory of stable and hyperbolic polynomials is especially well-suited

for addressing current problems in matrix theory and combinatorics. For example,

several long-standing conjectures—Lieb’s “permanent-on-top” (POT) conjecture [13,

56,70] in matrix theory, the Bessis-Moussa-Villani (BMV) conjecture [71] in quantum

statistical mechanics, and the Van der Waerden conjecture (which is proved, but has

led to new conjectures) [52,53]—can be reformulated by means of stable polynomials.

Many recent results concerning stable and hyperbolic polynomials are proved

using the Grace-Walsh-Szegő Theorem on symmetric linear forms as the main building

block.
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1 Grace’s theorem and other classical theorems on

polynomials

In this section we briefly cite some basic results that will be needed in

the investigation of stability preserving operators. To begin with, we state Grace’s

Theorem, which applies to circular regions. A circular region is either an open or

closed disk, the complement of an open or closed disk, or a half-plane in C. Thus,

the boundary of a circular region is either a circle or a line (the possible images of

a circle under a Möbius transformation). Well-known proofs of Grace’s Theorem are

in [92, Chapter 5] and [88, p. 60, Problem 145], and there have been several recent

proofs [16, 97], including a multivariate generalization [10]. The book of Rahman

and Schmeisser [89, p. 107] contains a number of statements equivalent to Grace’s

Theorem.

Definition 1. Two polynomials f(x) :=
∑n

k=0 ak
(
n
k

)
xk and g(x) :=

∑n
k=0 bk

(
n
k

)
xk are

said to be apolar if an 6= 0, bn 6= 0, and
∑n

k=0(−1)kakbn−k
(
n
k

)
= 0.

Theorem 2 (Grace’s Apolarity Theorem [92, p. 181]). Let A(z) and B(z) be apolar

polynomials. If A(z) has all its zeros in a circular region D, then B(z) has at least

one zero in D.

Grace’s Theorem can be used to prove the following classical composition

theorem for polynomials.

Theorem 3 (Malo-Schur-Szegő Theorem [29]). Let

A(z) =
n∑
k=0

(
n

k

)
akz

k and B(z) =
n∑
k=0

(
n

k

)
bkz

k,

and set

C(z) =
n∑
k=0

(
n

k

)
akbkz

k.

i. (Szegő) If the zeros of the polynomial A(z) lie in a circular region K, and if

β1, β2, . . . , βn are the zeros of B(z), then every zero of C(z) is of the form

ζ = −wβj, for some i, 1 ≤ j ≤ n, and some w ∈ K.
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ii. (Schur) If all the zeros of A(z) lie in a convex region K containing the origin

and if the zeros of B(z) lie in the interval (−1, 0), then the zeros of C(z) also

lie in K.

iii. If the zeros of A(z) lie in the interval (−a, a) and if the zeros of B(z) lie in

the interval (−b, 0) ( or in (0, b)), where a, b > 0, then the zeros of C(z) lie in

(−ab, ab).

iv. (Malo, Schur) If all the zeros of the polynomial f(z) =
∑µ

k=0 akz
k are real

and all the zeros of the polynomial g(z) =
∑ν

k=0 bkz
k are real and of the same

sign, then all the zeros of the polynomials h(z) =
∑m

k=0 k!akbkz
k and p(z) =∑m

k=0 akbkz
k = 1

2πi

∫
|w|=r f

(
z
w

)
g(w)dw

w
are all real, where (m = min{µ, ν}).

We refer to polynomials whose zeros interlace in Chapters 3 and 4.

Definition 4. Let f and g be polynomials with only real simple zeros (a1, a2, . . . , am)

and (b1, b2, . . . , bn) respectively, where ai < ai+1 and bi < bi+1. Without loss of

generality, suppose that am ≥ bn. Then zeros of f and g are said to interlace if

| deg(f)− deg(g)| = |m− n| ≤ 1 and either:

i. b1 ≤ a1 ≤ b2 ≤ a2 ≤ · · · ≤ bn ≤ am (m = n), or

ii. a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ bn ≤ am (m− 1 = n).

If the inequalities are strict, then the zeros of f and g are said to strictly interlace.

The following theorem gives conditions for the sum of two hyperbolic poly-

nomials to be hyperbolic.

Theorem 5 (Hermite-Kakeya-Obreschkoff [89, p. 198]). Let p and q be non-constant

polynomials with real coefficients. Then p and q have strictly interlacing zeros if and

only if, for all λ, µ ∈ R such that λ2 + µ2 6= 0, the polynomial g(z) := λp(z) + µq(z)

has simple real zeros.

A perturbation argument provides an analogous theorem when the interlac-

ing of the zeros is not strict.
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Remark 6. If T : R[x] → R[x] is a linear hyperbolicity preserver, and the zeros of p

and q interlace, then

T [λp(z)+µq(z)] = λT [p(z)]+µT [q(z)] has only real zeros for all λ, µ ∈ R, λ2+µ2 6= 0.

This implies that T preserves (non-strict) interlacing.

Polynomials whose zeros all lie in the upper or lower half-plane can be char-

acterized by interlacing polynomials.

Theorem 7 (Hermite-Biehler [89, p. 197], [68, Chapter VII]). Let

f(z) = p(z) + iq(z) = c

n∏
k=1

(z − αk) (0 6= c ∈ C),

where p(z), q(z) are real polynomials. Then p(z), q(z) have strictly interlacing zeros if

and only if the zeros of f(z) are located in either the open upper half-plane or the open

lower half-plane. If at some point x0 of the real axis q′(x0)p(x0) − q(x0)p′(x0) > 0,

then all the zeros of f lie in the open upper half-plane.

A polynomial f ∈ C[z1, . . . , zn] is said to be affine in a parameter zj, if when

all the other variables zk (k 6= j) are fixed, f is polynomial in zj of the first degree.

If f is affine in all variables, it is called multi-affine. A polynomial f ∈ C[z1, . . . , zn]

is symmetric if it is independent of any permutation of the n variables. We define

the kth elementary symmetric polynomial, denoted ek(z1, . . . , zn), to be the (n− k)th

coefficient of the polynomial
∏n

j=1(x + zj) =:
∑n

k=0 ek(z1, . . . , zn)xn−k. Each ek is

then multi-affine in z1, . . . , zn. A polynomial that is symmetric and multi-affine in

z1, . . . , zn has been termed a symmetric linear form, and can always be written as

a linear combination of elementary symmetric polynomials. The Hermite-Biehler

Theorem and a variant of the following theorem (see Chapter 4) were the main results

used to characterize linear stability preservers in [11].

Theorem 8 (Grace-Walsh-Szegő Theorem on Symmetric Linear Forms [92, p. 182]).

Let f ∈ C[z1, . . . , zn] be symmetric and multi-affine with exact degree n and let D be

a circular region containing the points ζ1, . . . , ζn. Then there exists at least one point

ζ ∈ D such that

f(ζ1, . . . , ζn) = f(ζ, . . . , ζ).

5



Proof. Since for all w ∈ C, f − w is a symmetric linear form, it is sufficient to show

that if for ζ1, . . . , ζn ∈ D, f(ζ1, . . . , ζn) = 0 then there exists a ζ ∈ D such that

f(ζ, ζ, . . . , ζ) = 0. Let Q(z) =
∏n

k=1(z − ζk) =
∑n

k=0 en−k(ζ1, . . . , ζn)(−1)kzk. If the

expansion of f in elementary symmetric polynomials is

f(z1, . . . , zn) =
n∑
k=0

Akek(z1, . . . , zn), Ak ∈ C

then f(z, z, . . . , z) :=
∑n

k=0

(
n
k

)
Akz

k. We can now observe that Q(z) and f(z, z, . . . , z)

are apolar:

n∑
k=0

(−1)k
(−1)kek(ζ1, . . . , ζn)Ak

(
n
k

)(
n
k

) = f(ζ1, . . . , ζn) = 0.

Thus by Grace’s Apolarity Theorem (Theorem 2), the polynomial f(z, z, . . . , z) has

a zero ζ in D, since all the zeros of Q lie in D.

We will frequently use the following fundamental theorem.

Theorem 9 (Hurwitz [22, p. 152]). Let G be an open connected subset of C and

suppose the sequence {fn} of analytic functions in G converges locally uniformly to f .

If f 6≡ 0, B(a,R) ⊂ G is a closed ball with center a and radius R in G, and f(z) 6= 0

for |z − a| = R, then there is an integer N such that for n ≥ N , f and fn have the

same number of zeros in the open ball B(a,R) ⊂ G.

Remark 10. This statment of Hurwitz’s theorem immediatly implies that if f is non-

zero on a compact set K, then there is an integer N such that for all n ≥ N , fn 6= 0

on K as well.

2 Multiplier sequences and the Laguerre-Pólya class

The characterization of multiplier sequences requires the following defini-

tions.

6



Definition 11. ([25]) Let {γk}∞k=0 be a sequence of real numbers and T : R[z]→ R[z]

be the corresponding (diagonal) linear operator given by T [xk] = γkx
k, k ∈ N ∪ {0}.

If for any hyperbolic polynomial p, of degree n or less, the polynomial T [p] either

hyperbolic or identically zero, {γk}∞k=0 is called an n-sequence. If {γk}∞k=0 is an n-

sequence for all n ∈ N, it is called a multiplier sequence.

Definition 12 ([26]). If ϕ(x) =
∑∞

k=0
γk
k!
xk is an arbitrary entire function, we call

gn(x) =
n∑
k=0

(
n

k

)
γkx

k

the nth Jensen polynomial associated with ϕ. The nth Jensen polynomial associated

with the pth derivative of ϕ, ϕ(p)(x), is denoted by

gn,p(x) :=
n∑
k=0

(
n

k

)
γk+px

k (n, p = 0, 1, 2, . . .).

The nth Jensen polynomial associated with a sequence T = {γk}∞k=0 is the result of

applying the sequence to the binomial (x+ 1)n; that is, T [(x+ 1)n] =
∑n

k=0

(
n
k

)
γkx

k.

Definition 13. A real entire function ϕ(x) =
∑∞

k=0
γk
k!
xk is in the Laguerre-Pólya

class, written ϕ ∈ L -P, if it can be expressed in the form

ϕ(x) = cxme−ax
2+bx

ω∏
k=1

(
1 +

x

xk

)
e
−x
xk (0 ≤ ω ≤ ∞),

where b, c, xk ∈ R, m is a non-negative integer, a ≥ 0, xk 6= 0, and
∑ω

k=1
1
x2k
<∞.

Let L -P+ denote the class of functions in the Laguerre-Pólya class that have non-

negative Taylor coefficients, and L -P(−∞, 0] denote the set of functions in the

Laguerre-Pólya class that have only non-positive zeros.

An entire function is in the Laguerre-Pólya class if and only if it is a locally

uniform limit of real polynomials having only real zeros [68, Chapter VIII]. In partic-

ular, the set L -P includes the identically zero function. Note that L -P(−∞, 0] 6=
L -P+; for example, the function 1/Γ(x), where Γ is the gamma function, has only

non-positive zeros, but has some negative Taylor coefficients. Theorem 14 is a classical

result of Pólya and Schur, which was proved using Theorem 3 and an approximating

property of the Jensen polynomials (see [26, Lemma 2.2]).

7



Theorem 14. (Characterization of Multiplier Sequences [86]) Let {γk}∞k=0 be a se-

quence of real numbers and T : R[x] → R[x] be the corresponding (diagonal) linear

operator given by T [xk] = γkx
k, k ∈ N ∪ {0}. The following are equivalent:

i. {γk}∞k=0 is a multiplier sequence.

ii. Either T [ex] ∈ L -P+, T [e−x] ∈ L -P+, −T [ex] ∈ L -P+,

or −T [e−x] ∈ L -P+.

iii. For all n ∈ N, the Jensen polynomials gn(x) = T [(1 + x)n] have only real zeros

of the same sign or are identically zero.

The classical Turán inequalities (see Proposition 26) imply that the terms

of a multiplier sequence or n-sequence must either have the same sign, or alternate in

sign. Theorem 3 immediately yields a characterization of n-sequences, which is due

to T. Craven and G. Csordas [24], and is stated below for a single sign configuaration.

Theorem 15. (Algebraic Characterization of n-sequences [24]) A non-negative se-

quence {γk}∞k=0 is an n-sequence if and only if the nth Jensen polynomial, gn(x) =∑n
k=0

(
n
k

)
γkx

k, has only real non-positive zeros.

Proof. Let t(x) =
∑n

k=0 bkx
k be an arbitrary polynomial with only real zeros of degree

m ≤ n. If gn(x) =
∑n

k=0

(
n
k

)
γkx

k has only real non-positive zeros, then by Theorem

3,
∑n

k=0 γkbkx
k =

∑m
k=0 γkbkx

k has only real zeros. Conversely, if {γk}∞k=0 is an n-

sequence, its associated Jensen polynomial has only real non-positive zeros, since it

is the result of applying the sequence to (1 + x)n.

One possible motivation for studying multiplier sequences is the Riemann

hypothesis, which is equivalent to the statement that the ξ-function [86], as defined

by Riemann,

ξ(iz) :=
1

2

(
z2 − 1

4

)
π−z/2−1/4 Γ

(
z

2
+

1

4

)
ζ

(
z +

1

2

)
, (1.1)

has only real simple zeros. The ξ-function satisfies 1
8
ξ(x

2
) =

∑∞
m=0

(−1)mb̂mx2m

(2m)!
, and

therefore the zeros of

F (x) :=
∞∑
m=0

b̂m
(2m)!

xm (1.2)

8



are real and negative if and only if ξ has only real zeros. The coefficients b̂m ≥ 0 in

(1.2) are moments associated with the kernel whose (Fourier) cosine transform is ξ

(see [35]).

If f is an entire function with a finite number of non-real zeros, we will denote

the number of non-real zeros, counting multiplicities, by Zc(f). A operator T such

that Zc(T [f ]) ≤ Zc(f) for all f ∈ R[x] is called a complex zero decreasing operator. A

multiplier sequence which acts as a complex zero decreasing operator when applied to

polynomials in R[x] is called a complex zero decreasing sequence (CZDS). An alternate

formulation of the Riemann Hypothesis, due to G. Csordas [32], is that the sequence

interpolated by F in (1.2), {F (k)}∞k=0, is a CZDS [13, Problem 21]. Rewriting F in

terms of the gamma and zeta functions (see [13, 32]),

F (k) =
π−1/4

64
(k − 1)π−

√
k/4 Γ

(
1

4
+

√
k

4

)
ζ

(
1

2
+

√
k

2

)
. (1.3)

3 Outline and summary of results

The results of this dissertation pertain to three areas of investigation: in-

terpolation of multiplier sequences, discrete inequalities for polynomials having only

real zeros, and the characterization of stability preserving operators. Material from

Chapter 3 has been accepted for publication [33], and a manuscript containing results

from Chapter 2 has been submitted, and is being considered for publication, pending

revisions. Chapter 2 on meromophically interpolated multiplier sequences and Chap-

ter 3 on discrete inequalities reference only material in Chapter 1. Chapters 4 and 5

both focus on the problem of characterizing linear preservers of polynomials whose

zeros are confined to lie in a sector or some region of the complex plane. The main

results are summarized below.

Theorem 23

(Characterization of rationally interpolated multiplier sequences)

The class of the multiplier sequences that can be interpolated by rational functions

is characterized, and it is shown to coincide with the class of the multiplier sequences

9



which can be interpolated by polynomials.

Theorem 84 (Proof of Krasikov’s conjecture) and Theorem 93

(Extension of Krasikov’s conjecture to transcendental entire functions)

A discrete version of a the classical Laguerre inequality is proved, which settles a con-

jecture of I. Krasikov. The result is subsequently extended to a class transcendental

entire functions. In the process of proving the main theorem, we obtain other discrete

analogs of classical polynomial inequalities.

Theorems 116 and 143

(Sufficient conditions for linear sector preservers)

Sufficient conditions are given for a linear operator to preserve the set of polynomials

whose zeros all lie in a closed sector. A different set of sufficient conditions are given

for a linear operator T to preserve the set of polynomials whose zeros all lie in an open

or closed sector, whenever T can be represented as differential operator of finite order.

Theorem 152

(Characterization of strict stability preservers in the univariate Weyl algebra)

A univariate polynomial is said to be strictly stable, if all of its zeros lie in the open

lower half-plane. Characterizing linear operators that preserve strict stability is an

open problem that has been discussed in recent literature [12,13]. Theorem 116 pro-

vides a sufficient condition for a differential operator of finite order to preserve strict

stability. It is shown that this condition is also necessary, thus providing a foothold

for the classification of all strict half-plane stability preservers.

Theorem 177

This theorem states that the Jensen polynomials associated with the function F in

(1.2), related to the Riemann ξ-function, have only real zeros up to degree 1017. The-

orem 177 is based on the observation that the zeros of the function F are constrained

to lie in a sector symmetric about the negative real axis.
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Theorem 204

(Proof of Fisk’s conjecture)

A conjecture of S. Fisk is proved, yielding a transformation which preserves polyno-

mials whose zeros lie in the interval [−1, 1]. This provides a new example of a linear

preserver on a bounded region which possesses a representation as a differential op-

erator of infinite order. The proof is based on a method of A. Iserles, E. B. Saff, and

S. P. Nørsett, who have obtained similar results.

In addition to the theorems listed above, Chapter 5 contains preliminary results that

have relevance to recently posed open problems [6,13]. The results in this dissertation

that are either new, or appear to be new, are highlighted below.

All results

Chapter 2: Theorem 23, Lemma 27, Proposition 35, Proposition 40, Proposition 44,

Corollary 45, Lemma 48, and Lemma 51.

Chapter 3: Lemma 70, Lemma 73, Corollary 75, Lemma 77, Lemma 78, Lemma

80, Lemma 81, Lemma 82, Lemma 83, Theorem 84, Theorem 88, Lemma 91, Lemma

92, Theorem 93, Theorem 95, Theorem 102, and Theorem 103.

Chapter 4: Corollary 115, Theorem 116, Lemma 127, Theorem 130, Theorem 131,

Theorem 133, Theorem 134, Theorem 135, Proposition 138, Theorem 141, Theorem

143, Theorem 146, Theorem 148, Theorem 152, Theorem 154, Lemma 155, Propo-

sition 156, Corollary 157, Theorem 162, Theorem 163, Theorem 170, Theorem 172,

Theorem 173, and Theorem 177.

Chapter 5: Theorem 182, Proposition 185, Proposition 186, Lemma 190, Theorem

191, Theorem 193, Proposition 194, Theorem 204, Proposition 214, Proposition 216,

and Proposition 217.
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The numbers of new conjectures, problems, and questions are: 56, 57, 62, 86, 88,

89, 221, 222, 223, 224, 225, 226, and 227.
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Chapter 2

Meromorphically interpolated

sequences

1 Introduction

In this chapter we prove that the class of multiplier sequences which can

be interpolated by rational functions is the same as the class of multiplier sequences

which can be interpolated by polynomials. This immediately yields information about

the location of zeros for special cases of the Fox-Wright functions. We note that

rationally interpolated sequences may be useful in identifying when an entire function

has non-real zeros. This idea garners some significance when considered in conjunction

with impressive results of W. Bergweiler, A. Eremenko, and J. K. Langley, who have

proved conjectures of Wiman and Pólya which give conditions for the derivatives

of entire functions to have non-real zeros [4, 5]. A closely related result, proved

by T. Craven, G. Csordas, and W. Smith, resolved the longstanding Pólya-Wiman

conjecture (see Theorem 31) [31,60]. This result is used in Section 2 to observe that

any real polynomial interpolates a multiplier sequence for a sufficiently large shift of

index. Section 4 contains suggestions on how to continue the investigation and lists

several new problems concerning interpolating sequences in addition to others from

the literature.

We now turn our attention to the following theorem of Laguerre, which gives

sufficient conditions for a multiplier sequence (see Chapter 1) to be interpolated by

13



a function in L -P. For p(x) ∈ R[x], let Zc(p(x)) denote the number of non-real

zeros of p(x), counting multiplicities. A multiplier sequence which does not increase

the number of non-real zeros when applied to any real polynomial is called a complex

zero decreasing sequence (CZDS).

Theorem 16 (Laguerre’s Theorem [27]).

i. Let f(x) =
∑n

k=0 akx
k be an arbitrary real polynomial of degree n and let h(x)

be a polynomial with only real zeros, none of which lie in the interval (0, n).

Then

Zc

(
n∑
k=0

h(k)akx
k

)
≤ Zc (f(x)) .

ii. Let f(x) =
∑n

k=0 akx
k be an arbitrary real polynomial of degree n, let ϕ(x) ∈

L -P, and suppose that none of the zeros of ϕ lie in the interval (0, n). Then

Zc

(
n∑
k=0

ϕ(k)akx
k

)
≤ Zc(f(x)).

iii. If ϕ ∈ L -P(−∞, 0], then the sequence {ϕ(k)}∞k=0 is a CZDS.

Thus, the sequence {ϕ(k)}∞k=0, as described in the first part of Theorem 16,

does not increase the number of non-real zeros when applied to polynomials of degree

n or less. If ϕ has only non-positive zeros, then {ϕ(k)}∞k=0 is a multiplier sequence,

and in addition it is a CZDS. Characterizing all CZDS is an open problem [29], as is

the special case of characterizing all meromorphically interpolated CZDS.

T. Craven and G. Csordas initiated an extension of Laguerre’s theorem when

they posed the following problems, which still remain open.

Problem 17 ([30]). Characterize the meromorphic functions Y (x) = ϕ(x)/ψ(x),

where ϕ and ψ are entire functions such that the polynomial
∑n

k=0 Y (k)akx
k has only

real zeros whenever the polynomial
∑n

k=0 akx
k has only real zeros.

Problem 18 ([30]). Characterize the meromorphic functions Y (x) with the property

that
∑∞

k=0 Y (k)akx
k/k! is a transcendental entire function with only real zeros (or the

14



zeros all lie in the half-plane Re z < 0) whenever the entire function
∑∞

k=0 akx
k/k!

has only real zeros.

Let PΩ be the set of polynomials, all of whose zeros lie in Ω ⊂ C. In

connection with recent investigations of linear operators which map PΩ to PΩ for a

given region Ω ⊂ C, we add the following two questions.

Problem 19. Given Ω ⊂ C, characterize the meromorphic functions Y (x) such

that the polynomial
∑n

k=0 Y (k)akx
k has zeros only in Ω whenever the polynomial∑n

k=0 akx
k has zeros only in Ω.

Problem 20. Given Ω ⊂ C, characterize the meromorphic functions Y (x) with the

property that
∑∞

k=0 Y (k)akx
k/k! is a transcendental entire function with zeros only

in Ω whenever the entire function
∑∞

k=0 akx
k/k! has zeros only in Ω.

Meromorphically interpolated multiplier sequences, whose characterization

is sought in Problem 17, have been termed meromorphic Laguerre multiplier sequences

[30]. Theorem 21 and Example 22 exhibit some non-trivial meromorphic Laguerre

multiplier sequences.

Theorem 21 (T. Craven, G. Csordas [30]). For each positive integer m, the function

ϕm(x) =
∞∑
k=0

(2mk)!

(3mk)!

xk

k!

has only real negative zeros, and whence the sequence {(2mk)!/(3mk)!}∞k=0 = {Γ(2mk+

1)/Γ(3mk + 1)}∞k=0 is a multiplier sequence, where Γ(x) denotes the gamma function

[90, p. 8].

Example 22 ([30]). Let

Lα,β :=

{
Γ(k + 1)

Γ(αk + β)

}∞
k=0

.

Then for 1 ≤ β < 3, L2,β is a Laguerre multiplier sequence [41], [40, Theorem 1.1]. For

all α ≥ 2, Lα,1 and Lα,2 are meromorphic Laguerre multiplier sequences [80, Corollary

3]. (See [30] for more explanation).
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We consider a special case of Problem 17, where both ϕ and ψ are polyno-

mials. The following theorem is proved in Section 2.

Theorem 23. Let {γk}∞k=0 =
{
p(k)
q(k)

}∞
k=0

, with relatively prime p, q ∈ R[x], and q(x) 6=
0 for x ∈ N ∪ {0}. If {γk}∞k=0 is a multiplier sequence, then q(k) must be a constant.

If deg(q) ≥ 1, then for all n ∈ N,
{
p(k+n)
q(k+n)

}∞
k=0

is not a multiplier sequence.

Theorem 23 immediately implies the following result about Fox-Wright functions (see

[50,61]).

Corollary 24. Given the Fox-Wright function,

pΨq(x) :=
∞∑
k=0

∏p
j=1 Γ(ajk + bj)∏q
j=1 Γ(cjk + dj)

xk

k!
, (2.1)

if p = q, aj = cj, (bj−dj) ∈ Z for all j = 1, . . . , p, and (
∏p

j=1 Γ(ajk+bj))/(
∏q

j=1 Γ(cjk+

dj)) is not equal to a polynomial, then every derivative of pΨq has an infinite number

of non-real zeros.

If bj = 1 (j = 1, . . . , p), and dj = 1 (j = 1, . . . , q), in (2.1), then the Fox-Wright

function reduces to the generalized hypergeometric function [90, p. 45].

In Section 3, we consider some additional consequences of Theorem 23. New

problems concerning interpolated multiplier sequences are stated in Section 4, along

with problems from recent publications.

2 Rationally interpolated sequences

In this section, Theorem 23 is proved as an immediate consequence of The-

orem 25 and Proposition 26. Throughout the rest of the chapter, we let D := d
dx

. If

g(x) =
∑∞

k=0 akx
k and f(x) are entire functions, we use the notation g(D)f(x) :=∑∞

k=0 akf
(k)(x), provided g(D)f(x) converges to an entire function.

Theorem 25 (Hermite-Poulain-Pólya).

i. ([68, Chapter VIII]) If q(x) :=
n∑
j=0

bjx
j has only real zeros and if f(x) ∈ R[x],

then

Zc(q(D)f(x)) ≤ Zc(f(x)),
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where Zc(f(x)) denotes the number of non-real zeros of f(x), counting multi-

plicities.

ii. ([85, p. 142]) If ϕ ∈ L -P and ψ ∈ L -P+ (see Definition 13), then

ψ(D)ϕ(x) ∈ L -P and ϕ(D)ψ(x) ∈ L -P.

Proposition 26 (Turán inequalities [26]). Let ϕ(x) =
∑∞

k=0
γk
k!
xk ∈ L -P. The

Turán inequalities hold for the Taylor coefficients of ϕ; that is,

Tk(ϕ) := γ2
k − γk−1γk+1 ≥ 0, k = 1, 2, 3, . . . . (2.2)

The following lemma is equivalent to the statement that if a sequence is

interpolated by a rational function, where the denominator’s degree is larger than

that of the numerator, then every shift of that sequence is not a multiplier sequence.

Lemma 27. Let {ηk}∞k=0 =
{
p(k)
q(k)

}∞
k=0

, where p(x), q(x) ∈ R[x], deg(p) < deg(q),

and q(x) 6= 0 for x ∈ N ∪ {0}. Then every derivative of the entire function ϕ(x) =∑∞
k=0 ηk

xk

k!
has non-real zeros.

Proof. If p ≡ 0 the statement of theorem is trivial, so we assume otherwise. Let

n = deg(p) < deg(q) = m, then

1

q(x)
=

1

am

m∏
j=1

1

x− αj
=

1

am

1

xm

m∏
j=1

(
∞∑
k=0

(αj
x

)k)
, |x| > max

1≤j≤m
|αj|,

where {αj}mj=1 are the zeros of q(x) and am is the leading coefficient of q(x). Then

Y (k) :=
p(k)

q(k)
=
A

kd
+

B

kd+1
+

C

kd+2
+

F

kd+3
+O

(
1

kd+4

)
, (k →∞), (2.3)

where d = m− n > 0, A,B,C, F ∈ R, and

A = lim
k→∞

kd
p(k)

q(k)
, B = lim

k→∞

[
kd+1p(k)

q(k)
− Ak

]
, . . . .

Note that A 6= 0; if we multiply both sides of Equation (2.3) by kd and let k → ∞,

we obtain that A is equal to the ratio of the leading coefficients of p and q. Using

(2.3) to compute the Turán expression (cf. Proposition 26) for large k, we obtain

Y (k)2−Y (k+1)Y (k−1) =
−A2d

k2d+2
− 2AB(d+ 1)

k2d+3
+O

(
1

k2d+4

)
, (k →∞). (2.4)
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The first term on the right-hand side of (2.4) is always negative and thus for sufficiently

large k, Y (k) fails to satisfy the Turán inequalities. Suppose that ϕ has only real zeros.

Since ϕ has order ≤ 1 (see (2.25)), ϕ ∈ L -P and therefore the Turán inequalities

hold; but this contradicts (2.4). Therefore, ϕ must have non-real zeros. Since the `th

derivative of ϕ is ϕ(`)(x) =
∑∞

k=0 ηk+`
xk

k!
=
∑∞

k=0 Y (k + `)x
k

k!
, the asymptotic formula

(2.4) still holds for ϕ(`), and therefore every derivative of ϕ has non-real zeros.

Definition 28. For any real sequence {γk}∞k=0 we define ∆0γp = γp,

∆nγp =
n∑
j=0

(
n

j

)
(−1)n−jγp+j = ∆(∆n−1γp)

for n, p = 0, 1, 2, . . . . For a real valued function f(k), we define ∆f(k) := f(k + 1)−
f(k) and ∆nf(k) analogously.

We establish the following preparatory results concerning the ∆-operator for

use in the proof of Theorem 23.

Lemma 29. If g(x) ∈ C[x] and deg(g) = `, then ∆jg(x) = 0 for all j > `.

Proof. Since ∆0 = 0, we only need to show that ∆m+1g(x) = 0 when deg(g) = m,

for all m ∈ N ∪ {0}. We prove the lemma by induction on m. Assume the lemma is

true when the degree of g is m − 1. If the degree of g is m, g(x) =
∑m

j=0 ajx
j, and

bj =
∑m

k=0

(
k
j

)
ak, then

∆m+1g(x) = ∆m

[
m∑
j=0

aj(x+ 1)j −
m∑
j=0

ajx
j

]

= ∆m

[(
amx

m +
m−1∑
j=0

bjx
j

)
−

(
amx

m +
m−1∑
j=0

ajx
j

)]

= ∆m

[
m−1∑
j=0

(bj − aj)xj
]

= 0,

where the last step follows from the induction hypothesis.

Lemma 30. If n0(x), d0(x) ∈ C[x], with deg(n0) < deg(d0), and for j ∈ N,
nj(x)

dj(x)
:=

∆j
(
n0(x)
d0(x)

)
, then deg(nj) < deg(dj) for all j ∈ N ∪ {0}.
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Proof. The claim holds trivially for j = 0. Assume Lemma 30 holds for j = m. We

proceed by induction on m.

∆m+1n0(x)

d0(x)
= ∆m

[
n0(x+ 1)

d0(x+ 1)
− n0(x)

d0(x)

]
= ∆mn0(x+ 1)d0(x)− n0(x)d0(x+ 1)

d0(x+ 1)d0(x)

= ∆mn1(x)

d1(x)
, where deg(n1) < deg(d1).

Then, by induction hypothesis

∆mn1(x)

d1(x)
=
nm+1(x)

dm+1(x)
, where deg(nm+1) < deg(dm+1).

This proves the lemma.

We next use Lemmas 29, 30, 27 and the Hermite-Poulain Theorem to prove

Theorem 23.

Proof of Theorem 23. Let {γk}∞k=0 =
{
p(k)
q(k)

}∞
k=0

, with relatively prime p, q ∈ R[x],

and q(x) 6= 0 for x ∈ N ∪ {0}. For the first assertion assume that deg(q) ≥ 1 and

that {γk}∞k=0 is a multiplier sequence. We arrive at a contradiction as follows. By the

division algorithm, there exist unique g, r ∈ R[x] such that

p(k)

q(k)
= g(k) +

r(k)

q(k)
, (2.5)

where deg(r) < deg(q). Let T be the linear operator defined on monomials by

T [xk] = γkx
k =

p(k)

q(k)
xk =

(
g(k) +

r(k)

q(k)

)
xk for all k ∈ N ∪ {0}.

Since by assumption, {γk}∞k=0 is a multiplier sequence, (D − 1)mT [ex] has only real

zeros for all m by Theorem 25 (where D := d
dx

). But an application of (D − 1) to

T [ex] yields

(D − 1)T [ex] = (D − 1)
∞∑
k=0

γk
xk

k!
=
∞∑
k=0

∆γk
xk

k!
, (2.6)

where

∆γk =

(
g(k + 1) +

r(k + 1)

q(k + 1)

)
−
(
g(k) +

r(k)

q(k)

)
= ∆g(k) + ∆

(
r(k)

q(k)

)
, (2.7)
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and deg(∆g) < deg(g). Continuing in the same way, γk is replaced by ∆mγk when

(D − 1)m operates on T [ex], and

∆mγk = ∆mg(k) + ∆m

(
r(k)

q(k)

)
. (2.8)

Choose the positive integer m > deg(g) = deg(p)− deg(q). Then by Lemmas 29 and

30, ∆mg(k) = 0 and ∆m
(
r(k)
q(k)

)
= n(k)

d(k)
, where deg(n(x)) < deg(d(x)). Therefore, by

(2.6) and (2.8),

(D − 1)mT [ex] =
∞∑
k=0

n(k)

d(k)

xk

k!
. (2.9)

Thus, by (2.9) and Lemma 27, the transcendental entire function (D − 1)mT [ex] has

non-real zeros; this contradicts the assumption that {γk}∞k=0 is a multiplier sequence.

The last assertion of Theorem 23 follows from the above argument, since p(k+n)/q(k+

n) is still a rational function which satisfies the hypotheses in Theorem 23.

Note that for {γk}∞k=0 =
{
p(k+α)
q(k+α)

}∞
k=0

, the conclusions of Theorem 23 still

hold for any real number α, provided it does not introduce a pole at a non-negative

integer value of k. With the aid of the following theorem, we next prove a result

(Proposition 35) which is in sharp contrast to Theorem 23.

Theorem 31 (Craven-Csordas-Pólya-Smith-Wiman [31]). If a real entire function

of order less than two has a finite number of non-real zeros, then there is a positive

integer m0, such that if m ≥ m0, then f (m) has only real zeros.

Definition 32. Denote the falling factorial [17] by

(x)j := x(x− 1) · · · (x− j + 1). (2.10)

Lemma 33. If p(x) ∈ R[x] and T is the linear operator such that T [xk] = p(k)xk for

all k ∈ N ∪ {0}, then T [ex] = g(x)ex, where g(x) ∈ R[x].

Proof. Note that,

xjex =
∞∑
k=0

1

k!
xk+j =

∞∑
k=j

1

(k − j)!
xk =

∞∑
k=0

k(k − 1) · · · (k − j + 1)

k!
xk. (2.11)
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Then, using Definition 32, (2.11) can be written as

xjex =
∞∑
k=0

(k)j
xk

k!
. (2.12)

If n is the degree of p, then p has an expansion p(x) =
∑n

j=0 aj(x)j, aj ∈ R, and

T [ex] =
∞∑
k=0

n∑
j=0

aj(k)j
xk

k!

=
n∑
j=0

aj

∞∑
k=0

(k)j
xk

k!

=
n∑
j=0

ajx
jex by (2.12)

= g(x)ex.

This proves the lemma.

Remark 34. Moreover, the proof of Lemma 33 shows that g(x) is precisely the poly-

nomial given by performing the basis change (x)j → xj on p(x). Note also that in

Lemma 33,

T = p(xD). (2.13)

Let the zeros of p be {αj}nj=1, αj ∈ C. Then, (2.13) is verified by checking that the

operators (xD + αj), commute, and that

(xD − α)xk = (k − α)xk for all α ∈ C.

Hence, for each k = 0, 1, 2, . . .,

p(xD)xk =
n∏
j=1

(xD − αj)xk =
n∏
j=1

(k − αj)xk = p(k)xk = T [xk],

and T = p(xD) by linearity. Another way to prove Lemma 33 is to use T = p(xD)

and an induction argument.

Proposition 35. For any p(x) ∈ R[x], there exists N ∈ N such that for all n ≥ N ,

{p(k + n)}∞k=0 is a multiplier sequence.
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Proof. Without loss of generality assume that the leading coefficient of p(x) is positive.

Then, there exists an M ∈ N such that for all n ≥M , p(n) is positive. Let T be the

linear operator with the action T [xk] = p(k)xk for all k ∈ N ∪ {0}. Then by Lemma

33,

T [ex] = g(x)ex

for some g ∈ R[x]. By Theorem 31, there exists N ∈ N, N ≥M , such that

∞∑
k=0

p(k +N)
xk

k!
= DNT [p(k)] = DNg(x)ex (2.14)

has only real zeros. Therefore, if n ≥ N , then
∑∞

k=0 p(k + n)x
k

k!
has only real zeros

and positive coefficients, since N ≥ M . Hence, p(k + n) is a multiplier sequence by

Theorem 14.

Remark 36. Let ψ = q(x)f(x), where f ∈ L -P has a finite number of real positive

zeros, and q(x) ∈ R[x]. Then {ψ(k + n)}∞k=0 is a multiplier sequence for sufficiently

large n, since it is a composition of multiplier sequences {q(k+n)}∞k=0 (by Proposition

35) and {f(k + n)}∞k=0 (by Theorem 16) for n sufficiently large.

As another example of a sequence which becomes a multiplier sequence for a suffi-

ciently large shift of index, consider a special case of the Fox-Wright function: the

generalized Mittag-Leffler function, defined by

Eα,β(x) :=
∞∑
k=0

xk

Γ(αk + β)
, α, β > 0. (2.15)

When β = 1 in (2.15) we obtain the classical Mittag-Leffler function, Eα(x) :=

Eα,1(x). T. Craven and G. Csordas used detailed information about the zero locus of

Eα,β(x) and Theorem 31 to prove the following.

Theorem 37 ([30]). Let α > 2 and β > 0. Then there exists a positive integer

m0 := m0(α, β) such that

E
(m)
α,β (x) =

∞∑
k=0

Γ(m+ k + 1)

Γ(α(k +m) + β)

xk

k!
∈ L -P+, m ≥ m0. (2.16)

Thus the sequence {Γ(m + k + 1)/Γ(α(k + m) + β)}∞k=0 is a meromorphic Laguerre

multiplier sequence, for all nonnegative integers m sufficiently large.
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We now consider the introduction of a factorial, and more generally a gamma

function, to turn a sequence interpolated by a simple pole into a multiplier sequence.

Let T be the linear operator with the action T [xk] = 1
k!
xk, and S be the linear

operator with the action S[xk] = 1
k+1

xk+1 =
∫ x

0
yk dy. By Theorem 23, the sequence

{1/(k+1)}∞k=0 is not a multiplier sequence. Similarly, the operator S does not preserve

reality of zeros. On the other hand, SnT preserves the reality of zeros for every non-

negative integer n (SnT is equivalent to multiplication by xn followed by operating

with T ). In fact, even more is true.

Theorem 38 ([49, Theorem 11 (b)]). Let S, T : R[x]→ R[x] be linear operators such

that T [xk] = 1
k!
xk and S[xk] = 1

k+1
xk+1 for all k ∈ N ∪ {0}. If f(x) ∈ R[x] has only

non-positive zeros, then for all n ∈ N ∪ {0}, SnT [f(x)] has only non-positive zeros,

which are all simple except possibly for the origin.

The operator xk 7→ xk

k+β
= Γ(k+β)

Γ(k+β+1)
xk, β > 0, has a nice integral operator representa-

tion [82],
xk

k + β
=

1

xβ

∫ x

0

yβ−1yk dy (β > 0). (2.17)

In light of representation (2.17), it is natural to raise the following question.

Question 39. If R is a rational function, then what are the conditions under which{
1

k!
R(k)

}∞
k=0

(2.18)

is a multiplier sequence?

Note that (2.18) is a multiplier sequence if and only if
∑∞

k=0
1
k!k!
R(k)xk ∈ L -P+.

Proposition 40. If β is a positive integer, then the sequence{
1

k!(k + β)

}∞
k=0

(2.19)

is a multiplier sequence.

Proof. If β = 1 the sequence {1/(k + 1)!}∞k=0 is a multiplier sequence by Theorem 16.

If β > 1, the sequences {1/(k + β)!}∞k=0 and {(k + 1)(k + 2) · · · (k + β − 1)}∞k=0 are

known multiplier sequences by Theorem 16. Hence their composition, (2.19), must

also be a multiplier sequence.
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Remark 41. The argument used to prove Proposition 40 also shows that for any real

β > 0, n ∈ N, the sequence {
1

Γ(k + β)(k + β + n)

}∞
k=0

is a multiplier sequence.

Computer experiments suggest that when β is not an integer, the sequence (2.19) in

Proposition 40, is not a multiplier sequence.

Example 42. The fourth degree Jensen polynomial

g4(x) =
4∑

k=0

(
4

k

)
1

k!(k + 1/2)
xk,

associated with the sequence {
1

k!(k + 1/2)

}∞
k=0

, (2.20)

has two non-real zeros. Thus, the sequence (2.20) fails to satisfy the conditions in

Theorem 14, and therefore is not a multiplier sequence.

In the proof of Proposition 2.22 below, we will refer to the following elemen-

tary property of Laguerre operators (see Remark 34).

Proposition 43. If h ∈ C[x] has a zero at z0 ∈ C \ {0} of multiplicity n ∈ N, and

α ∈ C, then (xD+ α)h(x) has a zero of multiplicity n− 1 at z0; that is, the operator

(xD + α) strictly decreases the multiplicity of any zero which does not occur at the

origin. Therefore, if p(x) is a real polynomial having only real negative zeros, then

the multiplier sequence {p(k)}∞k=0 strictly decreases the multiplicity of any zero which

does not occur at the origin when it is applied to a real polynomial.

Proof. We first show the operator (xD+ α) strictly decreases the multiplicity of any

zero which does not occur at the origin. Let α ∈ C, (x− z0) - q(x), and consider

(xD + α)(x− z0)nq(x) = nx(x− z0)n−1q(x) + (x− z0)nxq′(x) + α(x− z0)nq(x)

= (x− z0)n−1[(x− z0)(xq′(x) + αq(x)) + nxq(x)]. (2.21)
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The factor on the right in square brackets is not divisible by (x − z0) for z0 6= 0.

Therefore, the multiplicity of the zero z0 in (2.21) is n− 1. This shows that (xD+α)

strictly decreases the multiplicity of any zero which does not occur at the origin. The

statement about {p(k)}∞k=0 follows immediately from Remark 34 and Theorem 16.

Proposition 44. Fix n, β ∈ N. Then, there is a real ε = ε(n, β), |ε| > 0, such that{
1

k!(k+β+ε)

}∞
k=0

is an n-sequence.

Proof. Fix n, β ∈ N, and let fk(ε) := 1/[k!(k + β + ε)]. The Taylor series of fk(ε)

about ε = 0 is

fk(ε) =
1

k!(k + β)
− 1

k!(k + β)2
ε+O(ε2)

=
1

k!(k + β)

[
1− 1

(k + β)
ε+O(ε2)

]
, (ε→ 0). (2.22)

When β is a positive integer, the sequence
{

1
k!(k+β)

}∞
k=0

corresponding to the lead-

ing factor of (2.22) is a multiplier sequence by Proposition 40, while the sequence{
− 1

(k+β)
ε
}∞
k=0

corresponding to the correction term in the brackets is not a multi-

plier sequence by Theorem 23. For β = 1, the sequence {1/(k + 1)!}∞k=0 takes the

polynomials (1 + x)n to polynomials having only simple negative zeros by Theorem

38. In addition, for β ≥ 2, the multiplier sequence{
1

k!(k + β)

}∞
k=0

=

{
(k + 1) · · · (k + β − 1)

1

(k + β)!

}∞
k=0

(2.23)

takes the polynomials (1+x)n to polynomials having only simple negative zeros (using

Theorem 38 for the special case where the domain polynomial has only negative zeros

and Lageurre’s Theorem—see Proposition 43, Theorem 16). Hence, for the Jensen

polynomial

gn(x) =
n∑
k=0

(
n

k

)
1

k!(k + β + ε)
xk

=
n∑
k=0

(
n

k

)
1

k!(k + β)
xk +O(ε), (ε→ 0),

there is a real ε = ε0 sufficiently small, such that gn(x) has only negative (simple)

zeros. Therefore, the sequence
{

1
k!(k+β+ε0)

}∞
k=0

is an n-sequence by Theorem 15.
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3 Meromorphically interpolated functions having

non-real zeros

In this section we investigate properties of the transcendental entire func-

tions ϕ =
∑∞

k=0 γk
xk

k!
, where the sequence {γk}∞k=0 is interpolated by a non-polynomial

rational function. Let us begin by noting that an entire function

ϕ(x) =
∞∑
k=0

ckx
k =

∞∑
k=0

p(k)

q(k)

xk

k!
, (2.24)

where p(x), q(x) ∈ R[x], p(x) 6= 0, has order ([68, Chapter I])

lim
k→∞

k ln k

ln 1
|ck|

= lim
k→∞

k ln k

ln |k!| − ln |p(k)/q(k)|

= lim
k→∞

k ln k

k ln(k) +O(k)− ln |p(k)/q(k)|
= 1. (2.25)

We have seen that ϕ has non-real zeros (cf. Theorem 23). The next corollary states

that ϕ, defined by 2.24, has non-real zeros if it is perturbed by a polynomial.

Corollary 45. For any h(x) ∈ R[x], and entire ϕ(x) =
∑∞

k=0
p(k)
q(k)

xk

k!
, with p, q ∈ R[x]

relatively prime, deg(q) ≥ 1, the sum ψ(x) = ϕ(x)+h(x) has infinitely many non-real

zeros.

Proof. Letm = deg(h)+1, thenDmψ(x) = Dmϕ(x). By Theorem 23, every derivative

of ϕ has non-real zeros (see Lemma 47), thus the same holds for ψ. To show that ψ

has an infinite number of non-real zeros, assume instead that ψ has a finite number

of non-real zeros. Then, by Theorem 31, there is an n ∈ N such that Dnψ has only

real zeros. This is a contradiction.

R. Duffin and A. C. Schaeffer have shown that if an entire function of order 1 and

mean type is bounded on the real axis, then it has only real zeros when perturbed by

a cosine function of appropriate frequency and amplitude.

Theorem 46 ([39]). Let f(z) be an entire function, satisfying the conditions

i. |f(z)| ≤ 1 on the real axis (z ∈ R), and
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ii. |f(z)| = O(eλ|z|), λ > 0, uniformly over the entire plane.

Then for every real α the function

cos(λz + α)− f(z)

has only real zeros, or vanishes identically. Moreover, all the zeros are simple, except

perhaps at points on the real axis where f(x) = ±1.

Note that S. Adams and D. Cardon have obtained results on sums of entire functions

which preserve reality of zeros [1]. The following lemma is the observation that every

derivative of ϕ in (2.24) has non-real zeros.

Lemma 47. Let T be the linear operator such that for all k ∈ N∪{0}, T [xk] = p(k)
q(k)

xk,

where p(x), q(x) ∈ R[x], relatively prime, and deg(q(x)) ≥ 1. Then DjT [ex] has

infinitely many non-real zeros for every j ∈ N ∪ {0}.

Proof. DjT [ex] =
∑∞

k=0
p(k+n)
q(k+n)

xk

k!
. By Theorem 23, any shift of T is not a multiplier

sequence, and by Corollary 45 DjT [ex] has infinitely many non-real zeros.

The next proposition shows that replacing differentiation with an arbitrary Hermite-

Poulain operator, (D + α), α ∈ R, (see Theorem 25) in Lemma 47 is not enough to

produce an entire function with real zeros.

Proposition 48. Let T be a linear operator defined on monomials by T [xk] = p(k)
q(k)

xk,

where p(x), q(x) ∈ R[x], relatively prime, and deg(q(x)) ≥ 1. Then g(D)T [ex] has an

infinite number of non-real zeros for any polynomial g ∈ R[x] ∩L -P.

Proof. It is sufficient to consider the action of the operator (D + α), α ∈ R, acting

on T [ex]. We can then sequentially apply these operators, since they commute, to

produce g(D) (in the same manner as p(xD) is applied in Remark 34). Note that

T [ex] 6= e−αx, for any α ∈ R, and therefore (D + α)T [ex] 6= 0.

(D + α)T [ex] = (D + α)
∞∑
k=0

p(k)

q(k)

xk

k!

=
∞∑
k=0

(
p(k + 1)

q(k + 1)
+ α

p(k)

q(k)

)
xk

k!

=
∞∑
k=0

(
p(k + 1)q(k) + αp(k)q(k + 1)

q(k + 1)q(k)

)
xk

k!
.
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If α = 0, then (D + α)T [ex] has an infinite number of non-real zeros by Lemma

47. If α 6= 0, then because q(k) - q(k + 1), and p and q are relatively prime, q(k) -
[p(k+1)q(k)+αp(k)q(k+1)]. Similarly q(k+1) - q(k), and p and q are relatively prime,

implies q(k+1) - [p(k+1)q(k)+αp(k)q(k+1)]. Then, p(k+1)q(k)+αp(k)q(k+1) and

q(k + 1)q(k) are relatively prime, hence by Corollary 45, (D + α)T [ex] has infinitely

many non-real zeros.

The asymptotic behavior of an interpolating function seems important in

determining whether or not it interpolates a multiplier sequence. Proposition 51

addresses the asymptotic behavior of sequences.

Proposition 49 ([23]). Let Φ(x) =
∑∞

k=0 γk
xk

k!
, 0 ≤ γ0 ≤ γ1 ≤ · · · , be a transcen-

dental entire function in L -P+. Then

∆nγp ≥ 0 n, p = 0, 1, 2, . . . .

Lemma 50 ([23]). Let Φ(x) =
∑∞

k=0 γk
xk

k!
, 0 ≤ γ0 ≤ γ1 ≤ · · · , be a transcendental

entire function in L -P+.

i. If, for some nonnegative integer p, γp = γp+1 6= 0, then γ0 = γ1 = · · · and

Φ = γ0e
x.

ii. If for p > 0, γ0 = γ1 = · · · = γp−1 = 0, but γp 6= 0, then 0 < γp < γp+1 < γp+2 <

· · · .

Proposition 51. Let ϕ(x) :=
∑∞

k=0
γk
k!
xk ∈ L -P+, where 0 < γ0 ≤ γ1 ≤ · · · ≤ γn ≤

· · · . If ϕ is not of the form Cex, then limk→∞ γk =∞.

Proof. We first note that if for some non-negative integer p, γp = γp+1, then it follows

from Lemma 50 that the transcendental entire function ϕ is equal to γ0e
x. Since

by assumption ϕ is not of the form Cex, the sequence {γk}∞k=0 is strictly increasing.

Moreover, by Proposition 49, the sequence {γk}∞k=0 is convex; that is, γp+2 − γp+1 ≥
γp+1−γp for p = 0, 1, 2, . . . . We claim that γk →∞ as k →∞. Suppose that {γk}∞k=0
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does not tend to infinity. Then, since the sequence is increasing and bounded, it must

converge. Let ε = γm+1 − γm. Since {γk}∞k=0 is convergent, there is an n > m such

that

γn+1 − γn < ε = γm+1 − γm ≤ · · · ≤ γn+1 − γn.

this is a contradiction, and therefore γk →∞ as k →∞.

4 Conjectures and Open Problems

In this section we present several open problems related to results estab-

lished in this chapter. We conclude with examples of sequences of rational functions

which converge locally uniformly (in the right half-plane) to functions which inter-

polate multiplier sequences, but where the approximating rational functions do not

interpolate sequentially higher degree n-sequences. The first group of conjectures and

problems is from a paper of T. Craven and G. Csordas.

We introduced the generalized Mittag-Leffler function, Eα,β, in Section 2

(see (2.15)). The following conjecture naturally arises.

Conjecture 52 ([30]). For each positive integer m, E2m,1/2(x) ∈ L -P+.

Conjecture 53 (Charalambides [30]). If m and n are positive integers, then

Lm,n =

{
(mk)!(nk)!

((m+ n+ 1)k)!

}∞
k=0

is a multiplier sequence and whence

ϕm,n :=
∞∑
k=0

Γ(mk + 1)Γ(nk + 1)

Γ((m+ k + 1)k + 1)

xk

k!
∈ L -P+.

In relation to Corollary 24, we cite the following open problem on Fox-Wright

functions.

Problem 54. ([30]) Consider

2Ψ1(x) =
∞∑
k=0

Γ(ak + 1)Γ(bk + 1)

Γ(ck + d+ 1)

xk

k!
,

where a, b, c, d ≥ 0 and c ≥ a+b. Under what additional restrictions on the parameters

a, b, c, d is it true that 2Ψ1(x) ∈ L -P+?
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Even the special case of Problem 54, with b = d = 0, a = m, c = m + 1,

leads to the following conjecture.

Conjecture 55. ([30]) For each positive integer m the sequence {Γ(mk+ 1)/Γ((m+

1)k + 1)}∞k=0 is a multiplier sequence.

The asymptotic behavior of an interpolating function played a pivotal role

in the proof of Theorem 23. Below are some related questions that may be significant.

In reference to Proposition 35, we pose the following question.

Question 56. Given a polynomial p(x) ∈ R[x], how can one determine n such that

{p(k + n))}∞k=0 is a multiplier sequence?

Note that Question 56 is equivalent to determining a sufficient number of differentia-

tions in (2.14) to produce a function with only real zeros. The relevance of the next

question stems from the recently proved Fisk-McNamara-Sagan-Stanley conjecture

[15].

Question 57. If p(x) ∈ R[x], for which n ∈ N is {(p(k + n))2 − p(k + n + 1)p(k +

n− 1)}∞k=0 a multiplier sequence?

Problem 58 ([13, Problem 34]). Is{
(k +m)

√
k+m

}∞
k=0

a multiplier sequence for all sufficiently large m?

Problem 58 was recently stated in the literature. Its solution would shed some light

on the distribution of zeros of entire functions of order 1 and maximal type. Of special

interest is the Riemann ξ-function (1.1), which has order 1 and maximal type. We

state below some questions related to Problem 58.

Question 59. For what values of α, c ∈ R is {(k + α)c}∞k=0 a multiplier sequence?

We can give a partial answer to Question 59.

Proposition 60. If c ∈ Q, c < 0, then {(k+α)c}∞k=0 is not a multiplier sequence for

α ∈ R, where −α /∈ N ∪ {0}.
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Proof. First consider the case where c = −n
d
∈ Q, n, d ∈ N. Assume that {γk}∞k=0 =

{(k + α)c}∞k=0 is a multiplier sequence. Then we may compose {γk}∞k=0 with itself d

times, and conclude that {(k + α)−n}∞k=0 is a multiplier sequence. This contradicts

Theorem 23, and thus {(k + α)c}∞k=0 can not be a multiplier sequence when c is a

negative rational number.

Question 61. For what values of α, c ∈ R, α > 0, is {αkc}∞k=0 a multiplier sequence?

The next problem asks if Corollary 45 holds for an arbitrary function in

L -P.

Problem 62. Let T be a linear operator defined on monomials by T [xk] = p(k)
q(k)

xk

where p(x), q(x) ∈ R[x], relatively prime, and deg(q(x)) ≥ 1. Does ϕ(x) + T [ex] have

non-real zeros for every ϕ ∈ L -P?

Even though non-polynomial rational functions do not interpolate multiplier

sequences, it seems reasonable to investigate rationally interpolated sequences as they

approach a multiplier sequence. Both interpolating functions in Examples 63 and 64

approach interpolating functions for multiplier sequences locally uniformly in the right

half-plane, but fail to interpolate 2-sequences as they approach the limit function.

This is verified by showing the k = 1 Turán inequality, γ2
1 − γ0γ2 ≥ 0, is violated,

which implies the sequence is not a 2-sequence (the 2nd Jensen polynomial associated

with a sequence {γk}∞k=0 has only real zeros precisely when γ2
1−γ0γ2 is non-negative).

Example 63. Consider the sequence {γk}∞k=0 =
{
k+1+ 1

n

k+1− 1
n

}∞
k=1

for n ≥ 1. The Turán

expression is

γ2
1 − γ2γ0 = − 8n3

12n4 − 28n3 − 8n+ 1
,

and is negative for all n ≥ 2, therefore {γk}∞k=0 is not a 2-sequence for all n ≥ 2.

Example 64. Consider the sequence {γk}∞k=0 =
{

1
(1+ k

n
)n

}∞
k=0

for n ≥ 2. This ap-

proaches the multiplier sequence {γk}∞k=0 = {e−k}∞k=0. The Turán expression,

γ2
1 − γ0γ2 = − 1

e2

1

n
+

1

2e2

1

n2
− 11

24e4

1

n4
+O

(
1

n5

)
, (n→∞), (2.26)
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is negative for sufficiently large n, and therefore {γk}∞k=0 is not a 2-sequence for

sufficiently large n. The Taylor expansion of the first Turán expression looks similar

for {γk}∞k=0 =
{

(1+ k
2n

)n

(1+ k
n

)n

}∞
k=0

.
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Chapter 3

Discrete Laguerre inequalities and

a conjecture of I. Krasikov

1 Introduction

The classical Laguerre inequality for polynomials states that a polynomial

of degree n with only real zeros, p(x) ∈ R[x], satisfies (n− 1)p′(x)2 − np′′(x)p(x) ≥ 0

for all x ∈ R (see [26, 73]). Thus, the classical Laguerre inequality is a necessary

condition for a polynomial to have only real zeros. Our investigation is inspired by an

interesting paper of I. Krasikov [64]. He proves several discrete polynomial inequali-

ties, including useful versions of generalized Laguerre inequalities [81], and shows how

to apply them by obtaining bounds on the zeros of some Krawtchouk polynomials. In

[64], I. Krasikov conjectures a new discrete Laguerre inequality for polynomials. Af-

ter establishing this conjecture, we generalize the inequality to transcendental entire

functions (of order ρ < 2, and minimal type of order ρ = 2) in the Laguerre-Pólya

class (see Definition 13). At the end of this chapter, we apply the techniques we have

developed to obtain a finite difference complex zero decreasing operator.

Definition 65. We denote by L -Pn the set of polynomials of degree n in the

Laguerre-Pólya class; that is, L -Pn is the set of polynomials of degree n having

only real zeros.
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The minimal spacing between neighboring zeros of a polynomial in L -Pn

is a scale that provides a natural criterion for the validity of discrete polynomial

inequalities.

Definition 66. Suppose p(x) ∈ L -Pn has zeros {αk}nk=1, repeated according to

their multiplicities, and ordered such that αk ≤ αk+1, 1 ≤ k ≤ n− 1. We define the

mesh size, associated with the zeros of p, by

µ(p) := min
1≤k≤n−1

|αk+1 − αk|.

With the above definition of mesh size, we can now state a conjecture of I.

Krasikov, which is proved in Section 2.

Conjecture 67 (I. Krasikov [64]). If p(x) ∈ L -Pn and µ(p) ≥ 1, then

(n− 1)[p(x+ 1)− p(x− 1)]2 − 4np(x)[p(x+ 1)− 2p(x) + p(x− 1)] ≥ 0 (3.1)

holds for all x ∈ R.

The classical Laguerre inequality is found readily by differentiating the log-

arithmic derivative of a polynomial p(x), with only real zeros {αi}ni=1, to give

p′′(x)p(x)− (p′(x))2

(p(x))2
=

(
p′(x)

p(x)

)′
=

(
n∑
k=1

1

(x− αk)

)′
= −

n∑
k=1

1

(x− αk)2
. (3.2)

Since the right-hand side is non-positive,

(p′(x))2 − p′′(x)p(x) ≥ 0.

This inequality is also valid for an arbitrary function in L -P [26]. A sharpened

form of the Laguerre inequality for polynomials can be obtained with the aid of the

Cauchy-Schwarz inequality,(
n∑
k=1

1

(x− αk)

)2

≤ n

n∑
k=1

1

(x− αk)2
. (3.3)
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In terms of p, (3.3) becomes
(
p′(x)
p(x)

)2

≤ n
∑n

k=1
1

(x−αk)2
. Then, (3.3) and (3.2) yield

the sharpened version of the Laguerre inequality for polynomials on which Conjecture

67 is based,

(n− 1)(p′(x))2 − np′′(x)p(x) ≥ 0. (3.4)

The inequality (3.1) is a finite difference version of the classical Laguerre

inequality for polynomials. Indeed, let us define

fn(x, h, p) := (n−1)[p(x+h)−p(x−h)]2−4np(x)[p(x+h)−2p(x)+p(x−h)]. (3.5)

Then (3.1) can be written as fn(x, 1, p) ≥ 0 (x ∈ R), and we recover the classical

Laguerre inequality for polynomials by taking the following limit:

lim
h→0

fn(x, h, p)

4h2
= (n− 1)

(
lim
h→0

p(x+ h)− p(x− h)

2h

)2

− np(x)

(
lim
h→0

p(x+ h)− 2p(x) + p(x− h)

h2

)
= (n− 1)p′(x)2 − np′′(x)p(x).

As I. Krasikov points out, the motivation for inequalities of type (3.1) is

that classical discrete orthogonal polynomials pk(x) satisfy a three-term difference

equation (see [76, p. 27], [64])

pk(x+ 1) = bk(x)pk(x)− ck(x)pk(x− 1),

where bk(x) and ck(x) are continuous over the interval of orthogonality. Many of the

classical discrete orthogonal polynomials satisfy the condition that ck(x) > 0 on the

interval of orthogonality, and this implies that µ(p) ≥ 1 (see [65]). Therefore, inequal-

ities when µ(p) ≥ 1 are of interest, and may help provide sharp bounds on the loci of

zeros of discrete orthogonal polynomials [46,48,64]. Indeed, W. H. Foster, I. Krasikov,

and A. Zarkh have found bounds on the extreme zeros of many orthogonal polynomi-

als using discrete and continuous Laguerre and new Laguerre type inequalities which

they discovered [46–48,62–65].

In this chapter, we prove I. Krasikov’s conjecture (see Theorem 84), extend it

to a class of transcendental entire functions in the Laguerre-Pólya class, and formulate
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several conjectures (cf. Conjecture 86, Conjecture 89, Conjecture 94). In Section 2,

we establish several preliminary results about polynomials which satisfy a zero spacing

requirement. In Section 3, we establish the existence of a polynomial sequence which

satisfies a very special zero spacing requirement and converges uniformly on compact

subsets of C to the exponential function. We use this result to extend a version

of (3.1) to transcendental entire functions in the Laguerre-Pólya class up to order

ρ = 2 and minimal type, and conjecture that (3.1) holds for all functions in L -P.

In section 4, we extend the definition of zero spacing to all of R[x], and establish the

existence of a finite difference complex zero decreasing operator.

2 Proof of I. Krasikov’s conjecture

In this section we develop some discrete analogues of classical inequalities,

form some intuition about the effect of imposing a minimal zero spacing requirement

on a polynomial in L -P, and prove Conjecture 67. First, note that one can change

the zero spacing requirement in Conjecture 67 by simply rescaling in x. For example,

the following conjecture is equivalent to Conjecture 67 of Krasikov.

Conjecture 68. Let p(x) ∈ L -Pn. Suppose that µ(p) ≥ h > 0. Then for all x ∈ R,

fn(x, h, p) = (n−1)[p(x+h)−p(x−h)]2−4np(x)[p(x+h)−2p(x)+p(x−h)] ≥ 0. (3.6)

For the sake of clarity, we will work with (3.1) directly (h = 1), and keep

in mind that we can always make statements about polynomials with an arbitrary

positive minimal zero spacing by rescaling p(x) (in other words “measuring x in units

of h”).

Lemma 69. A local minimum of a polynomial, p(x) ∈ L -Pn, with only real simple

zeros, is negative. Likewise, a local maximum of p(x) is positive.

Proof. Since p(x) has simple zeros, at a local minimum (xmin, p(xmin)), it follows that

p′(xmin) = 0 and p′′(xmin) > 0. (Note that p′′(xmin) = 0 implies that p′ has a multiple

zero at xmin which is not possible). The classical Laguerre inequality asserts that if

p(x) ∈ L -P, then for all x ∈ R, (p′(x))2 − p′′(x)p(x) ≥ 0. At a local minimum this
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expression becomes −p′′(xmin)p(xmin) ≥ 0. Therefore, at a local minimum we have

p(xmin) ≤ 0. Since the zeros of p are simple, p(xmin) 6= 0. Thus p(xmin) < 0. The

second statement of the lemma can be proved the same way, or by considering −p
and using the first statement.

A statement similar to Lemma 69 is proved by G. Csordas and A. Escassut [34,

Theorem 5.1] for a class of functions whose zeros lie in a horizontal strip about the

real axis. With the aid of Lemma 69 we obtain the following result in a discrete

setting.

Lemma 70. Let p(x) ∈ L -Pn, n ≥ 2, µ(p) ≥ 1.

i. If p(x− 1) > p(x) and p(x+ 1) > p(x), then p(x) < 0.

ii. If p(x− 1) < p(x) and p(x+ 1) < p(x), then p(x) > 0.

Proof. (i) Fix an x0 ∈ R. Let p(x0 − 1) > p(x0), p(x0 + 1) > p(x0), and assume for

a contradiction that p(x0) ≥ 0. There cannot be any zeros of p(x) in the interval

[x0 − 1, x0], for if there were, p(x0)p(x0 − 1) > 0 implies that the number of zeros in

(x0−1, x0) must be even, and this violates the zero spacing µ(p) ≥ 1. Similarly, there

cannot be any zeros of p(x) in [x0, x0 + 1]. If p(x0) < p(x0− 1) and p(x0) < p(x0 + 1)

then there is a point in (x0 − 1, x0 + 1) where p′ changes sign from negative to

positive. This implies p achieves a non-negative local minimum on [x0 − 1, x0 + 1]

which contradicts Lemma 69.

(ii) The second statement follows by replacing p with −p in (i).

Using Lemma 70 we can verify that if p(x) < min{p(x+ 1), p(x− 1)}, then

p(x) < 0 and thus the function

fn(x, 1, p) = (n− 1)[p(x+ 1)− p(x− 1)]2 − 4np(x)[p(x+ 1)− 2p(x) + p(x− 1)]

= (n− 1)[p(x+ 1)− p(x− 1)]2

−4np(x)[(p(x+ 1)− p(x)) + (p(x− 1)− p(x))] (3.7)

has a non-negative second term and (3.1) is satisfied. Similarly, (3.1) is valid when

p(x) > max{p(x − 1), p(x + 1)}. The proof of Conjecture 67 is now reduced to the
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case where min{p(x + 1), p(x − 1)} ≤ p(x) ≤ max{p(x + 1), p(x − 1)}. It is easy

to show that if for some p(x) ∈ L -Pn, fn(x, 1, p) ≥ 0 for all x ∈ R, then for all

m ≥ n, fm(x, 1, p) ≥ 0 for all x ∈ R. If µ(p) ≥ 1, but m < deg(p), then for some

x0 ∈ R, fm(x0, 1, p) may be negative. Indeed, let p(x) = x(x − 1)(x − 2), then

f3(x, 1, p) = 72(x − 1)2 and f2(x, 1, p) = −12(x − 3)(x − 1)2(x + 1). In particular,

f2(4, 1, p) = −540.

We next obtain inequalities and relations that are analogous to those used in

deriving the continuous version of the classical Laguerre inequality for polynomials.

Definition 71. Let p(x) ∈ L -Pn have only simple real zeros {αk}nk=1. Define

forward and backward “discrete logarithmic derivatives” associated with p(x) by

F (x) :=
p(x+ 1)− p(x)

p(x)
=:

n∑
k=1

Ak
(x− αk)

(3.8)

and R(x) :=
p(x)− p(x− 1)

p(x)
=:

n∑
k=1

Bk

(x− αk)
. (3.9)

Note that deg(p(x + 1) − p(x)) < deg(p(x)) and deg(p(x) − p(x − 1)) < deg(p(x))

permits unique partial fraction expansions of the rational functions F and R. Define

the sequences {Ak}nk=1 and {Bk}nk=1 associated with p(x) by requiring that they satisfy

the equations above.

Remark 72. For an arbitrary finite difference, h > 0, the scaled versions of the func-

tions in Definition 71 are F (x) := p(x+h)−p(x)
hp(x)

and R(x) := p(x)−p(x−h)
hp(x)

.

Lemma 73. For p(x) ∈ L -Pn, n ≥ 2, with µ(p) ≥ 1 and zeros {αk}nk=1, the

associated sequences {Ak}nk=1 and {Bk}nk=1 satisfy Ak ≥ 0 and Bk ≥ 0, for all k,

1 ≤ k ≤ n.

Proof. From Definition 71,

p(x+ 1)− p(x) =
n∑
k=1

Ak
(x− αk)

p(x) =
n∑
k=1

[
Ak
∏
j 6=k

(x− αj)

]
.

Evaluating this at the zero αk of p, yields p(αk + 1) = Ak
∏

j 6=k(αk − αj) = Akp
′(αk).

Thus,

Ak =
p(αk + 1)

p′(αk)
, and similarly Bk =

−p(αk − 1)

p′(αk)
.
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For some real δ > 0,

x ∈ (αk − δ, αk) implies p(x)p′(x) < 0, and

x ∈ (αk, αk + δ) implies p(x)p′(x) > 0.

Since the real zeros of g are spaced at least 1 unit apart, p(αk+1) is either 0 or has the

same sign as p(x) for all x ∈ (αk, αk+δ). So for all positive ε < δ, p(αk+1)p′(αk+ε) ≥
0, and by continuity p(αk + 1)p′(αk) ≥ 0. Thus Ak = p(αk+1)

p′(αk)
≥ 0. Note p′(αk) 6= 0

since αk is simple. Likewise, p(αk − 1) is either 0 or has the same sign as p(x) for

x ∈ (αk − δ, αk). Hence for all positive ε < δ, p(αk − 1)p′(αk − ε) ≤ 0. By continuity,

p(αk − 1)p′(αk) ≤ 0, whence Bk ≥ 0.

Example 74. If the zero spacing requirement in Lemma 73 is violated, then some

Ak or Bk may be negative. Indeed, consider p(x) = x(x+ 1− ε). Then p(x+1)−p(x)
p(x)

=

A1

x
+ A2

x+1−ε , where

A1 =
2− ε
1− ε

A2 =
−ε

1− ε
.

For any positive ε < 1, µ(p) = 1− ε, and A2 is negative.

Corollary 75. For p(x) ∈ L -Pn, n ≥ 2, with µ(p) ≥ 1, the associated functions

F (x) and R(x) (see Definition 71) satisfy F ′(x) < 0 and R′(x) < 0 on their respective

domains.

Proof. This corollary is a direct result of differentiating the partial fraction expressions

for F and R and applying Lemma 73.

Note that the degree of the numerator of F (x) is n−1. If µ(p) ≥ 1, then F (x)

has n− 1 real zeros, because F (x) is strictly decreasing between any two consecutive

poles of F (x). This proves the following lemma.

Lemma 76. (Pólya and Szegö [88, vol. II, p. 39]) For p(x) ∈ L -Pn, n ≥ 2, with

µ(p) ≥ 1, F (x) and R(x) have only real simple zeros.

In the sequel (see Lemma 83), we show that if µ(p(x)) ≥ 1, then µ(p(x +

1)− p(x)) ≥ 1, and the zeros of F (x) and R(x) are spaced at least one unit apart.
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Lemma 77. If p(x) ∈ L -Pn, then the associated sequences {Ak}nk=1 and {Bk}nk=1

satisfy
∑n

k=1Ak = n and
∑n

k=1Bk = n.

Proof. Let p(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ L -Pn and denote the zeros of p(x)

by {αk}nk=1. Observe that

lim
|z|→∞

zF (z) = lim
|z|→∞

z

(
p(z + 1)− p(z)

p(z)

)
= lim
|z|→∞

z
n∑
k=1

Ak
(z − αk)

=
n∑
k=1

Ak. (3.10)

Then (3.10) and

p(z + 1)− p(z) = an(z + 1)n + an−1(z + 1)n−1 + . . .+ a0 − [anz
n + an−1z

n−1 + . . .+ a0]

= nanz
n−1 +O(zn−2), |z| → ∞,

imply that

n∑
k=1

Ak = lim
|z|→∞

zF (z) = lim
|z|→∞

z

(
p(z + 1)− p(z)

p(z)

)
= lim
|z|→∞

z

(
nanz

n−1 +O(zn−2)

anzn + an−1zn−1 + · · ·+ a0)

)
= n.

A similar argument shows that
∑n

k=1 Bk = n.

Lemma 78. Given p(x) ∈ L -Pn, n ≥ 2, with µ(p) ≥ 1, the associated functions

F (x) and R(x) satisfy (F (x))2 ≤ −nF ′(x) and (R(x))2 ≤ −nR′(x), for all x ∈ R,

where p(x) 6= 0.

Proof. From Definition 71, F (x) =
∑n

k=1
Ak
x−αk

and therefore F ′(x) =
∑n

k=1
−Ak

(x−αk)2
.

By Lemma 73, µ(p) ≥ 1 implies the constants Ak ≥ 0. Using the the Cauchy-Schwarz

inequality,

(F (x))2 =

(
n∑
k=1

Ak
x− αk

)2

=

(
n∑
k=1

√
Ak

( √
Ak

x− αk

))2

≤

(
n∑
k=1

Ak

)
n∑
k=1

Ak
(x− αk)2

= −nF ′(x),

where Lemma 77 has been used in the last equality. An identical argument shows

(R(x))2 ≤ −nR′(x) for all x ∈ R.
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Remark 79. Simple examples show that the inequalities in Lemma 78 are sharp (con-

sider p(x) = x(x+ 1− ε)).

Lemma 80. Let p(x) ∈ L -Pn, n ≥ 2, with µ(p) ≥ 1, and let {βk}n−1
k=1 be the

zeros of p(x + 1) − p(x). Let y ∈ R be such that min{p(y + 1), p(y − 1)} < p(y) <

max{p(y + 1), p(y − 1)}. Then if the interval [y − 1, y] does not contain any βk,

1

n
F (y)R(y) ≤ (p(y))2 − p(y + 1)p(y − 1)

(p(y))2
.

Proof. If no βk is in [y − 1, y], then

F ′(x)

(F (x))2
=

(p′(x+ 1)p(x)− p(x+ 1)p′(x))(p(x))2

(p(x+ 1)− p(x))2(p(x))2

can be extended to be continuous and bounded on [y−1, y]. By Lemma 78, (F (x))2 ≤
−nF ′(x). Dividing both sides of this inequality by n(F (x))2 and integrating from y−1

to y, we obtain

1

n
≤ 1

F (y)
− 1

F (y − 1)
=

p(y)

p(y + 1)− p(y)
− p(y − 1)

p(y)− p(y − 1)
.

Using min{p(y + 1), p(y)} < p(y) < max{p(y + 1), p(y − 1)}, it follows that either

p(y − 1) < p(y) < p(y + 1) or p(y + 1) < p(y) < p(y − 1). In both cases, (p(y + 1)−
p(y))(p(y)− p(y − 1)) > 0, and therefore

1

n
(p(y + 1)− p(y))(p(y)−p(y − 1))

≤p(y)(p(y)− p(y − 1))− p(y − 1)(p(y + 1)− p(y))

≤(p(y))2 − p(y + 1)p(y − 1).

Dividing by (p(y))2 gives the result.

Lemma 81. For p(x) ∈ L -Pn, the associated functions F (x) and R(x) from Defi-

nition 71 satisfy

F (x)R(x) = (F (x)−R(x)) +
(p(x))2 − p(x+ 1)p(x− 1)

(p(x))2

for all x ∈ R, where p(x) 6= 0.
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Proof. This lemma is verified by direct calculation using the definitions of F (x) and

R(x) in terms of p(x).

Lemma 82. Let p(x) ∈ L -Pn, n ≥ 2, with µ(p) ≥ 1.

i. If p(β) = p(β + 1) > 0, then for all x ∈ (β, β + 1), p(x) > p(β) and p(x) >

max{p(x+ 1), p(x− 1)}.

ii. If p(β) = p(β + 1) < 0, then for all x ∈ (β, β + 1), p(x) < p(β) and p(x) <

min{p(x+ 1), p(x− 1)}.

iii. If p(β) = p(β + 1) = 0, then for all x ∈ (β, β + 1), either p(x) > max{p(x +

1), p(x− 1)} or p(x) < min{p(x+ 1), p(x− 1)}.

Proof. Note that by Lemma 76, any β which satisfies p(β) = p(β + 1) under the

hypotheses stated in Lemma 82 must be real and simple since β is a zero of F (x).

For case (i), assume for a contradiction that there exists x0 ∈ (β, β+1) such

that p(x0) ≤ p(β). There can not be any zeros of p on (β, β + 1). For otherwise,

p(β)p(β + 1) > 0 implies that p(x) must have at least two zeros on (β, β + 1), which

contradicts µ(p) ≥ 1. Thus, for all x ∈ (β, β + 1), p(x) > 0. Specifically p(x0) > 0.

By the mean value theorem there exists a ∈ (β, β+ 1) with p′(a) = 0. Since

p(x) does not change sign on (β, β + 1), the interval (β, β + 1) must lie between two

neighboring zeros of p(x), call them α1 and α2, such that (β, β + 1) ⊂ (α1, α2). The

zeros of p(x) and p′(x) interlace, and in order to preserve the interlacing a must be the

only zero of p′(x) in (α1, α2), hence p′(β), p′(β+ 1) 6= 0. Because the zeros are simple,

for some ε > 0, for all x ∈ (α1, α1 + ε), p′(x)p(x) > 0, and for all x ∈ (α2 − ε, α2),

p′(x)p(x) < 0. Since p′ and p do not change sign on (α1, β) or (β+1, α2), this gives us

that p′(β) > 0 and p′(β + 1) < 0. Then if p(x0) ≤ p(β), p′ must change signs at least

twice on (α1, α2) (actually three times), at least once on (β, x0) and at least once on

(x0, β + 1), and this contradicts the uniqueness of a. Thus for all x ∈ (β, β + 1) we

have p(x) > p(β).

To show p(x) > p(β) implies p(x) > max{p(x + 1), p(x − 1)} for all x ∈
(β, β + 1), notice that since p′(y) < 0 for all y ∈ (β + 1, α2), p(β + 1) > p(y)
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for all y ∈ (β + 1, α2), and due to the zero spacing p ≤ 0 on (α2, α2 + 1), hence

p(β + 1) > p(x+ 1) for all x ∈ (β, α2). Thus, for all x ∈ (β, β + 1), p(x) > p(β + 1) >

p(x + 1). In the same way, p′(y) > 0 for y ∈ (α1, β) and p ≤ 0 on (α1 − 1, β)

imply that p(β) > p(x) for all x ∈ (α1 − 1, β) and therefore p(x) > p(x − 1) for all

x ∈ (β, β + 1). Hence, for all x ∈ (β, β + 1), p(x) > p(x − 1) and p(x) > p(x + 1),

therefore p(x) > max{p(x+ 1), p(x− 1)}.
Consider case (iii). If p(β) = p(β + 1) = 0, then p does not change sign

on (β, β + 1) since µ(p) ≥ 1. It suffices to consider the case when p is positive

on (β, β + 1). Then for all x ∈ (β, β + 1), p(x) > 0 = p(β). The conclusion p(x) >

max{p(x+1), p(x−1)} (p(x) < min{p(x+1), p(x−1)}) is a consequence of p(x) > p(β)

(p(x) < p(β)) by the same argument given in the proof of case (i).

To prove (ii), let g(x) = −p(x) and apply (i).

Lemma 83. If p(x) ∈ L -Pn, n ≥ 2, µ(p) ≥ 1, and g(x) = p(x + 1) − p(x), then

µ(g) ≥ 1.

Proof. (Reductio ad Absurdum) If µ(g) < 1, then there exist β1, β2 ∈ R such that

0 < β2 − β1 < 1 and g(β1) = g(β2) = 0. In the proof of Lemma 82 we have shown

that p(x) does not change sign on (β1, β1 +1). Without loss of generality assume that

p is positive on (β1, β1 + 1). Observe that β2 ∈ (β1, β1 + 1), and thus by Lemma 82,

p(β2) > max{p(β2 + 1), p(β2− 1)} ≥ p(β2 + 1). But this yields p(β2 + 1)− p(β2) < 0,

and therefore g(β2) < 0 contradicting g(β2) = 0.

Note that Lemma 83 is equivalent to the statement that if p(x) ∈ L -Pn

with µ(p) ≥ 1, then the associated functions F (x) and R(x) also have zeros spaced

at least 1 unit apart. Preliminaries aside, we prove Conjecture 67 of I. Krasikov.

Theorem 84. If p(x) ∈ L -Pn and µ(p) ≥ 1, then

fn(x, 1, p) = (n−1)[p(x+1)−p(x−1)]2−4np(x)[p(x+1)−2p(x)+p(x−1)] ≥ 0 (3.11)

holds for all x ∈ R.
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Proof. Since (3.11) is true when deg(p(x)) is 1 or 2, we assume n ≥ 2. Fix x = x0 ∈ R.

If p(x0 − 1) = p(x0) = p(x0 + 1), or if p(x0) = 0, then fn(x, 1, p) ≥ 0. Thus,

we may assume p(x0) 6= 0. If p(x0) < min{p(x0 + 1), p(x0 − 1)}, or if p(x0) >

max{p(x0 + 1), p(x0 − 1)}, then fn(x0, 1, p) ≥ 0 (use (3.7) and Lemma 70).

We next consider the case when

min{p(x0 − 1), p(x0 + 1)} < p(x0) < max{p(x0 − 1), p(x0 + 1)} (3.12)

(thus x0 6= β or β + 1, where p(β + 1) = p(β)), and show

fn(x0, 1, p)

(p(x0))2
= (n− 1)(F (x0) +R(x0))2 − 4n(F (x0)−R(x0)) ≥ 0,

where F (x) and R(x) are defined by (3.8) and (3.9) respectively. By Lemma 81,

fn(x0, 1, p)

(p(x0))2
=(n− 1)(F (x0)−R(x0))2

− 4n

(
1

n
F (x0)R(x0)− (p(x0))2 − p(x0 + 1)p(x0 − 1)

(p(x0))2

)
. (3.13)

By Lemma 83, µ(p(x + 1)− p(x)) ≥ 1, and thus the zeros {βk}n−1
k=1 of F (x)

(p(βk + 1) = p(βk)) are spaced at least one unit apart. If [x0 − 1, x0] does not

contain any βk,
fn(x0,1,p)
(p(x0))2

≥ 0 holds by Lemma 80 (see (3.13)) . If, on the other hand,

βj ∈ (x0−1, x0) (recall βj 6= x0, x0−1), then x0 ∈ (βj, βj+1) and by Lemma 82 either

p(x0) > max{p(x0−1), p(x0 + 1)} or p(x0) < min{p(x0−1), p(x0 + 1)}. Both of these

cases contradict our assumption (see (3.12)). We have now shown fn(x0, 1, p)) ≥ 0

for all x0 ∈ R, except for the isolated points where x0 = βj or x0 = βj + 1 for some

j, but by continuity of fn(x, 1, p), (3.11) will hold.

The converse of Theorem 84 is false in general. Indeed, the following example

shows that there are polynomials with arbitrary minimal zero spacing that still satisfy

fn(x, 1, p) ≥ 0 for all x ∈ R.

Example 85. Let p(x) = (x+ 3 + a)(x+ 2)(x+ 1), where a ∈ R. Then

f3(x, 1, p) = 288 + 144a+ 24a2 + (288 + 120a+ 24a2)x+ (72 + 24a+ 8a2)x2
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The discriminant of f3(x, 1, p) is D = −192a2(3 + a)2 ≤ 0. Thus f3(x, 1, p) does not

change sign and is always positive (this is verified by showing that the coefficient of

x2 is positive when considered as a quadratic in a). Therefore, f3(x, 1, p) ≥ 0 for all

x ∈ R.

In general, a polynomial p may satisfy fn(p, 1, x) ≥ 0 for all x ∈ R, even

if p has multiple zeros. If p(x) = x2(x + 1), which has µ(p) = 0, then f3(x, 1, p) =

56x2 + 32x+ 8 is non-negative for all x ∈ R. A polynomial p with non-real zeros may

also satisfy fn(p, 1, x) ≥ 0 for all x ∈ R. For example, let p(x) = (x2 + 1)(x+ 1), then

f3(x, 1, p) = 32x2 − 32x+ 8 ≥ 0 for all x ∈ R.

It is known that a polynomial p(x) ∈ L -Pn with only real zeros satisfies

µ(p) ≤ µ(p′); that is, p′(x) will have a minimal zero spacing which is larger than that

of p(x) (N. Obreschkoff [78, p. 13, Satz 5.3], P. Walker [98]). In light of Lemma 83

and the aforementioned result, we suggest the following conjecture.

Conjecture 86. If p(x) ∈ L -Pn, n ≥ 2, µ(p) ≥ d ≥ 1, and g(x) = p(x+ 1)− p(x),

then µ(g) ≥ d.

The derivation of the classical Laguerre inequality relies on properties of

the logarithmic derivative of a polynomial. In the same way, Conjecture 67 was

proved using a discrete version of the logarithmic derivative. The analogy between the

discrete and continuous logarithmic derivatives motivates Theorem 88 and Conjecture

89, based on Theorem 87 and its converse (B. Muranaka [75]).

Theorem 87 (P. B. Borwein and T. Erdélyi [14, p. 345]). If p ∈ L -Pn, then

m

({
x ∈ R :

p′(x)

p(x)
≥ λ

})
=
n

λ
for all λ > 0,

where m denotes Lebesgue measure.

Theorem 88. If p ∈ L -Pn, n ≥ 2, µ(p) ≥ 1, then

m

({
x ∈ R :

p(x+ 1)− p(x)

p(x)
≥ λ

})
=
n

λ
for all λ > 0,

where m denotes Lebesgue measure.
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Proof. Without loss of generality let p(x) =
∑n

k=1 akx
k be monic. By Corollary 75,

p(x+ 1)− p(x)

p(x)
= F (x) (3.14)

is decreasing on its domain. For fixed λ > 0, let β1, . . . , βn denote the zeros of

p(x)− 1

λ
(p(x+ 1)− p(x)) = xn +

(
an−1 −

n

λ

)
xn−1 + · · ·+ a0.

Note that β1, . . . , βk are also the zeros of F (x) − λ. Let αk be zeros of p, and `[a, b]

denote the length of the interval from a to b. Then,

m

({
x ∈ R :

p(x+ 1)− p(x)

p(x)
≥ λ

})
= `[α1, β1] + `[α2, β2] + · · ·+ `[αn, βn]

=
n∑
k=1

(βk − αk)

=
n∑
k=1

βk −
n∑
k=1

αk

= −
(
an−1 −

n

λ

)
− (−an−1)

=
n

λ
.

Conjecture 89. If p(x) is a real polynomial of degree n ≥ 2, and if

m

({
x ∈ R :

p(x+ 1)− p(x)

p(x)
≥ λ

})
=
n

λ
for all λ > 0,

where m denotes Lebesgue measure, then p ∈ L -Pn with µ(p) ≥ 1.

3 Extension to a class of transcendental entire func-

tions

In analogy with (3.5) we define, for a real entire function ϕ,

f∞(x, h, ϕ) := [ϕ(x+ h)− ϕ(x− h)]2 − 4ϕ(x)[ϕ(x+ h)− 2ϕ(x) + ϕ(x− h)]. (3.15)
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For ϕ ∈ L -P, with zeros {αi}ωi=1, ω ≤ ∞, we introduce the mesh size

µ∞(ϕ) := inf
i 6=j
|αi − αj|. (3.16)

We remark that if ψ /∈ L -P, then ψ need not satisfy f∞(x, h, ψ) ≥ 0 for all x ∈ R.

A calculation shows that if ψ(x) = ex
2
, then f∞(0, 1, ψ) = −8(e − 1) < 0. When

ϕ ∈ L -Pn, f∞(x, h, ϕ) ≥ 0 for all x ∈ R by Theorem 84. In order to extend

Theorem 84 to transcendental entire functions, we require the following preparatory

result to ensure that the approximating polynomials we use will satisfy a zero spacing

condition.

Lemma 90. For any a ∈ R, n ∈ N, n ≥ 2,

lim
n→∞

nn∑
k=1

1

n ln(n)(k + n) + a
= 1.

Proof. Fix a ∈ R. Since the terms 1
n ln(n)(k+n)+a

are decreasing with k for n sufficiently

large, we obtain

∫ nn+1

1

1

n ln(n)(k + n) + a
dk ≤

nn∑
k=1

1

n ln(n)(k + n) + a
≤
∫ nn

0

1

n ln(n)(k + n) + a
dk,

for n sufficiently large, by considering the approximating Riemann sums for the inte-

grals. Thus,

1

n ln(n)
ln

(
nn + 1 + a

n ln(n)

n+ 1 + a
n ln(n)

)
≤

nn∑
k=1

1

n ln(n)(k + n) + a

≤ 1

n ln(n)
ln

(
nn + a

n ln(n)

n+ a
n ln(n)

)
. (3.17)

As n → ∞, both the left and right sides of (3.17) approach 1, and whence the sum

in the middle approaches 1.

Lemma 91. The set of polynomials
{
qn(z) =

∏nn

k=1

(
1 + z

n ln(n)(k+n)

)
: n ∈ N, n ≥ 2

}
has a subsequence which converges uniformly on compact subsets of C to ez.
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Proof. Let K ⊂ C be any compact set and let R = supz∈K |z|. Recall the inequality

1

2
|z| ≤ | ln(1 + z)| ≤ 3

2
|z| for |z| < 1

2

[22, p. 165]. Then for n > max{2R, 3},
∣∣∣ z
n ln(n)(k+n)

∣∣∣ < 1
2
, hence, for k ≥ 1 and z ∈ K,

1

2

|z|
n ln(n)(k + n)

≤
∣∣∣∣ln(1 +

z

n ln(n)(k + n)

)∣∣∣∣ ≤ 3

2

|z|
n ln(n)(k + n)

,

and therefore

1

2

nn∑
k=1

|z|
n ln(n)(k + n)

≤
nn∑
k=1

∣∣∣∣ln(1 +
z

n ln(n)(k + n)

)∣∣∣∣ ≤ 3

2

nn∑
k=1

|z|
n ln(n)(k + n)

.

As n→∞ the sums on the left and right sides of the inequality converge by Lemma

90 to 1
2
|z| and 3

2
|z| respectively. In particular, for some ε > 0 and N > 2R sufficiently

large, for all n ≥ N and for all z ∈ K,

nn∑
k=1

∣∣∣∣ln(1 +
z

n ln(n)(k + n)

)∣∣∣∣ ≤ 3

2
R + ε.

Then for all n ≥ N , for all z ∈ K,

|qn(z)| ≤ exp

(
nn∑
k=1

∣∣∣∣ln(1 +
z

n ln(n)(k + n)

)∣∣∣∣
)
≤ e

3
2
R+ε.

So for n > N sufficiently large, the sequence {qn(z)}∞n=2 is uniformly bounded on

compact subsets K ⊂ C and thus form a normal family by Montel’s theorem [22,

p. 153]. Thus, there is a subsequence of {qn(z)}∞n=2 which converges uniformly on

compact subsets of C to a function f , and therefore satisfies

f ′(x)

f(x)
= lim

n→∞

q′n(x)

qn(x)
= lim

n→∞

nn∑
k=1

1

n ln(n)(k + n) + x
= 1, (3.18)

for a fixed x ∈ R, where the last equality is by Lemma 90. Equation (3.18) and

f(0) = 1, imply f(x) = ex on R, and thus f is the exponential function.

Lemma 92. If ϕ(x) = p(x)ebx, b ∈ R, p ∈ L -Pn, n ≥ 2, and µ(p) ≥ 1, then

f∞(x, 1, ϕ) ≥ 0 for all x ∈ R.
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Proof. By Lemma 91, there is a subsequence ofqj(x) =

jj∏
k=1

(
1 +

x

j ln(j)(k + j)

)
∞

j=2

,

call it {qjm(x)}∞m=1, such that qjm(x)→ ex uniformly on compact subsets of C, as m→
∞. Let {αk}nk=1 be the zeros of p(x), and R = max

1≤k≤n
|αk|. The zero of least magnitude

of qjm(bx), zjm , satisfies |zjm| = jm ln(jm)(1+jm)
b

, b 6= 0. Both µ(qjm(bx)) → ∞ as

m → ∞ and |zjm | → ∞ as m → ∞. Thus, there is an M such that for all m > M ,

|zjm| > R + 1, and the sequence of polynomials hm(x) = p(x)qjM+m
(bx), m ≥ 1, is in

L -P` for some `, and satisfies µ(hm) ≥ 1. By Theorem 84, f∞(x, 1, hm) ≥ 0 for all

x ∈ R, for all m. Since hm → p(x)ebx by construction,

lim
m→∞

f∞(x, 1, hm) = f∞(x, 1, p(x)ebx) ≥ 0.

Theorem 93. If ϕ ∈ L -P has order ρ < 2, or if ϕ is of minimal type of order

ρ = 2, and µ∞(ϕ) ≥ 1, then f∞(x, 1, ϕ) ≥ 0 for all x ∈ R.

Proof. By the Hadamard factorization theorem, ϕ has the representation

ϕ(x) = cxmebx
ω∏
k=1

(
1 +

x

ak

)
e
− x
ak (ω ≤ ∞),

where ak, b, c ∈ R, m is a non-negative integer, ak 6= 0, and
∑ω

k=1
1
a2k
<∞. Let

gn(x) = cxmebx
n∏
k=1

(
1 +

x

ak

)
e
− x
ak .

Then, gn(x) = c exp
(
bx−

∑n
k=1

x
ak

)
xm
∏n

k=1

(
1 + x

ak

)
has the form p(x)eγx, γ ∈ R,

p ∈ L -Pn, and thus by Lemma 92, f∞(x, 1, gn) ≥ 0 for all x ∈ R, and for all n.

Since we also have gn → ϕ by construction, limn→∞ f∞(x, 1, gn) = f∞(x, 1, ϕ) ≥ 0 for

all x ∈ R.

In light of Theorem 93, we make the following conjecture.
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Conjecture 94. If ϕ ∈ L -P and µ∞(ϕ) ≥ 1 then f∞(x, 1, ϕ) ≥ 0 for all x ∈ R.

If Conjecture 94 is true, it can not be proved using a sequence of polynomials

which satisfy a zero spacing requirement, as the following theorem shows.

Theorem 95. Let h : N → N, where h(n) → ∞ as n → ∞. There does not exist a

sequence of polynomials of the form

pn(x) =

h(n)∏
k=1

(
1− x2

(f(k, n))2

)
k, n ∈ N,

where µ(pn(x)) ≥ 1 for all n ∈ N, and f(k, n) : N × N → R is strictly positive and

monotonically increasing in k for fixed n, such that pn(x)→ e−ax
2

locally uniformly,

where a ∈ R \ {0}.

Proof. Suppose there exists a sequence {pn}∞n=1 satisfying the above hypotheses such

that pn → e−ax
2

locally uniformly. For a fixed n, the hypotheses on pn imply f(1, n) >

0, f(k + 1, n)− f(k, n) ≥ 1, and therefore

f(k, n) ≥ f(1, n) + k − 1. (3.19)

A computation yields

p′n(x)

pn(x)
=

h(n)∑
k=1

(
1

f(k, n) + x
− 1

f(k, n)− x

)
. (3.20)

Since by assumption pn → e−ax
2

locally uniformly, by Hurwitz’s Theorem (see The-

orem 9) for an arbitrary R ∈ R and sufficiently large n, there are no zeros of pn

on the closed ball B(0, R), thus f(1, n) → ∞ as n → ∞. This implies that for

sufficiently large n and for a fixed real x, both fractions in the sum (3.20) are mono-

tonically decreasing with k, and each term in the sum has the same sign. In order

that pn → e−ax
2
, it is necessary that p′n(x)

pn(x)
→ −2ax. However, for n sufficiently large,

and for a fixed positive x,∣∣∣∣p′n(x)

pn(x)

∣∣∣∣ ≤
∣∣∣∣∣
∫ h(n)

1

(
1

k + f(1, n)− 1 + x
− 1

k + f(1, n)− 1− x

)
dk

∣∣∣∣∣
=

∣∣∣∣ln((h(n) + x)(f(1, n)− x)

(h(n)− x)(f(1, n) + x)

)∣∣∣∣ , (3.21)
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where the inequality follows from (3.19). Since f(1, n) → ∞ as n → ∞, the right-

hand side of (3.21) converges to 0. This is a contradiction.

In [42], it has been assumed that zero spacing does not make sense for functions of

order 2 with mean type or greater. Conjecture 94 suggests there may be exceptional

functions in L -P to which the concept of zero spacing applies.

4 Complex zero decreasing finite difference oper-

ators

By the Hermite-Poulain Theorem (see Theorem 25), the operator (D − α),

where α ∈ R, and more generally ϕ(D), where ϕ ∈ L -P, are complex zero decreasing

operators. In this section we show the finite difference operator (∆ − α), where

∆p(x) := p(x+ 1)− p(x), is a complex zero decreasing operator with an appropriate

zero spacing hypothesis. We will see that f(∆), where f ∈ L -Pn with n ≥ 2, is not

a complex zero decreasing operator (see Examples 99 and 100). First, we extend the

definition of zero spacing to all polynomials in R[x].

Definition 96. Suppose g(x) = h(x)p(x) ∈ R[x], where h(x) has only non-real zeros

and p(x) has only real zeros. If deg(p) ≥ 2, then we define the mesh size, associated

with the zeros of g by µ∗(g) := µ(p) (see Definition 66), otherwise µ∗(g) = 0.

We now extend Definition 71 to include the case when p(x) may have non-

real zeros.

Definition 97. Let g(x) ∈ R[x] have real zeros {αk}nk=1 and 2` non-real zeros. We

extend the definition of forward and backward “discrete logarithmic derivatives” as-

sociated with g by

F (x) :=
g(x+ 1)− g(x)

g(x)
=:

n∑
k=1

Ak
(x− αk)

+
∑̀
j=1

Ejx+Dj

(x2 + bjx+ cj)

and R(x) :=
g(x)− g(x− 1)

g(x)
=:

n∑
k=1

Bk

(x− αk)
+
∑̀
j=1

Fjx+Gj

(x2 + bjx+ cj)
,
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where (x2 + bjx+ cj) is an irreducible factor of g.

Remark 98. See Definition 71 and Remark 72 for additional comments relevant to

Definition 97.

The examples below show that the operator (∆ + α), α ∈ R, can only

be applied to a polynomial once with the guarantee that the non-real zeros of the

resulting polynomial will not be increased.

Example 99. Let p(x) = (x− 1)(x− 2)(x− 3). A computation shows that

(∆ + 3)p(x) = p(x+ 1)− p(x) + 3p(x) = 3(x− 2)2(x− 1).

Thus, (∆+3)p(x) has no more non-real zeros than p(x), but the mesh size is µ∗((∆+

3)p(x)) = 0. Another computation shows that (∆ + 3)2p(x) = 3(x− 1)(3x2− 9x+ 8),

and this has two non-real zeros.

Remark 100. When p(x) ∈ L -Pn and µ∗(p) = µ(p) ≥ 1, the interlacing of the zeros

of p(x+ 1) and p(x) implies (∆ + 3)p(x) ∈ L -Pn by Theorem 5 and a perturbation

argument. A stronger statement is proved here (Theorem 103) .

Example 101. Let p(x) = (x2 + 1)(x− 2)(x− 3). Then, µ∗(p) = 1 and

(∆ + 3)p(x) = p(x+ 1)− p(x) + 3p(x) = (x− 2)2(3x2 + x+ 4).

Thus, (∆+3)p(x) has no more non-real zeros than p(x), but the mesh size is µ∗((∆+

3)p(x)) = 0. Another computation shows that (∆ + 3)2p(x) = 9x4 − 21x3 + 21x2 −
33x+ 40, which has four non-real zeros.

The following proof of Theorem 102 is essentially the proof of Lemma 73

with some modifications.

Theorem 102. For g(x) ∈ R[x], with µ∗(g) ≥ 1 and real zeros {αk}nk=1, n ∈ N,

the associated sequences {Ak}nk=1 and {Bk}nk=1 satisfy Ak ≥ 0 and Bk ≥ 0, for all k,

1 ≤ k ≤ n.
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Proof. From Definition 97,

g(x+ 1)− g(x) =
n∑
k=1

Ak
(x− αk)

g(x) +
∑̀
j=1

Ejx+Dj

(x2 + bjx+ cj)
g(x)

=
n∑
k=1

[
Ak
∏
j 6=k

(x− αj)
∏̀
j=1

(x2 + bjx+ cj)

]
+
∑̀
j=1

Ejx+Dj

(x2 + bjx+ cj)
g(x).

Evaluating this at a real zero αk of g yields

g(αk + 1) = Ak
∏
j 6=k

(αk − αj)
∏̀
j=1

(α2
k + bjαk + cj) = Akg

′(αk).

Thus,

Ak =
g(αk + 1)

g′(αk)
, and similarly Bk =

−g(αk − 1)

g′(αk)
.

For some real δ > 0,

x ∈ (αk − δ, αk) implies g(x)g′(x) < 0, and

x ∈ (αk, αk + δ) implies g(x)g′(x) > 0.

Since the real zeros of g are spaced at least 1 unit apart, g(αk+1) is either 0 or has the

same sign as g(x) for all x ∈ (αk, αk+δ). So for all positive ε < δ, g(αk+1)g′(αk+ε) ≥
0 and by continuity g(αk + 1)g′(αk) ≥ 0. Thus Ak = g(αk+1)

g′(αk)
≥ 0. Note g′(αk) 6= 0

since αk is simple. Likewise, g(αk − 1) is either 0 or has the same sign as g(x) for

x ∈ (αk + δ, αk). Hence for all positive ε < δ, g(αk − 1)g′(αk − ε) ≤ 0. By continuity,

g(αk − 1)g′(αk) ≤ 0, whence Bk ≥ 0.

Theorem 103. If g(x) ∈ R[x] with µ∗(g) ≥ 1, α ∈ R, then

Zc ((∆− α)g(x)) ≤ Zc(g(x))

where Zc(g(x)) denotes the number of non-real zeros of g, counting multiplicities.

Proof. Let {xk}nk=1 be the real zeros of g(x), and fix α ∈ R. By Theorem 102, the

associated sequence {Ak}n1 satisfies Ak ≥ 0 for k = 1, . . . , n, and this implies that for

F (x) = ∆g
g

, and k = 1, . . . , n,

lim
x→x−k

F (x)− α = −∞ and lim
x→x+k

F (x)− α =∞.
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Therefore, in between any two consecutive zeros of g(x) there is at least one real zero

of

F (x)− α =
1

g(x)
([g(x+ 1)− g(x)]− αg(x)).

Hence, ([g(x + 1) − g(x)] − αg(x)) has at least n − 1 real zeros. If α 6= 0, by degree

considerations, ([g(x + 1) − g(x)] − αg(x)) must have at least n real zeros. Thus,

Zc ([g(x+ 1)− g(x)]− αg(x)) ≤ Zc(g(x)).

Remark 104. With g as in the hypotheses of Theorem 103, a similar argument shows

Zc([g(x)− g(x− 1)]− αg(x)) ≤ Zc(g(x)).
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Chapter 4

Linear sector preservers and sector

properties of entire functions

1 Introduction

In their groundbreaking 2009 paper, J. Borcea and P. Brändén characterized

all linear transformations T : R[x] → R[x] which preserve reality of zeros, and in

addition provided characterizations of linear preservers of polynomials whose zeros

lie in closed circular domains [11]. This solved a problem that was first formally

stated by T. Craven and G. Csordas [29], and has been a theme in the work of

many mathematicians, including Hermite, Laguerre, and Pólya (see Theorem 14).

Craven and Csordas also asked for a characterization of linear operators T , such that

whenever the zeros of the polynomial p lie in a given sector, T [p] has all of its zeros

in the same sector. We state a refined version of this problem below, and obtain

sufficient conditions for a large class of linear preservers of polynomials whose zeros

lie in a sector. In the course of our investigation, we obtain several composition

theorems and results pertaining to transcendental entire functions whose zeros all lie

in a sector. We begin by introducing a notation for sectors to simplify the discussion

in this chapter.

Definition 105. For δ > 0, let

S(θ, δ) = {z ∈ C \ {0} : | arg(z)− θ| < δ} .
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Let S(θ, δ) denote the closure of S(θ, δ), and S(θ, 0) = {z ∈ C : z = 0 or arg(z) = θ}.
In particular, S(π, δ) denotes the closed sector, symmetric about the negative real axis,

with half angle δ.

Our main goal is to investigate the following problems stated in recent papers

[9, 11, 26] (for more detail see Chapter 5).

Problem 106. Let P ⊂ C[z] (or R[z]) be the set of univariate polynomials having

zeros only in S(θ, δ), (0 ≤ δ ≤ π
2
). Classify all linear operators T : C[z] → C[z] (or

R[z]→ R[z]) such that T (P) ⊂ P .

Problem 107. Let P ⊂ C[z1, . . . , zn] (or R[z1, . . . , zn]) be the set of multivariate

polynomials p, such that p(z1, . . . , zn) 6= 0 whenever z1, . . . , zn /∈ S(θ, δ), (0 ≤ δ ≤ π
2
).

Classify all linear operators T : C[z1, . . . , zn] → C[z1, . . . , zn] (or R[z1, . . . , zn] →
R[z1, . . . , zn]) such that T (P) ⊂ P .

While we do not solve these problems completely, we obtain sufficient condi-

tions on an operator T in Problem 106 (and Problem 107) such that T (P) ⊂ P∪{0}.
In addition, we gain insight about stability problems on non-circular regions. The

condition δ ≤ π
2

has been imposed in Problems 106 and 107 to make them more

manageable. For a domain G which is not convex, even differentiation may produce

new zeros outside G.

Definition 108. Let Ω ⊂ C. If f ∈ C[z1, . . . , zn] and f(z1, . . . , zn) 6= 0 for all

z1, . . . , z2 ∈ Ω, then f is said to be Ω-stable. Note that a univariate polynomial,

p(z), which is Ω-stable, has all of its zeros in Ωc. We denote by Sn(θ, δ) the set

of all f ∈ C[z1, . . . , zn] which are S(θ, δ)c-stable; that is, Sn(θ, δ) contains all the

polynomials f ∈ C[z1, . . . , zn] such that f(z1, . . . , zn) 6= 0, for all z1, . . . , zn /∈ S(θ, δ).

A polynomial is stable if it is non-zero in the open upper half-plane. Denote by

Hn the set of stable polynomials in C[z1, . . . , zn]. Thus, a polynomial p(z1, . . . , zn)

in Hn is non-zero whenever Im zk > 0 for all k = 1, . . . , n. A real polynomial is

called hyperbolic if it has only real zeros. We denote by Hn(R) the set of real stable

polynomials in n variables (i.e. Hn(R) = Hn ∩R[x]). When the dimension n = 1, we

omit the subscript and write H, H(R), and S(θ, δ).
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Definition 109. An operator T is said to be a stability preserver (in n dimensions),

if T (Hn) ⊂ Hn ∪{0}. T is a hyperbolicity preserver (in n dimensions) if T (Hn(R)) ⊂
Hn(R) ∪ {0}. If P is a set of polynomials, an operator T is a P-preserver if T (P) ⊂
P ∪ {0}.

Definition 110. Denote by P the set of functions which are locally uniform limits

in P .

Definition 111. For convenience, we define No = N ∪ {0}, and D = d
dz

, for the rest

of the chapter.

For an operator on a univariate polynomial space, T : C[z] → C[z], we

extend its action to multivariate spaces by treating the other variables as constants.

For example,

T [ezw] =
∞∑
k=0

wk

k!
T [zk] ∈ C[z][[w]]

is a formal power series in w. The following theorems of Borcea and Brändén [11]

provide algebraic and transcendental characterizations of all linear hyperbolicity pre-

servers and stability preservers.

Theorem 112 ([11] Characterization of stability preservers). A linear operator T :

C[z]→ C[z] preserves stability if and only if either

i. T has range of dimension at most one and is of the form

T (f) = α(f)P, f ∈ C[z]

where α : C[z]→ C is a linear functional and P is a stable polynomial, or

ii. T [e−zw] ∈ H2, or equivalently

iii. T [(z + w)n] ∈ H2 ∪ {0} for all n ∈ No.

Theorem 113 ([11] Characterization of hyperbolicity preservers). A linear operator

T : R[z]→ R[z] preserves hyperbolicity if and only if either

57



i. T has range of dimension at most two and is of the form

T (f) = α(f)P + β(f)Q, f ∈ R[z],

where α, β : R[z]→ R are linear functionals and P,Q are hyperbolic polynomials

with interlacing zeros, or

ii. either T [e−zw] ∈ H2(R), or T [ezw] ∈ H2(R) ,or equivalently

iii. either T [(z +w)n] ∈ H2(R) ∪ {0} for all n ∈ No, or T [(z −w)n] ∈ H2(R) ∪ {0}
for all n ∈ No.

Theorems 112 and 113 are beautiful generalizations of the characterization

of diagonal hyperbolicity preservers (multiplier sequences) using Jensen polynomials

and a transcendental entire function (see Theorem 14). Ideally, one would like to

obtain similar characterizations of S(θ, δ)-preservers. We begin our investigation of

Problems 106 and 107 by finding sector versions of classical composition theorems that

can be generalized. First, we look at the following types of standard compositions

involving two entire functions.

Definition 114. Given two entire functions, ϕ =
∑∞

k=0 akx
k and ψ =

∑∞
k=0 bkx

k, the

Hadamard composition of ϕ and ψ, denoted by ϕ ∗ ψ, is given by

(ϕ ∗ ψ)(x) :=
∞∑
k=0

akbkx
k.

The Schur composition of ϕ and ψ, denoted by ϕ� ψ, is given by

(ϕ� ψ)(x) :=
∞∑
k=0

k!akbkx
k,

provided the series converges for all x ∈ C.

Note that if ϕ and ψ are entire functions, then ϕ ∗ψ is automatically entire.

The following result is proved in Section 3.

Corollary 115. If the zeros of f, g ∈ R[z] lie in the sector S(π, δ), and

min{deg(f), deg(g)} ≤ 1

| sin δ|2
,

then all the zeros of the Schur composition f � g lie in S(π, δ).
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It appears difficult to avoid a restriction on the degrees of the polynomials

in Corollary 115. Indeed, we find a simple example of two real polynomials with zeros

in S(π, 2π/5) whose Hadamard (and Schur) composition has zeros outside S(π, 2π/5)

(Example 126). This is a bit of a surprise, since it has been shown that the Hadamard

composition of polynomials whose zeros lie in the left half-plane, S(π, π
2
), again lies

in the left half-plane [49].

We prove a sector analog of the Hermite-Poulain Theorem and extend it to

transcendental entire functions (Theorems 131, 135). Hermite-Poulain type differen-

tial operators appear to have a closer analogy to half-plane stability preservers than

the diagonal sector preservers given by the Schur composition. Any linear operator T

acting on C[z] (or C[z1, . . . , zn]) can be represented uniquely as a differential operator

of possibly infinite order (a proof of this is supplied in Chapter 5). In the univari-

ate case this representation has the form T =
∑∞

k=0Qk(z)Dk. Given an operator

T : C[z]→ C[z] with the representation T =
∑∞

k=0 Qk(z)Dk, we define its symbol to

be FT (z, w) =
∑∞

k=0Qk(z)wk ∈ C[z, w]. The ring of finite order differential operators

of the form T =
∑N

k=0Qk(z)Dk is known as the (univariate) Weyl algebra, and is

denoted A1[C] [66, p. 7].

In Section 4, we prove some sufficient conditions for an operator T to preserve

sector stability, including the following (see Definition 139 for Hδ).

Theorem 116 (Sufficient conditions for closed and open sector preservers in the

Weyl algebra). Let T ∈ A1[C]. If either

i. FT (z, e−i2(θ+δ+π/2)w) ∈ Hθ+δ and FT (z, e−i2(θ−δ−π/2)w) ∈ Hπ+θ−δ, 0 < δ ≤ π
2
,

or

ii. FT (z, e−i2θw) ∈ S2(θ, δ), 0 ≤ δ ≤ π
2
,

then T is an S(θ, δ)-preserver. Furthermore, if 0 < δ ≤ π
2

and

FT (z, e−i2θw) = wkH(z, e−i2θw), (4.1)

where k ∈ No, H ∈ C[z, w], and H(z, e−i2θw) 6= 0 whenever z /∈ S(θ, δ) and w ∈
S(θ, δ)c ∪ {0}, then T preserves the set of polynomials whose zeros all lie in the open

sector S(θ, δ).
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The sufficient condition (ii) in Theorem 116 is not necessary when δ < π/2,

but it is analogous to the condition that characterizes both univariate and multivariate

stability preservers which can be expressed as differential operators of finite order

(see Theorem 150). When δ 6= 0, (ii) implies (i); we have stated them separately

not only due to the δ = 0 case, but because they have been obtained by different

methods of proof. The proof of (ii) uses only an argument involving differential

operators, while the most direct proof of (i) relies implicitly on the Grace-Walsh-

Szegő Theorem (Theorem 8). It seems desirable to obtain results for sectors that do

not directly depend on the Grace-Walsh-Szegő Theorem, which appears unavoidably

tied to circular regions. For this purpose, we point out in Section 4 that (ii) can be

used to prove (i). Indeed, both of the conditions (ii) and (i) reduce to the conditions

which characterize Weyl algebra stability preservers (Theorem 150) when θ = −π/2
and δ = π/2. The form for open sectors, (4.1), enables us to give a characterization of

closed (also called strict) upper half-plane stability preservers in the univariate Weyl

algebra (Theorem 152), which completes the univariate case of a characterization

begun by J. Borcea and P. Brändén in [12]. We also obtain multivariate extensions of

some of the univariate theorems in Section 4 and a sector analog of a result of E. Lieb

and A. Sokal (Proposition 156), which applies to multivariate affine polynomials.

The motivation for solving Problems 106 and 107 is their potential for ap-

plication in combinatorics, matrix theory and other areas. A satisfactory solution of

Problem 106 would reduce to Theorem 112 in the case that the sector is a half-plane.

Theorem 112, along with its multivariate versions, has already found a variety of

significant applications [10,12,16].

We begin by reviewing some known composition theorems and properties of

entire functions related to sectors in Section 2. Subsequently, some of these results

are extended (Proposition 173, Theorems 171, 162), and applied to the Riemann ξ-

function (Theorem 177). In Section 3, we find several composition theorems which

appear to be new (see 135, 115). We address Problems 106 and 107 in Section 4,

prove sufficient conditions for an operator T to be an S(θ, δ)-preserver, and provide

a characterization of strict stability preservers in the univariate Weyl algebra. In

Section 5, we prove Turán-type inequalities for polynomials having their zeros in a
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sector. A connection is established between the locus of zeros of an entire function

having order ≤ 1, and the zeros of its associated Jensen polynomials.

2 Classical results

As stated in Definition 110, S(θ, δ) is closure of S(θ, δ) (Definition 108)

under locally uniform limits. The following theorem gives a standard characterization

of S(θ, δ), when 0 ≤ δ < π/2.

Theorem 117 ([68, Chapter VIII]). An entire function ψ(z) ∈ S(θ, δ) (δ < π
2
), if

and only if ψ(z) can be represented in the form

ψ(z) = czqe−σz
∞∏
k=1

(
1− z

ak

)
, (4.2)

where ∞∑
k=1

|ak|−1 <∞, ak ∈ S(θ, δ), σ ∈ S(θ, δ). (4.3)

The following theorem was first proved by N. G. DeBruijn [37], and an

alternate proof is given by T. Craven and G. Csordas [29].

Theorem 118 (Generalized Malo-Schur-Szegő Composition Theorem). If A(z) ∈
S(θ1, δ1) (δ1 ≤ π) and if B(z) ∈ S(θ2, δ2) (δ2 ≤ π), then C(z) = (A � B)(z) ∈
S(θ1 + θ2 + π, δ1 + δ2) .

Remark 119. Theorem 118 also holds when all of the zeros of the polynomials involved

are required to lie in open sectors. Observe that Theorem 118 is the best result

possible in the following sense. If A(z) = z + eiθ ∈ S(π, θ), B(z) = z + eiφ+ε ∈
S(π, φ + ε), where θ, φ > 0, then, (A � B)(z) = z + eiφ+θ+ε ∈ S(π, φ + θ + ε) but

(A�B)(z) /∈ S(π, φ+ θ) for ε > 0).

The following theorem of N. Obreschkoff [77] yields a criterion for the coef-

ficients of a polynomial to form an n-sequence (see Definition 11). In addition, it is

an extension of Schur’s composition theorem (Theorem 3), as the special case δ = 0

allows for f to have arbitrary degree. Its relevance to n-sequences was pointed out

by T. Craven and G. Csordas [29].
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Theorem 120 (N. Obreschkoff [77]). Let the real polynomial f(x) =
∑n

k=0 akx
k have

only real zeros and let the zeros of g(z) =
∑m

k=0 bkx
k lie in S(0, δ) ∪ S(π, δ), where

sin δ ≤ 1√
n
. Then the polynomials

g(D)f(z) = bmf
(m)(z) + bm−1f

(m−1)(z) + · · ·+ b0f
(0)(z), bk ∈ R, (4.4)

and

(g � f)(x) = a0b0 + 1!a1b1z + 2!a2b2z
2 + · · ·+ r!arbrz

r, bk ≥ 0, (4.5)

have only real zeros, where r = min{m,n}.

In Obreschkoff’s original proof of Theorem 120, (4.4) is proved in a clever, but cum-

bersome, three page argument. Theorem 120 can now be proved in a few lines using

the characterization of linear hyperbolicity preservers on polynomials of fixed degree

[11]. An argument of Pólya involving Sturm’s Theorem (see [68, Chapter VIII]),

shows (4.5) follows from (4.4) in Theorem 120. In Section 3, we will use Theorem

120 to give a new composition theorem for polynomials having their zeros in a sector.

We extend Theorem 120 in Section 5 to transcendental entire functions, and use it

to relate the sector locus of zeros of an entire function ϕ and the zeros of the Jensen

polynomials associated with ϕ .

There is a close relationship between the zero locus of a polynomial p with

respect to a sector, and the total positivity of the coefficients of p (Definition 121).

Definition 121. A sequence {ak}∞k=0 is TPm, if every k × k minor, k ≤ m, of the

infinite matrix 
a0 a1 a2 . . .

0 a0 a1 . . .

0 0 a0 . . .
...

...
...

. . .


is non-negative. A sequence that is TPm is called m-times positive, and if a sequence

is m-times positive for every m ∈ N, it is said to be totally positive (TP).

Using the following theorem of I. J. Schoenberg on total positivity and a more

recent result of O. Katkova [59], we establish a Turán-type inequality necessary for the
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zeros of a polynomial to lie in a given sector. Schoenberg’s results are realized using

the variation diminishing properties of totally positive matrices acting on sequences

of real numbers.

Theorem 122 (I. J. Schoenberg [91]). Let f(z) =
∑n

k=0 akz
k, ak ∈ R.

i. If {ak} is TPm, m <∞, then f(z) 6= 0 for z ∈
{
z : | arg z| < πm

n+m− 1

}
.

ii. If f(0) > 0 and f(z) 6= 0 for z ∈
{
z : | arg z| < πm

m+ 1

}
, then {ak} is TPm.

In Chapter 5, we discuss totally positive matrices in connection with generating func-

tions for orthogonal polynomial sequences.

The following known theorem is stated by D. Cardon and A. Rich in [21],

who give a new proof, and a similar result is given by G. Csordas, A. Ruttan and R.

S. Varga [36].

Theorem 123. Let ϕ(z) =
∏

n(1 + ρnz) =
∑∞

k=0 γk
zk

k!
be a real entire function of

genus 0 and suppose that all the zeros of ϕ lie in S(0, π/4). Then, the strict Turán

inequalities, γ2
k − γk−1γk+1 > 0, hold for all positive integers k.

In Section 5, we prove a closed sector version of Theorem 123 for order 1 entire

functions.

3 Composition theorems for sectors

In this section, we prove some new composition theorems, but with the ex-

ception of the known case of multiplier sequences, they will be dependent on the

degree of the polynomials involved. A theorem involving differential operators (The-

orem 131), appears to have a closer analogy to similar theorems for stability and

hyperbolicity preservers. We use this observation to guide our investigation of linear

sector preservers in Section 4.

We first make elementary observations regarding quadratic polynomials, be-

fore considering Schur and Hadamard compositions of polynomials in S(θ, δ).
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Lemma 124. The real polynomial p(z) = a2z
2 + a1z + a0 has zeros in S(π, δ) (0 ≤

δ ≤ π
2
) if and only if a2

1 ≥ 4a0a2 cos2 δ and a2a1, a1a0, a2a0 ≥ 0.

Proof. If a2 = 0, then a1a0 ≥ 0 implies that p has a non-positive real zero. Assume

that a2 > 0. A polynomial with complex conjugate zeros α, ᾱ of argument θ has the

form

a2z
2 − a22 cos θ|α|z + a2|α|2. (4.6)

The zeros lie within S(π, δ) if and only if cos2 θ ≥ cos2 δ and cos θ ≤ 0. Equating

coefficients in (4.6), a1 = −2a2 cos θ|α|, and a0 = a2|α|2. Thus, a2
1 = 4a0a2 cos2 θ ≥

4a0a2 cos2 δ. The same reasoning applies to the a2 < 0 case.

Proposition 125. If p, q ∈ R[z] have degree ≤ 2 and all of their zeros lie in S(π, δ)

(0 ≤ δ ≤ π
2
), then

i. p ∗ q has zeros in S(π, δ) if δ ≤ π
3
, and

ii. p ∗ q has real zeros if δ ≤ π
4
.

Proof. Let p(z) = a2z
2 + a1z + a0, q(z) = b2z

2 + b1z + b0. By Lemma 124, a2
1 ≥

4a0a2 cos2 δ and b2
1 ≥ 4b0b2 cos2 δ. Therefore,

(a1b1)2 ≥ 16(a0b0)(a2b2) cos4 δ. (4.7)

With (4.7), Lemma 124 asserts that p ∗ q has all its zeros in S(π, δ) when

4(a0b0)(a2b2) cos4 δ ≥ (a0b0)(a2b2) cos2 δ,

which occurs when | cos δ| ≥ 1
2
, and δ ≤ π

3
. If the right hand side of (4.7) is greater

than or equal to 4(a0b0)(a2b2), the discriminant of p ∗ q will be nonnegative, implying

p ∗ q has real zeros. The case δ ≤ π
4

is therefore sufficient for p ∗ q to have real

zeros.

Two real polynomials with zeros in the sector S(π, δ) need not have a

Hadamard product with zeros in the same sector, as the following example shows.
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Example 126. Let

p(z) = z2 + 2 cos

(
2π

5

)
z + 1.

Then p has its zeros in the sector S(0, 2π/5), but p∗p has the zeros z ≈ −1
5
± i, which

lie outside S(0, 2π/5). The zeros of p� p, z ≈ − 1
10
± i 7

10
, are also outside S(0, 2π/5).

In light of Example 126, we look for additional conditions under which the Hadamard

composition of two polynomials with zeros in S(π, δ) will have zeros in the same sector.

We proceed to restrict the degrees of the polynomials. It is possible certain angular

restrictions will work as well, as in the case where the sector is the left half-plane (see

[49]).

Lemma 127. Let the linear transformation T : C[z]→ C[z] be given by T [zk] = γkz
k,

where {γk}∞k=0 is an n-sequence and all γk are positive. If the zeros of f(z) all lie in

S(θ, δ), and deg(f) ≤ n, then all the zeros of T [f ] lie in S(θ, δ). If f(z) ∈ S(θ, δ),

deg(f) ≤ n, then T [f ] ∈ S(θ, δ) (0 ≤ δ ≤ π
2
).

Proof. When deg(f) ≤ 1, the statement of the lemma is true trivially, so we assume

that deg(f) ≥ 2. Suppose the zeros of f(z) lie in S(θ, δ), then they lie between the

angles α = θ−δ and β = θ+δ. Let f(z) =
∑n

k=0 akz
k, and let Rφ[g] := g(e−φz) be the

linear operator which rotates the zeros of a polynomial counterclockwise by an angle

φ. Then R−α[f ](z) = f(eiαz) =
∑n

k=0 ake
ikαzk has all its zeros in the open upper

half-plane. By the Hermite-Biehler theorem (Theorem 7), there exist p, q ∈ R[x],

p(z) =
∑n

k=0 ckz
k, q(z) =

∑n
k=0 bkz

k, such that R−α[f ](z) = p(z) + iq(z), the zeros of

p and q interlace, and p′(0)q(0)−p(0)q′(0) = c1b0−c0b1 > 0. By the Hermite-Kakeya-

Obreschkoff theorem (Theorem 5), the zeros of p2 = T [p] and q2 = T [q] interlace (see

Remark 6). Since p′2(0)q2(0)− p2(0)q′2(0) = γ1γ0(c1b0 − c0b1) > 0, all the zeros of

T [R−α[f ]](z)] =
n∑
k=0

akγke
ikαzk = R−α[T [f ]](z),

lie in the upper half-plane by the Hermite-Biehler theorem. This imples that T [f ](z)

has no zeros in the half-plane equal to S(α − π/2, π/2). A similar argument shows

that the zeros of T [f ](z) cannot lie in the half-plane equal to S(β + π/2, π/2). This

implies the zeros of T [f ](z) lie between the angles α and β, and thus in S(θ, δ). A
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limiting argument proves the lemma for the case when some of the zeros of f lie on

the boundary of S(θ, δ). If f has zeros on the boundary S(θ, δ) \ S(θ, δ), then define

a new polynomial fε which has the same zeros as f , but with those on the boundary

moved into the interior, S(θ, δ), by a distance ε, such that fε → f locally uniformly.

By what we have already shown, T [fε] has all of its zeros in S(θ, δ), and thus by

Hurwitz’s Theorem (Theorem 9) T [f ] ∈ S(θ, δ). Note that the possibility T [f ] ≡ 0 is

excluded because all γk > 0, hence the kernel of T is trivial.

When {γn}∞n=0 is a multiplier sequence, Lemma 127 implies the following

theorem in [68, Chapter VIII], which is proved with essentially the same argument.

Theorem 128 ([68, Chapter VIII]). If the zeros of f(x) ∈ C[x], lie in S(θ, δ) and the

linear transformation T : C[z]→ C[z], T [zn] = γnz
n is a positive multiplier sequence,

then the zeros of T [f ] lie in S(θ, δ) (0 ≤ δ ≤ π
2
).

A similar result, where the polynomial has zeros in a double sector, was

proved by L. Weisner [99].

Theorem 129 ([99]). Let T : C[z] → C[z] be a linear transformation, such that

T [zk] = γkz
k, γk ∈ R, for all k = 0, 1, 2, . . . . If T satisfies T [ez] ∈ L -P, and the

zeros of f(x) ∈ C[x], lie in S(θ, δ), then the zeros of T [f ] lie in the double sector

S(θ, δ) ∪ S(θ + π, δ), provided T [f ] 6≡ 0.

Theorem 130. Let g ∈ R[z], f ∈ C[z], the zeros of g lie in the sector S(π, φ), and

the zeros of f lie in the sector S(θ, δ). If deg(f) ≤ 1
| sinφ|2 , then all the zeros of the

Schur composition, f � g, lie in S(θ, δ) (0 ≤ δ ≤ π
2
).

Proof. Let g(z) =
∑ν

k=0 bkz
k and f(z) =

∑µ
k=0 akz

k. We know that {k!bk}mk=0 is an

n-sequence for n ≤ 1
| sin δ|2 by Theorem 120. Then by Lemma 127, all the zeros of the

Schur composition

min{ν,µ}∑
k=0

k!akbkz
k lie in S(θ, δ).

Corollary 115 now follows immediately from Theorem 130.

We now prove a sector version of the Hermite-Poulain Theorem (Theorem

25). The method of proof employed is a modification of that used to prove the

Gauss-Lucas Theorem (see [74, p. 22]).
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Theorem 131. Let f, g ∈ C[z], g(z) =
∑n

k=0 akz
k, and let the zeros of g lie in

S(π, δ). If all the zeros of f lie in S(π, δ), where 0 < δ ≤ π
2
, then all the zeros of

g(D)f(z) = a0f(z) + a1f
′(z) + a2f

′′(z) + · · ·+ anf
(n)(z) (4.8)

lie in S(π, δ), provided g(D)f(z) 6≡ 0. If g(D)f(z) ≡ 0, then g(z) = zjh(z) with

j > deg(f).

Proof. First consider the case where g(D)f(z) ≡ 0. The only way this can occur is if

g(D) = Djh(D) with j > deg(f); otherwise, the right-hand side of (4.8) has a term

of highest degree which is not identically zero. We continue assuming g(D)f(z) 6≡ 0.

Since g(D) =
∏n

`=1(D + α`) where α` ∈ S(0, δ), and the operators D + α` commute,

it suffices to show that the zeros of (D + α)f(z) 6≡ 0, α ∈ S(0, δ), all lie in S(π, δ).

Let {ζj}mj=1 be the the zeros of f(z). If (D + α)g(z) has a zero which is not

a zero of f(z), then it will also be a zero of

(D + α)f(z)

f(z)
=

m∑
j=0

1

z − ζj
+ α =

m∑
j=0

z̄ − ζ̄j
|z − ζj|2

+ α. (4.9)

Suppose that z0 is a zero of (D + α)f(z) which lies outside of S(π, δ), then

z0 is also a zero of left-hand side of (4.9). First consider the case where Re[z0] ≥ 0.

Then

Re

[
m∑
j=0

z̄0 − ζ̄j
|z0 − ζj|2

]
> 0,

and since Re[α] ≥ 0 we find that z0 can not be a zero of (D + α)f(z) by (4.9).

We have established that z0 must lie in the open left half-plane. If δ = π/2,

the theorem is proved. We proceed assuming δ < π/2 and that z0 lies outside S(π, δ)

in the upper-half plane with Re[z0] < 0. Multiplying (4.9) by e−iδ and taking the

imaginary part yields

Im

[
e−iδ

(D + α)f(z)

f(z)

∣∣∣∣
z=z0

]
= Im

[
e−iδ

z̄0 − ζ̄j
|z0 − ζj|2

]
+ Im

[
e−iδα

]
.

The rotation places both e−iδζj and e−iδ ζ̄j in the open upper half-plane, while e−iδz̄0

lies in the closed lower half-plane, therefore

Im

[
m∑
j=0

e−iδ(z̄0 − ζ̄j)
|z0 − ζj|2

]
< 0.
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Since Im[e−iδα] ≤ 0, z0 can not be a zero of the right-hand side of (4.9). A simi-

lar argument handles the case when z0 is in lower half-plane, outside S(π, δ), with

Re[z0] < 0. Thus z0 /∈ S(π, δ) cannot be a zero of (D + α)f(z), and this proves the

theorem.

Results similar to Theorem 131 have been obtained by T. Takagi (see [74, p. 84]), S.

Takahashi [94], and E. Benz [3]. Theorem 131 is sharp with respect to the angular

width of the sector (consider g(D)f(z) where g(z) = z + ei(δ+ε), f(z) = z + r, for r

sufficiently small). Finally, there does not appear to be a nice double sector analog

of Theorem 131, as evinced by the following example.

Example 132. Let f(z) = z2+2z+4, which has its zeros in S
(
π, π

3

)
, and g(z) = z−1,

then g(D)f(z) = −(z2 + 2) has purely imaginary zeros.

Theorem 133. If g(z) =
∑n

k=0 akz
k ∈ S(θ, δ) (0 < δ ≤ π/2), and f ∈ C[z] has

all of its zeros in S(θ, δ), then g
(
ei2θD

)
f(z) has all of its zeros in S(θ, δ), provided

g
(
ei2θD

)
f(z) 6≡ 0. If g

(
ei2θD

)
f(z) ≡ 0, then g(z) = zjh(z), where j > deg(f), and

h(z) ∈ S(θ, δ).

Proof. With the given hypotheses g
(
e−i(π−θ)z

)
has all of its zeros in S(π, δ) and

f
(
e−i(π−θ)z

)
has all of its zeros in S(π, δ). Thus by Theorem 131, all the zeros of

g(e−i(π−θ)D)f
(
e−i(π−θ)z

)
=

n∑
k=0

ake
−ik(π−θ)Dkf

(
e−i(π−θ)z

)
(4.10)

=
n∑
k=0

ake
−i2k(π−θ)f (k)

(
e−i(π−θ)z

)
6≡ 0, (4.11)

lie in S(π, δ), and therefore

n∑
k=0

ake
−i2k(π−θ)f (k)(z) = g(ei2θD)f(z)

has all of its zeros in S(θ, δ) or is identically 0. If g
(
ei2θD

)
f(z) ≡ 0, Theorem 131

shows g(z) = zjh(z) where j > deg(f).

Theorem 134. If g, f ∈ S(θ, δ) (0 ≤ δ ≤ π/2), then g
(
ei2θD

)
f(z) ∈ S(θ, δ) ∪ {0}.
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Proof. If δ 6= 0, then we may perturb any zeros of f(z) lying on the boundary of

S(θ, δ) into its interior by a distance ε. Denote this perturbed polynomial by fε. By

Theorem 133, the zeros of g
(
ei2θD

)
fε(z) lie in S(θ, δ) or g

(
ei2θD

)
fε(z) ≡ 0. Letting

ε→ 0, it follows by Hurwitz’s theorem that g
(
ei2θD

)
f(z) ∈ S(θ, δ) ∪ {0}.

If δ = 0, let {ζj}mj=1 be the zeros of f(z). We may assume that g(z) = z−α,

where α ∈ S(θ, 0). Then

g
(
ei2θD

)
f(z)

f(z)
=

m∑
j=0

ei2θ

z − ζj
− α. (4.12)

Without loss of generality, fix a point z0 ∈ {z : Im[e−iθz] ≥ 0} \ S(θ, 0). Then

θ < arg(z0 − ζj) ≤ θ + π for all j = 1, . . . , n and consequently the sum in (4.12) has

argument in the open interval [θ−π, θ). Since argα = θ, the right hand side of (4.12)

can not be zero at z0. But any zero that is not a zero of left hand side of (4.12) must

be a zero of f , and thus the proof is complete.

Theorem 135. Let 0 ≤ δ ≤ π/2. If h ∈ S(θ, δ) and p ∈ S(θ, δ), then h(ei2θD)p(z) ∈
S(θ, δ), and p(ei2θD)h(z) ∈ S(θ, δ).

Proof. Let hn be a sequence of polynomials such that hn → h locally uniformly

and each hn has zeros only in S(θ, δ). Then by Theorem 134 all of the zeros of

hn(ei2θD)p(z) 6≡ 0 lie in S(θ, δ). Letting n → ∞ and applying Hurwitz’s Theorem,

either h(ei2θD)p(z) has all its zeros in S(θ, δ) or it is identically zero. Likewise any

p(ei2θD)h(z) 6≡ 0 has zeros only in S(θ, δ).

Remark 136. Note that if δ = π
2

in Theorem 135 the class S(θ, δ) may contain func-

tions of order 2 and is not restricted to the form given in Theorem 117.

There exist sector analogies of both Sturm’s theorem and Decarte’s Rule

of signs (see Marden [74, pp.189-191]). The following results of R. O’Donnell and

S. Takahashi constrain the sector containing the zeros of a polynomial given the

coefficients.

Theorem 137 ([79,94]). Let p(z) =
∑n

j=0 ajz
j, and for all pairs aj,aj+s of succesive

nonzero coefficients, form the ratios rj,s = (−1)s
aj
aj+s

.
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i. Let h ∈ N, h ≥ n. If all the ratios rj,s lie in the sector S(θ, π
h
), then all the zeros

of p(z) lie in the sector S(θ + π, π
n
− π

h
) [79] .

ii. If all the zeros of p(z) lie in S(θ, δ), then so do all the ratios rj,1 [94].

The results just mentioned, like Theorem 130, have hypotheses on the de-

grees of the polynomials involved and are therefore difficult to use when trying to

classify linear operators on a space of polynomials of arbitrary degree and also elude

extension to transcendental entire functions. The best analogy to a hyperbolicity

preserving theorem is given by Theorem 131. Guided by this result, we pay spe-

cial attention to differential operator representations of sector preservers in the next

section.

4 Linear sector preservers

In this section we prove sufficient conditions for a linear operator T to be

an S(θ, δ)-preserver and consider some special cases of multivariate sector preservers.

The following proposition states the diagonal S(θ, δ)-preservers with trivial kernel are

precisely the linear operators corresponding to positive multiplier sequences.

Proposition 138. Let T : C[z] → C[z] be a linear operator, with T [zk] = cγkz
k for

all k ∈ No, where c ∈ C and γk > 0. Then T is an S(θ, δ)-preserver if and only if

{γk}∞k=0 is a positive multiplier sequence.

Proof. If {γk}∞k=0 is a positive multiplier sequence, then by Theorem 128, T is an

S(θ, δ)-preserver. To prove the converse we argue by contradiction. Assume that

{γk}∞k=0 is not a multiplier sequence. Then by Theorem 14, there exists an n ∈ N
such that for the polynomial p(z) = (z+ 1)n, T [p] has a pair of non-real zeros. Thus,

T [p] has zeros outside S(π, 0), so T is not an S(π, 0)-preserver. Similarly, we may

consider for S(θ, δ) the polynomial p(ei(π−(θ+δ))z) which has a multiple zero on the

edge of the sector S(θ, δ). Since T is diagonal, T [p(ei(π−(θ+δ))z)] = T [p](ei(π−(θ+δ))z).

Thus, T [p(ei(π−(θ+δ))z)] has at least one zero outside of S(θ, δ).
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If in Proposition 138, T is restricted to R[z], T may correspond to a diagonal op-

erator with action T [zk] = γkz
k, where {γk}∞k=0 is not a multiplier sequence. This

occurs in the case where the sector is the left half-plane; the sequence of coefficients

{γ0, . . . , γn, 0, 0, 0, . . .} of a polynomial
∑n

k=0 γkz
k, whose zeros all lie in the left half-

plane, define a linear operator T [zk] = γkz
k which is an S(π, π/2) ∩ R[z]-preserver

[49].

Definition 139. Let H+ denote the open upper half-plane . For δ ∈ R, let

Hδ =
{
z : ze−iδ ∈ H+

}
.

Denote the set of polynomials that are Hδ-stable in n variables by Hδ
n, where the

subscript n is omitted for univariate polynomials.

Remark 140. Note that Hδ refers to the open upper half-plane rotated counterclock-

wise by an angle δ; this is the opposite of the convention in [12].

With with a rotation of variables in Theorem 112 of J. Borcea and P.

Brändén [11], we can obtain a sufficient condition for a linear operator to be a sector

preserver.

Theorem 141 (Sufficient condition I). If T : C[z]→ C[z] is a linear transformation,

0 < δ ≤ π
2
,

i. T [(z + w)n] 6= 0 or T [(z + w)n] ≡ 0 for all n ∈ No, z, w ∈ Hθ+δ, and

ii. T [(z + w)n] 6= 0 or T [(z + w)n] ≡ 0 for all n ∈ No, z, w ∈ Hπ+θ−δ.

Then T is an S(θ, δ)-preserver.

Proof. Let p ∈ C[z], and let all the zeros of p lie in S(θ, δ). By (i) and Theorem 112,

T preserves Hθ+δ-stability, thus T [p] has no zeros in Hθ+δ. By (ii) and Theorem 112

again, T preserves Hπ+θ−δ-stability, thus T [p] has no zeros in Hπ+θ−δ. Therefore, all

the zeros of T [p] lie in (Hθ+δ ∪Hπ+θ−δ)
c = S(θ, δ).

Remark 142. Note that the set of operators which satisfy (i) and (ii) in Theorem 141

is not trivial, as it contains the diagonal operators given by multiplier sequences in

Proposition 138.
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We may write conditions (i) and (ii) in Theorem 141 in terms of the equiv-

alent transcendental characterizations of half-plane stability preservers in Theorem

112, and obtain the following equivalent result.

Theorem 143 (Sufficient condition II). If T : C[z]→ C[z] is a linear transformation,

0 < δ ≤ π
2
, ζ1 = e−i2(θ+δ+π/2), ζ2 = e−i2(θ−δ−π/2),

i. T [eζ1zw] ∈ Hθ+δ
, and

ii. T [eζ2zw] ∈ Hπ+θ−δ
,

then T is an S(θ, δ)-preserver.

Proof. Let Φα[f(z, w)] := f(e−iαz, e−iαw). Then, Φα : C[z, w] → C[z, w] is a linear

operator and Φα(H2) = Hα
2 . A linear operator T is then an Hα-preserver if and

only if Tα = Φ−1
α TΦα is an H-preserver. By Theorem 112, Tα is an H-preserver

if Tα[e−zw] ∈ H2, which is equivalent to T [Φα[e−zw]] ∈ Φα[H2]. Re-expressing this

condition by evaluating Φα,

T [exp(e−i2(α+π/2)zw)] ∈ Hα

2

implies that T is an Hα-preserver. The two conditions in Theorem 143 then imply

that T is both an Hθ+δ-preserver and an Hθ−δ+π-preserver, and therefore T is an

S(θ, δ)-preserver.

Example 144. An example of an S(π, π/4)-preserver, other than a multiplier se-

quence, which satisfies the hypotheses in Theorems 141 and 143 is g(D) where,

g(z) = (z + 1 + i)(z + 1− i) = z2 + 2z + 2.

In Theorem 143, ζ1 = e−i
3π
2 = i, and

g(D)eζ1zw = g(ζ1w)eζ1zw.

Since g(ζ1w)eζ1zw = ((iw)2 + 2(iw) + 2)eζ1zw ∈ H5π/4
, condition (i) of Theorem 143

is satisfied, and in a similar fashion (ii) of Theorem 143 is satisfied. (g(D) is also an

S(π, π/4)-preserver by Theorem 134).
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An S(θ, δ)-preserver which does not satisfy the conditions in Theorem 143

remains to be found. In the previous section we showed that a differential operator

theorem for sectors exists in more or less perfect analogy to the Hermite-Poulain

Theorem (Theorem 131). Motivated by Theorem 131, we now introduce the ring

of finite order differential operators with polynomial coefficients, known as the Weyl

algebra. For convenience, we also define the Weyl algebra in the general multivariate

case, to be used in the sequel.

Definition 145. We adopt the notation that if α ∈ Nn
o , then zα = zα1

1 zα2
2 · · · zαnn ;

that is, z is interpreted in the multivariate sense for a vector exponent. Similarly,

∂α = ∂α1
1 ∂α2

2 · · · ∂αnn , where ∂k = ∂
∂zk

, and α! = α1!α2! · · ·αn!. For α, β ∈ Nn
o , α ≤ β if

αk ≤ βk for all k = 1, . . . , n, and α < β if α ≤ β and α 6= β. The nth Weyl algebra,

An[C], is the ring of finite order differential operators with polynomial coefficients in

n variables [66, p. 7, 8, 14],

An[C] =


β≤N∑
β∈Nno

Qβ(z1, . . . , zn)∂β

∣∣∣∣∣∣Qβ ∈ C[z] and N ∈ Nn
o

 .

For an operator T ∈ An[C], we define its symbol FT (z, w) ∈ C[z1, . . . , zn, w1, . . . , wn]

to be the following polynomial

FT (z, w) :=
∑
β∈Nno

Qβ(z)wβ. (4.13)

Using Theorem 134, we now prove a sufficient condition for a linear operator

to be an S(θ, δ)-preserver in the univariate Weyl algebra.

Theorem 146 (Sufficient condition III). Let T ∈ A1[C] and 0 ≤ δ ≤ π
2
. If the symbol

of T satisfies FT (z, e−i2θw) ∈ S2(θ, δ), then T is an S(θ, δ)-preserver.

Proof. First we show that if FT (z, 0) 6≡ 0, then FT (z, 0) 6= 0 for all z /∈ S(θ, δ).

Suppose instead that there exists a z0 /∈ S(θ, δ), such that FT (z0, 0) = 0. Since by

assumption FT (z, 0) 6≡ 0,

FT (z, w) = wP1(z, w) + P0(z),
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for polynomials P1 and P0, where P0 6≡ 0 and P0(z0) = 0. Because S(θ, δ)c is open, by

the implicit function theorem there exists a complex number ε /∈ S(θ, δ), sufficiently

small, and z1 /∈ S(θ, δ) in a neighborhood of z0, such that FT (z1, εe
−i2θ) = 0. This

contradicts the hypothesis that FT (z, e−i2θw) ∈ S2(θ, δ). Therefore, if FT (z, 0) 6≡ 0,

then FT (z, 0) 6= 0 for all z /∈ S(θ, δ). Equivalently, if FT (z, 0) = 0 for any z /∈ S(θ, δ),

then FT (z, 0) ≡ 0. Therefore, FT (z, w) has the form,

FT (z, w) = H(z, w)wk, (4.14)

where H(z, 0) 6= 0 for all z /∈ S(θ, δ) and k ∈ No. The power wk in (4.14) corresponds

to differentiation for the operator T , which is an S(θ, δ)-preserver by the Theorem

134 (or by the Gauss-Lucas Theorem [74, p. 22]). It is therefore sufficient to consider

the case where k = 0 in (4.14). Thus, we continue assuming that FT (z, 0) 6= 0

for all z /∈ S(θ, δ). Fix ζ0 /∈ S(θ, δ) and let f ∈ S(θ, δ). Then, FT (ζ0, e
−i2θw) ∈

S(θ, δ), and by Theorem 134, FT (ζ0, D)f(z) ∈ S(θ, δ) ∪ {0}. If FT (ζ0, D)f(z) ≡ 0,

then by Theorem 134 FT (ζ0, 0) = 0, which contradicts out current assumption on

FT . Therefore, FT (ζ0, D)f(z) ∈ S(θ, δ), and since ζ0 was arbitrary FT (ζ,D)f(z) ∈
S2(θ, δ). Specializing ζ = z yields T [f(z)] = FT (z,D)f(z) ∈ S(θ, δ).

Example 147. Since {k + 1}∞k=0 is a multiplier sequence by Laguerre’s Theorem

(Theorem 16), the associated diagonal operator T = z d
dz

+1 is an S(π, π/4)-preserver

by Theorem 138. However, FT (z, e−i2θw) = ze−i2θw+ 1 /∈ S2(θ, δ) for θ = π, δ = π/4.

For example, z = w = i produces a zero of FT (z, w) = zw + 1. This shows there are

S(θ, δ)-preservers in the Weyl algebra which do not satisfy the hypotheses of Theorem

146.

Theorem 148. (Sufficient condition for an open sector preserver)

Let T =
∑N

k=0 Q(k)Dk ∈ A1[C], N ∈ No, and 0 < δ ≤ π
2
. If

FT (z, e−i2θw) = wkH(z, e−i2θw), (4.15)

where H ∈ C[z, w], k ∈ No is such that Qj ≡ 0 for k ≤ j, and H(z, e−i2θw) 6= 0

whenever z /∈ S(θ, δ) and w ∈ S(θ, δ)c ∪ {0}, then T preserves (S(θ, δ))c-stability.
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Proof. By Theorem 133 (or the Gauss-Lucas Theorem [74, p. 22]) differentiation

preserves (S(θ, δ))c-stability. Since the factor of wk in (4.15) corresponds to k dif-

ferentiations in the operator T , it is sufficient to proceed assuming k = 0, and

FT (z, e−i2θw) 6= 0 for all z /∈ S(θ, δ) and w ∈ S(θ, δ)c ∪ {0}. Fix ζ0 /∈ S(θ, δ) and

let f(z) have its zeros only in S(θ, δ). Then FT (ζ0, e
−i2θw) ∈ S(θ, δ) and by The-

orem 133, FT (ζ0, D)f(z) has all of its zeros in S(θ, δ) or else is identically 0. If it

is identically 0, then Theorem 133 implies that FT (ζ0, 0) = 0 which contradicts our

assumption on FT . Therefore, FT (ζ0, D)f(z) has all of its zeros in S(θ, δ). Since ζ0

was arbitrary FT (ζ,D)f(z) is (S(θ, δ))c-stable in ζ and z. Specializing ζ = z yields

that T [f(z)] = FT (z,D)f(z) has zeros only in S(θ, δ).

We can convert between the operator symbol FT and transcendental symbol

T [ewz] using the following observation.

Proposition 149. ([11]) If T : C[z]→ C[z] is a linear operator then

T [eζwz]e−ζwz = FT (z, ζw). (4.16)

Proof. This follows immediately from writing T as a differential operator and evalu-

ating the left hand side of (4.16).

Equation (4.16) allows us to transfer results about general linear operators to opera-

tors in the Weyl algebra. One may also wish to use Weyl algebra results as a guide

for obtaining full characterizations of linear preservers.

We have now compiled all the results needed to give the proof of Theorem

116.

Proof of Theorem 116. Using (4.16) we may convert Theorem 143 into condition (i)

for the Weyl algebra. Condition (ii) is a restatement of Theorem 146. The form of

the operator symbol for open sectors, (4.1), is a restatement of Theorem 148.

Although they are not equivalent, we can use condition (ii) to prove (i) in

Theorem 116 when δ 6= 0.
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Proof of Theorem 116, (i) using condition (ii) for the case 0 < δ ≤ π/2.

When δ = π/2 condition (ii) of Theorem 116 immediately implies the following:

If FT (z, e−i2(θ±π
2

)w) ∈ Hθ, then T is an Hθ-preserver.

Note that we have included the ±π/2 to indicate a sign ambiguity. Then if the

conditions of (i) are satisfied, T is both an Hθ+δ-preserver and an Hθ−δ+π-preserver,

and therefore T is an S(θ, δ)-preserver.

Using Theorem 112 and (4.16) we immediately obtain the following char-

acterization of univariate (open upper half-plane) stability preservers in the Weyl

algebra.

Theorem 150. ([12]) An operator T ∈ A1[C] preserves stability if and only if

FT (z,−w) ∈ H2(C).

Theorem 150 was actually proved for the more general multivariate case in [12]. A

sufficient condition for an operator in the Weyl algebra to preserve stability in a closed

half-plane is also proved in [12], and there it is demonstrated that this condition is

not necessary. For θ = −π/2 and δ = π/2, Theorem 148 has weaker hypotheses, and

thus is a refinement of this result in the univariate case. J. Borcea and P. Brändén

also prove a necessary condition for an operator in the Weyl algebra to preserve closed

upper half-plane stability, which in the univariate case can be stated as follows.

Theorem 151 ([12]). Let T ∈ A1[C]. If T is preserves H+
stability, then FT (z, w) 6=

0 for z ∈ H+
and w ∈ H+.

Borcea and Brändén show that this condition is not sufficient, and comment that a

characterization requires “intermediate” conditions between the sufficient and neces-

sary conditions they supply. For at least the univariate case, we have found these

conditions.

Theorem 152 (Characterization of strict stability preservers in the univariate Weyl

algebra). Let T ∈ A1[C]. T preserves H+
-stability if and only if

FT (z,−w) = wkH(z,−w), (4.17)

for some k ∈ No, H(z, w) ∈ C[z, w], and H(z,−w) 6= 0 whenever z ∈ H+
and

w ∈ H+ ∪ {0}.
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Proof. Sufficiency of the condition on the operator symbol follows from Theorem

148. Theorem 151 shows it is necessary to have FT (z,−w) 6= 0 whenever z ∈ H+
and

w ∈ H+. Thus, we only need to show that if for some z0 ∈ H+
, FT (z0, 0) = 0, then

FT (z, 0) ≡ 0, and FT has the form given by (4.17). Suppose on the contrary that

H(z, w) = wP1(z, w) + P0(z),

where P0(z0) = 0 and P0(z) 6≡ 0. Then the associated operator is T = P1(z,D)Dk+1+

P0(z)Dk, and T [(z + i)k] = k!P0(z) is not H+
stable since it has a zero at z0 ∈ H+

.

This contradicts that T preserves H+
stability, and therefore FT must have the form

given in (4.17).

We now establish some multivariate versions of our results. To accomplish

this, we require the following multivariate version of Theorem 112.

Theorem 153 ([9]). Let T : C[z1, . . . , zn]→ C[z1, . . . , zn] be a linear operator. Then

T preserves stability if and only if either

(a) T has range of dimension at most one and is of the form

T (f) = α(f)P,

where α is a linear functional on C[z1, . . . , zn] and P is a stable polynomial, or

(b) T [e−zw] ∈ H2n.

From Theorem 153 we have the following sufficient condition for an Sn(θ, δ)-

preserver. The exponent n below denotes the n-fold Cartesian product of a set; that

is, Sn = S × S × · · · × S (n times) = {(s1, . . . , sn) : s1, . . . , sn ∈ S}.

Theorem 154. Let T : C[z1, . . . , zn]→ C[z1, . . . , zn] be a linear operator. If for each

B ∈ {(θ + δ), (θ − δ)}n, T [eζzw] ∈ HB

2n, where ζ = ei(2B+π), then T is an Sn(θ, δ)-

preserver.

Proof. For α ∈ Rn we define Φα[f ] := f(e−iα1z1, . . . , e
−iαnzn, e

−iα1w1, . . . , e
−iαnwn).

Then, as in the proof of Theorem 143, Tα = Φ−1
α TΦα is an Hn-preserver if and only
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if T is an Hα
n-preserver. Applying Theorem 153 to Tα, the requirement for T to be

an Hα
n-preserver is

T [exp(ei2(α+π/2)zw)] ∈ Hα

2n.

The 2n conditions T [eζzw] ∈ HB

2n (one for each possible choice of B), force T to be a

stability preserver on every member of the set {Hθ+δ,Hθ−δ+π}n, and therefore T must

be an S2n(θ, δ)-preserver.

Let us now consider the possibility of extending the univariate Weyl algebra

condition given by Theorem 146. In order to extend Theorem 146 to the multivariate

setting, without using Theorem 154, we require a stronger differential operator theo-

rem. Using essentially the same idea as in the proof of Theorem 131, we can obtain a

closed sector version of a proposition of E. Lieb and A. Sokal for the half-plane [72].

Lemma 155. Let Q0, Q1 ∈ C[z], 0 ≤ δ ≤ π/2, and R(v, w) = Q0(w) + vQ1(w) 6= 0

for v, w /∈ S(π, δ). Then either Q0(z)+Q′1(z) 6= 0 for z /∈ S(π, δ) or Q0(z)+Q′1(z) ≡ 0.

Proof. Our proof depends on the following facts.

i. Either Q0(w) 6= 0 whenever w /∈ S(π, δ), or Q0(w) ≡ 0.

ii. Either Q1(w) 6= 0 whenever w /∈ S(π, δ), or Q1(w) ≡ 0.

iii. If Q1(w) 6= 0 for w /∈ S(π, δ), then Q0(w)
Q1(w)

∈ S(0, δ) for w /∈ S(π, δ).

iv. If Q1(w) 6= 0 for w /∈ S(π, δ), then either
Q′1(w)

Q1(w)
/∈ S(π, δ) for w /∈ S(π, δ), or

Q′1(w)

Q1(w)
≡ 0.

Both (i) and (ii) follow immediately from Hurwitz’s theorem by letting v → 0 and

v →∞ in Q0(w) + vQ1(w) and 1
v
Q0(w) +Q1(w) respectively. If Q1(w) 6= 0 then

R(v, w)

Q1(w)
=
Q0(w)

Q1(w)
+ v 6= 0

for v, w /∈ S(π, δ), this implies (iii) by the implicit function theorem. If Q1 is a

constant, then Q′1 ≡ 0, otherwise let {βj}nj=0 be the zeros of Q1. Then,

Q′1(w)

Q1(w)
=

n∑
j=1

1

w − βj
/∈ S(π, δ),
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since βj ∈ S(π, δ) (this is statement (iv)). We can now prove the lemma. If Q1 ≡ 0,

then Q0(w) 6= 0 for w /∈ S(π, δ), and hence Q0(z) + Q′1(z) 6= 0 for w /∈ S(π, δ).

Otherwise, if Q1 6= 0, we first assume that Q1 is not a constant. Then by (ii),

Q1(w) 6= 0 for w /∈ S(π, δ). By (iii) and (iv), Q0(w)
Q1(w)

∈ S(0, δ) and
Q′1(w)

Q1(w)
/∈ S(π, δ) for

w /∈ S(π, δ). Therefore,

Q0(z) +Q′1(z) = Q1(z)

[
Q0(w)

Q1(w)
+
Q′1(w)

Q1(w)

]
6= 0

for w /∈ S(π, δ). If Q1 is a constant then by (i) we have either Q0(z) + Q′1(z) ≡ 0 or

Q0(z) +Q′1(z) 6= 0 for w /∈ S(π, δ). This completes the proof.

Proposition 156. Let Q0, Q1 ∈ C[z], and R(v, w) = Q0(w) + vQ1(w) 6= 0 for v, w /∈
S(θ, δ). Then either Q0(z) + ei2θQ′1(z) 6= 0 for z /∈ S(θ, δ) or Q0(z) + ei2θQ′1(z) ≡ 0.

Proof. This lemma follows immediately from a change of variables in Lemma 155. Let

v = e−i(π−θ)v2, w = e−i(π−θ)w2. Then v, w /∈ S(θ, δ) precisely when v2, w2 /∈ S(π, δ).

By hypothesis,

Q0(e−i(π−θ)w2) + e−i(π−θ)v2Q1(e−i(π−θ)w2) 6= 0 for all v2, w2 /∈ S(π, δ), (4.18)

which implies, by Lemma 155, that

Q0(e−i(π−θ)w2) + e−i2(π−θ)Q′1(e−i(π−θ)w2) 6= 0 for all w2 /∈ S(π, δ), (4.19)

or Q0 + e−i2(π−θ)Q′1 ≡ 0. Letting z = e−i(π−θ)w2 in (4.19) produces the conclusion in

the lemma.

Using Proposition 156 we can prove the following analog of a stability pre-

serving operation [12] for sector stable affine polynomials.

Corollary 157. Suppose that 1 ≤ i < j ≤ n and F (z1, . . . , zn) ∈ Sn(θ, δ) is affine in

the variable zi. Then F (z1, . . . , zi−1, e
i2θ∂j, zi+1, . . . , zj, . . . , zn) ∈ Sn−1(θ, δ) ∪ {0}.

Proof. Fix z1, . . . , zi−1, zi+1, . . . , zj−1, zj+1, . . . , zn /∈ S(θ, δ). Then F (z1, . . . , zn) =

Q0(zj) + ziQ1(zj) ∈ S2(θ, δ). Then, by Proposition 156,

F (z1, . . . , zi−1, e
i2θ∂j, zi+1, . . . , zj, . . . , zn) = Q0(zj) +

∂

∂zj
Q1(zj) ∈ S1(θ, δ).
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Because z1, . . . , zi−1, zi+1, . . . , zj−1, zj+1, . . . , zn /∈ S(θ, δ) were chosen arbitrarily, the

corollary is proved.

A common approach to extend Corollary 157 to the multivariate Weyl al-

gebra in the case of a half-plane is to use the Grace-Walsh-Szegő theorem (Theorem

8), or an equivalent result, to convert statements about multi-affine polynomials into

statements about arbitrary multivariate polynomials. In the case of a non-circular

domain, as when the sector is not a half-plane, these techniques are not available,

and our investigation, for this method of proof (see Remark 158), ends here for now.

Remark 158. We conclude this section by making the following observations.

i. The multivariate extensions of Theorem 116 parts (ii) and (i), for δ 6= 0, quickly

follow from Theorem 154 and equation (4.16). Likewise, the univariate Weyl

algebra conditions for closed sectors, for δ 6= 0, also follow from Theorem 143.

ii. In the same way that Theorem 116 part (ii) can be used to prove Theorem

116 part (i), the open sector conditions in Theorem 148 can be used to prove a

version of Theorem 116 part (i) for open sectors.

iii. Corollary 157 may be proved for the non-multi-affine case using the the non-

multi-affine half-plane version of the theorem (see [12] for the non-multi-affine

half-plane theorem).

Note the approach using differential operators yields precise results about

multivariate stability in open sectors and other regions to which Theorems 112 and

154 can not be readily applied. In addition, these alternate methods of proof provide

intuition about the necessity of sufficient conditions obtained from Theorems 112 and

154 for regions that are intersections of half-planes.

5 Turán inequalities and Jensen polynomials

In this section some theorems are proved about extended Turán inequalities

and how they relate to the sector locus of zeros of an entire function. The following
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lemma of D. Dimitrov provides inequalities sufficient for the degree 3 Jensen polyno-

mials g3,p (see Definition 12) associated with an entire function ϕ to have only real

zeros.

Lemma 159 ([38]). Let ϕ(z) =
∑∞

k=0 γk
zk

k!
be a real entire function. Then with

k ∈ N, the real polynomial

g3,k−1(x) = γk−1 + 3γkx+ 3γk+1x
2 + γk+2x

3

with nonzero leading coefficent γk+2 is hyperbolic if and only if the inequalities

Tk(ϕ) := γ2
k+1 − γkγk+2 ≥ 0,

and

Jk(ϕ) := 4(γ2
k − γk−1γk+1)(γ2

k+1 − γkγk+2)− (γkγk+1 − γk−1γk+2)2 ≥ 0

hold simultaneously.

We prove a theorem that relates the location of zeros of a real entire function

with respect to a sector to the zeros of its associated Jensen polynomials (Theorem

171). This yields a new sufficient condition that the inequalities in Lemma 159 are

satisfied. At the end of this section we show that the Jensen polynomials associated

with the function F in equation (1.2), related to the Riemann ξ-function, have only

real zeros up through degree 1017 (Theorem 177). We also establish some Turán type

inequalities for entire functions having their zeros confined to a sector, which we prove

below (Theorems 163 and 170).

Definition 160. The star or reverse of a polynomial p(x) of degree n is p∗(x) :=

xnp
(

1
x

)
.

Remark 161. Note that the reverse of a polynomial is an involution only if p(0) 6= 0. It

is readily verified that if the zeros of a polynomial p lie in a sector which is symmetric

about the real axis then those of p∗ must lie in the same sector. In particular, if the

zeros of a polynomial p lie in a sector S(π, δ) (thus p(0) 6= 0), then the zeros of p∗ are

confined to lie in S(π, δ) as well.
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Theorem 162. If h ∈ S(π, δ) (S(0, δ)), then all the zeros of the Jensen polynomials

associated with h lie in S(π, δ).

Proof. Applying Theorem 135, all the zeros of h(D)zn = g∗n(z) are in S(π, δ). The

operation ∗ : g∗n(z) 7→ gn(z) preserves the property that the zeros lie in S(π, δ).

Therefore, the nth Jensen polynomial gn(x) = zng∗n(1
z
) has all of its zeros in S(π, θ) as

well.

Theorem 163. Suppose a real entire function f =
∑∞

k=0 γk
zk

k!
, of order at most 1,

satisfies

lim
z→∞

f ′(z)

f(z)
= c ∈ S(0, δ). (4.20)

A necessary condition for the zeros of f to lie in S(π, δ)(δ < π
2
) is that

γ2
k − cos2 δγk+1γk−1 ≥ 0 for all k ∈ N.

Proof. If all the zeros of f lie in S(π, δ) (δ < π
2
), f has order at most 1, and satisfies

(4.20), then by Theorem 117, f(z) ∈ S(π, δ). By Theorem 162 all the zeros of the

Jensen polynomials of f also lie in S(π, δ). The second Jensen polynomial associated

with f is g2,0(z) = γ2z
2 +2γ1z+γ0. By Lemma 124, γ2

1−cos2 δγ2γ0 ≥ 0. Theorem 135

implies that every derivative of f has all of its zeros in S(π, δ). Applying Lemma 124

to the second Jensen polynomial for the (k− 1)th derivative of f gives the inequality

for arbitrary k ≥ 1.

Lemma 164 ([74, p. 28]). If f is any polynomial whose zeros are symmetric about

the origin with zeros inside of S(0, γ) ∪ S(π, γ), with γ < π
4
, then all the zeros of f ′

lie in S(0, γ) ∪ S(π, γ).

Proof. If f has zeros which are symmetric with respect to the origin then we can

write

f(z) = zk
n∏
j=1

(z2 − (αj)
2), |arg[αj]| <

π

2
, k ∈ N ∪ {0}.

Let F (z) = [f(z
1
2 )]2 = zk

∏n
j=1(z − (αj)

2)2. By hypothesis all the αj can be chosen

to satisfy |arg[αj]| < γ < π
4
, so that |arg[α2

j ]| < 2γ < π
2

and the zeros of F (z) lie in a
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convex sector. By the Gauss-Lucas theorem [74, p. 22], the zeros of

F ′(z) = 2f(z
1
2 )f ′(z

1
2 )

1

2
√
z

lie in S(0, 2γ). This implies the zeros of f(z) lie in S(0, γ) ∪ S(π, γ).

The next proposition is a version of the “no consecutive zero terms property”

of multiplier sequences generalized to polynomials with zeros in a sector.

Proposition 165. If the zeros of f(x) =
∑n

k=0 akx
k lie in the sector S

(
π, π

4

)
and

akak+j 6= 0, j ≥ 2, then ak+1ak+2 · · · ak+j−1 6= 0. If the zeros of f(x) =
∑n

k=0 akx
k

lie in the open double sector S
(
π, π

4

)
∪ S

(
0, π

4

)
and are symmetric with respect to

the origin with akak+j 6= 0, j ≥ 3, then the sequence ak+1, ak+2, · · · , ak+j−1 has no

neighboring zero terms.

Proof. Say the first statement were not true. Then there is an f with all its zeros in

S
(
π, π

4

)
and akak+j 6= 0, for some j ≥ 2, such that ak+1, ak+2, . . . ak+j−1 = 0.

If a g ∈ C[z] has all n of its zeros in the sector symmetric about the real axis,

so does zng(1
z
). Thus, both the transformation R : g(z)→ zng(1

z
) and differentiation

(by the Guass-Lucas theorem or Lemma 164) preserve the sector S (π, π/4) (or double

sector S (π, π/4) ∪ S (0, π/4)) containing the zeros. Consider

Dn−k−jR
[
Dkf(z)

]
= Dn−k−jR

[
akk! + ak+j

(k + j)!

j!
zj + · · ·+ an

n!

(n− k)!
zn−k

]
= Dn−k−j

[
an

n!

(n− k)!
+ · · ·+ ak+j

(k + j)!

j!
zn−k−j + akk!zn−k

]
= ak+j

(k + j)!(n− k − j)!
j!

+ akk!
(n− k − j)!

j!
zj (4.21)

The zeros of the polynomial on the right-hand side of (4.21) lie outside of the sector

S
(
π, π

4

)
for j ≥ 2. This contradicts our assumption on f . If j ≥ 3, the right-hand

side of (4.21) has zeros outside the open double sector S(π, π/4) ∪ S(0, π/4). This

proves the double sector case.

Remark 166. If {γk}∞k=0 is a multiplier sequence, then all the zeros of the Jensen

polynomials are real and have the same sign (Theorem 14). Proposition 165 then
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implies that if γjγj+n 6= 0, then γk 6= 0 for all j ≤ k ≤ j + n. This is a well-known

property of multiplier sequences.

O. Katkova and A.Vishnyakova [59] have already found a Turán type in-

equality sufficient for m-times positivity of a matrix, which, together with Schoen-

berg’s Theorem 122 provides a condition for polynomials to have all of their zeros in

certain sectors (Theorem 170).

Definition 167. For c ≥ 1 let TP2(c) denote the class of all matrices M = (ai,j)

with positive entries such that

ai,jai+1,j+1 ≥ cai,j+1ai+1,j for all i, j.

Theorem 168 (O. Katkova, A.Vishnyakova [59]). If M ∈ TP2(c) for c ≥ cm =

4 cos2
(

π
m+1

)
then M ∈ TPm.

Remark 169. Theorem 168 was proved by extending an argument due to T. Craven

and G. Csordas [28].

Theorem 170. If f(z) =
∑n

k=0 akz
k, ak ≥ 0, satisfies

a2
k − 4 cos2

(
π

m+ 1

)
ak+1ak−1 ≥ 0 for all k = 1, 2, 3, . . . ,

then the zeros of f lie in the sector S
(
π, π(n−1)

n−1+m

)
.

Proof. By hypothesis, the infinite matrix of coefficients
a0 a1 a2 . . .

0 a0 a1 . . .

0 0 a0 . . .
...

...
...

. . .


is

TPm by Theorem 168. Then Schoenberg’s Theorem 122, implies that f is nonzero in

the region {z : |argz| < πm
n+m−1

}, so any zeros of f must lie in S
(
π, π(n−1)

n−1+m

)
.
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Theorem 171. If ϕ ∈ S(π, δ) (0 ≤ δ < π
2
) is a real entire function, then for all

g ∈ R[x] with deg(g) ≤ 1
| sin δ|2 , φ� g has only real zeros. In particular, if ϕ has order

ρ ≤ 1, positive Taylor coefficients, and all of the zeros of ϕ lie in S(π, δ), then the

Jensen polynomials associated with ϕ up to degree n ≤ 1
| sin δ|2 have only real zeros.

Proof. If the real entire function ϕ ∈ S(π, δ), then there exists a sequence pn(x) ∈
R[x] having zeros only in S(π, δ), such that pn → ϕ locally uniformly. By Theorem

120, pn � g has only real zeros for deg(g) ≤ 1
| sin δ|2 , and thus by Hurwitz’s Theorem

ϕ � g has only real zeros, provided it is not identically 0. Now assume that ϕ has

order ρ ≤ 1, positive Taylor coefficients, and all of its zeros lie in S(π, δ). Then

writing ϕ in the form (4.2) without any a priori restrictions on the parameter σ,

one may compute −σ = limx→∞
ϕ′(x)
ϕ(x)

≥ 0, which follows from the positivity of the

Taylor coefficients. Hence, ϕ satisfies conditions (4.3) and therefore ϕ ∈ S(π, δ).

The Schur composition property follows from the first argument, and thus the Jensen

polynomials gn = ϕ�(1+x)n will have only real zeros up to the degree indicated.

The following theorems are similar to Theorem 123.

Theorem 172. Let ϕ(x) =
∑∞

k=0
γk
k!
zk be a real entire function. If

i. ϕ(z) ∈ S
(
0, π

4

)
, or

ii. if ϕ(z) ∈ S
(
π, π

4

)
then Tk(ϕ) = γ2

k − γk+1γk−1 ≥ 0 for all k = 1, 2, . . ..

Proof. Suppose ϕ(z) =
∑∞

k=0 γk
xk

k!
∈ S (π, π/4). Therefore {γk}∞k=0 is a 2-sequence

by Theorem 171. This is equivalent to the statement γ2
k − γk+1γk−1 ≥ 0. The same

argument can be applied to the ϕ(s) ∈ S (0, π/4) case.

Theorem 173. Let ϕ(x) =
∑∞

k=0
γk
k!
zk be a real entire function. If ϕ(x) ∈ S(0, δ),

or if ϕ(x) ∈ S(π, δ), where

| sin δ| ≤ 1√
3
,

then Tk(ϕ) = γ2
k − γk+1γk−1 ≥ 0 and Jk(ϕ) ≥ 0, k = 1, 2, 3, . . . (see Lemma 159).
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Proof. Say ϕ(x) =
∑∞

k=0 γk
xk

k!
∈ S(π, δ). Then by Theorem 135, derivative of ϕ(x)

which is not identically zero, has zeros only in S(π, δ). Since | sin δ| ≤ 1√
3
, each

sequence {γj, γj+1, γj+2, . . .} is a 3-sequence by Theorem 171, which implies that third

Jensen polynomial of ϕ(j) has only real zeros. Therefore, ϕ satisfies Tj(ϕ) ≥ 0 and

Jj(ϕ) ≥ 0 by Lemma 159.

The three examples below pertain to the inequalities in Lemma 159, for

which Theorem 173 provides a sufficient condition. A polynomial which satisfies

Tk ≥ 0 and Jk ≥ 0 for all k = 0, 1, 2, . . ., is given in Example 174, and Example 175

defines polynomial for which Tk ≥ 0 and Jk 6≥0 for some values of k .

Example 174. For the polynomial q(z) = (1 + z)2,

{Tk(q)}∞k=0 = {1, 2, 4, 0, 0, 0, . . .}, and

{Jk(q)}∞k=0 = {4, 16, 0, 0, 0, . . .}.

Example 175. The polynomial q(z) = z3+7z2+12z+10, has zeros at z = −5,−1±i,
{Tk(q)}∞k=0 = {100, 4, 124, 36, 0, 0, 0 . . .}, and

{Jk(q)}∞k=0 = {−12800,−9680, 10800, 0, 0, 0, . . .}.

Example 176. Let q(z) = 8z4 + 20z3 + 26z2 + 19z + 5. The zeros of q are at

z = −1/2,−1,−1
2
± i,

{Tk(q)}∞k=0 = {25, 101, 424, 4416, 36864, 0, 0, 0 . . .}, and

{Jk(q)}∞k=0 = {1075, 20752, 771072, 120324096, 0, 0, 0, . . .}.

Although satisfying the condition 0 ≤ |Im(zk)| < −Re(zk) for each zero zk is sufficient

for the Turán inequalities to hold for a polynomial, it is not necessary as Example

176 shows. Example 176 also shows that Tk ≥ 0, Jk ≥ 0, can be satisfied by a degree

4 polynomial with non-real zeros.

An Application to the ξ-function

The Riemann hypothesis is equivalent to the statement that the Riemann

ξ-function (see (1.1)) has only real zeros. It is well-known that the zeros of the ξ-

function lie in the strip |Im(z)| < 1
2

and are symmetric about the origin and the
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imaginary axis. By (3.8), the function F associated with ξ satisfies

F (−4z2) =
1

8
ξ (z) , (4.22)

and has order ρ = 1
2
. G. Csordas, T. S. Norfolk, and R. S. Varga [35] proved that

the Taylor coefficients of F satisfy the Turán inequalities (2.2). The validity of these

inequalities is equivalent to the statement that all the second degree Jensen polyno-

mials associated with the derivatives F (k)(x), k = 0, 1, 2, . . ., have only real zeros. We

now show that a large number of the Jensen polynomials associated with F have only

real zeros.

Theorem 177. The first 2 × 1017 Jensen polynomials associated with the function

F (z), defined by (1.2), have only real zeros.

Proof. Let tmax represent a value such that ξ has only real zeros in the rectangle{
z : |Re(z)| < tmax and |Im(z)| < 1

2

}
. (4.23)

Then the zeros of ξ are constrained to lie within the double sector S(0, δ) ∪ S(π, δ),

with δ = arctan
(

1
2tmax

)
. Equation (4.22) implies that the zeros of F (z) must then

lie in S(π, 2δ). Moreover, if we set

N =

⌊
1

| sin(2δ)|2

⌋
=

⌊
1

4 sin2 δ cos2 δ

⌋
=

⌊
(4t2max + 1)2

16t2max

⌋
, (4.24)

where b·c is the floor function, Theorem 171 implies the Jensen polynomials associated

with F (z) up to degree N have only real zeros. It is known that ξ has only real zeros

in the rectangle (4.23) for tmax = 545, 439, 823 [95]. This implies that at least the

first N = 2× 1017 Jensen polynomials of F (z) have only real negative zeros.

Note that since C(S(π, δ)) is closed under differentiation, the Jensen polynomials

associated with the derivatives F (k), k = 0, 1, 2, . . ., also have only real zeros for

degrees up to the lower bound given by (4.24). O. Katkova [58] has given a proof

that the ξ-function is k-times totally positive for large k using the same type of

argument and a Theorem 122 of Schoenberg [58, p. 5].
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Chapter 5

Stability preservers on arbitrary

regions

1 Introduction

Let C≤n[z] denote the vector space of complex polynomials which have de-

gree less than or equal to n. We will continue to use terminology from Chapter 4,

along with the following notation.

Definition 178. Denote by PΩ the set of all complex polynomials whose zeros lie

only in Ω ⊂ C.

T. Craven and G. Csordas [29] formally identified the following generaliza-

tion of Pólya’s problem on classifying linear operators which preserve reality of zeros.

Problem 179. (T. Craven, G. Csordas 2004 [29]) Let Ω ⊆ C. Characterize all linear

transformations

T : C≤n[z]→ C≤n[z]

such that T [PΩ ∩ C≤n] ⊂ PΩ ∩ C≤n.

Csordas and Craven state that Problem 179 is unsolved in all but the sim-

plest cases, and point out the special cases when (i) Ω = R, (ii) Ω is a half plane, (iii)

Ω is a sector centered at the origin, (iv) Ω is a horizontal strip, and (v) Ω is a double

sector centered at the origin. J. Borcea and P. Brändén considered Problem 179 along
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with several modified versions, where the domain is chosen to be either C[z], Cn[z], or

C≤n[z], and the range is C[z]. They solved these completely in the case where Ω = R
and Ω is a closed circular domain [11]. In their proof, Borcea and Brändén use the

Grace-Walsh-Szegő Theorem (Theorem 8) on linear symmetric forms, and arrive at

a number of related results, including Theorem 112 in Chapter 4.

An operator T such that T (PΩ) ⊂ PΩ ∪ {0} is sometimes referred to as a

preserver on the region Ω (see also Definition 109). A set of polynomials, {qk}∞k=0, is

said to be a simple set, if deg(qk) = k for all k = 0, 1, 2, . . . [90, p. 147]. Let Ω ⊂ C.

We obtain results relevant to (i) and (iii) of the following approaches to Problem 179.

i. Characterize the linear PΩ-preservers T : C[z] → C[z], which possess a simple

set of polynomials {qn}∞n=0, such that T [qn] = λnqn, λn ∈ C, by establishing

conditions on the polynomials {qn}∞n=0 and numbers {λn}∞n=0.

ii. Suppose T : C[z]→ C[z] has the representation

T [p] =

∫
E

p(w)K(w, z)dσ(w),

where K is a two parameter weight function, E is a measurable subset of the

complex plane, and σ is a complex measure. Characterize the kernel functions

K(w, z) which correspond to stability preserving transformations.

iii. ([13, Problem 10]) Every linear operator T : C[z]→ C[z] can be represented in

the form

T =
∞∑
k=0

Qk(z)Dk. (5.1)

Characterize all linear PΩ-preservers, T , in terms of the polynomial coefficients

Qk.

Approach (i) aims to generalize the notion of a multiplier sequence, and is

also motivated by change of basis transformations (cf. [6,17,54,55,84]). Approach (ii)

is motivated by the Riesz representation theorem and properties of totally positive

kernels (see [57] and Theorem 201). Approach (iii) is given as an open problem in the

literature [13]. Change of basis transformations are exhibited in Theorems 180 and

181, below, and Theorem 204, which is proved in Section 3.
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Theorem 180. (A. Iserles, E. B. Saff [55]) Suppose the polynomial
∑n

k=0 akz
k ∈

R[z] has all of its zeros in the open unit disc {z : |z| < 1}. Then all the zeros of

the polynomial
∑n

k=0 akTk(z), where Tk(z) = cos(k arccos(z)) is the kth Chebyshev

polynomial, lie in the interval (−1, 1).

The following known theorem supplies an example of a basis transformation which

preserves L -P+ ∩ R[z], by using the polynomials (z)k (see Definition 32).

Theorem 181. If p(x) =
∑n

k=0 ak(z)k ∈ L -P+, then
∑n

k=0 akz
k ∈ L -P+ .

Proof. Let p ∈ L -P+ ∩ R[z]. Then {p(k)}∞k=0 is a multiplier sequence, by Theorem

16, and thus,
∞∑
k=0

p(k)
zk

k!
∈ L -P+.

If p is expanded in the basis {(z)k}∞k=0, then

∞∑
k=0

p(k)
zk

k!
=
∞∑
k=0

n∑
j=0

aj(k)j
zk

k!

=
n∑
j=0

aj

∞∑
k=0

(k)j
zk

k!

=

(
n∑
j=0

ajz
j

)
ez ∈ L -P+, (5.2)

where we have used (2.12) to obtain (5.2). This proves the theorem.

Our investigation starts with diagonalizable stability preservers. We provide

a sufficient condition for a degree preserving linear operator to be diagonalizable. A

multiplier sequence with no more than two non-zero terms is called trivial. We prove in

Section 2 that any non-trivial multiplier sequence on a monic simple basis, where the

basis polynomials have only simple real zeros, must be non-decreasing (see Definition

183, Theorem 193). In Section 3, we prove a conjecture of S. Fisk while establishing a

new transformation that preserves polynomials having only real zeros in the interval

[−1, 1] (Theorem 204). New properties and representations of differential operators

in the form (5.1) are presented in Section 4. We conclude with a list of conjectures,

questions, and open problems.
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2 Diagonalizable transformations

Change of basis transformations, such as the transformation in Theorem 180,

are degree preserving and have trivial kernel. This section focuses on degree preserving

transformations which are diagonalizable. Degree preserving transformations may

serve as a tool for finding more general results.

Theorem 182. Let Ω be a region of C homeomorphic to the closed unit disk or the

line segment [0, 1]. If T is a degree preserving linear operator with trivial kernel, such

that T [PΩ] ⊂ PΩ, then the following claims hold.

i. For all n = 0, 1, 2, . . ., there exist monic qn ∈ C[x] such that T [qn] = λnqn,

deg(qn) = n, λn ∈ C, and all the zeros of a given qn lie in Ω.

ii. Furthermore, if λk 6= λj whenever j 6= k, then the polynomials {qn}∞n=0 are

unique.

Proof. Endow the vector space of all complex polynomials of degree n with the usual

Euclidean norm. Therefore, T defines a continuous map ϕ : Ωn → Ωn, given by

(z1, z2, . . . , zn) 7→ (z′1, z
′
2, . . . , z

′
n), where {zk}nk=1 are the zeros of a degree n polynomial

p(z) ∈ PΩ and {z′k}nk=1 are the zeros of T [p(z)]. Since Ω is homeomorphic to the

closed unit disk (or [0, 1]), by Brouwer’s fixed point theorem [51, p. 85], ϕ has a fixed

point (w1, w2, . . . , wn) ∈ Ωn. Let qn(z) = (z − w1)(z − w2) · · · (z − wn). Because

(w1, w2, . . . , wn) is a fixed-point of the map ϕ, the image T [qn] must be a scalar

multiple of qn. This proves (i).

Suppose there exist monic polynomials qn and q′n, such that qn 6= q′n, T [qn] =

λnqn and T [q′n] = λ′nq
′
n. Then deg(qn − q′n) = m ≤ n− 1. Thus,

T [qn(z)− q′n(z)] = λnqn(z)− λ′nq′n(z)

has degree m, because T is degree preserving. This implies that λn = λ′n. Therefore,

the polynomial qm = qn(z) − q′n(z), which has degree strictly less that n, satisfies

T [qm] = λmqm, where λm = λn. This proves (ii).
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Definition 183. Let T : C[x] → C[x] be a linear operator. If there exists a simple

set of polynomials {qk}∞k=0 such that T [qk] = λkqk, λk ∈ C, then T is said to be

diagonalizable and T is said to be diagonal with respect to qk. The set {qk}∞k=0 is said

to be a diagonal basis for T . If T is hyperbolicity preserving, and λk ∈ R for all

k ∈ N ∪ {0}, we call {λk}∞k=0 a q-multiplier sequence.

Definition 184. Let T be diagonalizable with respect to {qk}∞k=0, with T [qk] = λkqk.

If

|λk| ≤ |λk+1| for all k = 0, 1, 2, . . . , (5.3)

then T is said to be attractive.

Remark 185. If T is attractive, then for any p ∈ R[x] with degree precisely k and

T [p] 6≡ 0,

lim
n→∞

(
1

λk
T

)n
[p] = qk,

where T [qk] = λkqk.

Proposition 186. Let Ω ⊂ C be bounded, non-empty, and Ω 6= {0}. If T is a PΩ-

preserver with trivial kernel, and is diagonalizable on a simple set {qk}∞k=0, then T is

attractive.

Proof. Suppose that there is a T satisfying the hypotheses which is not attractive.

Then if T [qk] = λkqk for all k ∈ N∪{0}, there is an n ∈ N such that 0 < |λn| < |λn−1|
(all λk 6= 0 because T has trivial kernel). Consider g(z) =

∑n
k=0 ckqk(z) = (z+ω)n ∈

PΩ, where ω ∈ Ω \ {0}, and thus cn 6= 0 and cn−1 6= 0 . Since the normalizations of

the qk are arbitrary, we may assume they are monic. Iterating T (Tm = T ◦T ◦· · ·◦T ,

m times), yields

Tm[g(z)] = λmn+1cn

(
qn +

(
λn−1

λn

)m
cn−1

cn
qn−1 + · · ·+

(
λ0

λn

)m
c0

cn
q0

)
(5.4)

= λmn+1cn

(
xn +

(
λn−1

λn

)m
An−1x

n−1 + · · ·+
(
λ0

λn

)m
A0

)
, (5.5)

where An−1, . . . , A0 are constants depending on the coefficients of the polynomials

{qk}nk=0. As m → ∞, the magnitude of the sum of the zeros of Tm[g(z)], given by∣∣∣λn−1

λn

∣∣∣m |An−1|, approaches ∞. This implies that at least one of the zeros of Tm[g(z)]

tends to ∞ as m→∞, which contradicts that T is a PΩ preserver.
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Definition 187. Let a sequence of real numbers {γk}∞k=0 be associated with the

operator T which is diagonal on monomials and satisfies T [xk] = γkx
k, k ∈ N ∪ {0}.

The sequence {γk}∞k=0 is said to possess the Gauss-Lucas property if for any polynomial

f(z) ∈ C[z], T [f ] has all of its zeros in the convex hull containing the zeros of f and

the origin.

Compare Proposition 186 to the following theorem, which is proved using

the Schur-Malo-Szegő composition theorem (Theorem 3).

Theorem 188 (T. Craven, G. Csordas [23]). Let Γ = {γk} be a nonzero sequence

of real numbers. Then Γ possesses the Gauss-Lucas property if and only if Γ is a

multiplier sequence and either 0 ≤ γn ≤ γn+1 for n = 0, 1, 2, . . . , or 0 ≥ γn ≥ γn+1

for n = 1, 2, . . . .

The problem of characterizing multiplier sequences on other bases (see Def-

inition 183) has been examined in detail by A. Piotrowski. The Hermite multiplier

sequences, hyperbolicity preserving linear operators which are diagonal with respect

to the Hermite basis, have been completely characterized by Piotrowski [84].

Theorem 189 (A. Piotrowksi [84, p. 140]). A real sequence {γk} is a Hermite

multiplier sequence if and only if {γk}∞k=0 can be expressed in one of the following

forms:

{λk}∞k=0 , {−λk}∞k=0 , {(−1)kλk}∞k=0 , {(−1)k+1λk}∞k=0 ,

where {λk}∞k=0 is either a non-decreasing, non-negative multiplier sequence, or has

the trivial form

{0, 0, 0, . . . , 0, λn, λn+1, 0, 0, 0, . . .}.

Theorem 189 provides the solution to a problem of T. Craven and G. Csordas in

[6]. We will show that for any simple set of polynomials {qk}∞k=0, having only simple

real zeros and positive leading coefficients, any non-trivial non-negative q-multiplier

sequence must be increasing (Theorem 193). This result is relevant to a general prob-

lem about multiplier sequences in [6] (cf. Problem 219). The proof is a generalization

of a proof of A. Piotrowski.
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Lemma 190. Let {qk}∞k=0 be a simple set of real polynomials, where each polynomial

qk has only real zeros and positive leading coefficient. Then for any n ∈ N, there

exists a positive C ∈ R such that for all c > C, qn(x) + cqn−2(x) has at least two

non-real zeros.

Proof. Let the zeros of qn and qn−2 be contained in the interval [a, b]. Then for a

positive c, all the real zeros of g(x) = qn(x) + cqn−2(x) must lie in [a, b], since g is

always either positive or negative outside of [a, b]. By Hurwitz’s theorem (Theorem

9), as c→∞ the number and location of the zeros of qn(x)/c+ qn−2(x) on [a, b] must

approach those of qn−2(x). By degree considerations, the only way this can happen is

for qn(x)/c+qn−2(x) to have at least two non-real zeros for all c sufficiently large.

A. Piotrowski has also shown that for a simple set of polynomials {qk}∞k=0,

any q-multiplier sequence is also a multiplier sequence on the stadard basis {xk}∞k=0

[84]. We use Piotrowski’s method of proof below to establish a more general state-

ment.

Theorem 191. Let Ω ⊂ C be a union of closed sectors with vertex at the origin,

Ω =
⋃n
j=1 S(θj, δj) (see Definition 105). If T is a PΩ-preserver which is diagonal on

the simple basis of polynomials {qk}∞k=0 with T [qk] = λkqk, then the operator M [zk] =

λkz
k is also a PΩ-preserver.

Proof. Without loss of generality we may assume the polynomials qk are monic. Let

T be any PΩ-preserver and define the linear operator T (r) by T (r)[p
(r)
k ] = λkp

(r)
k where

p
(r)
k (z) = 1

rk
qk(rz), for real r > 0. We first show that for each fixed positive r ∈ R,

T (r) is a PΩ-preserver. Let f(z) =
∑n

k=0 ckp
(r)
k (z) ∈ PΩ, then

T (r)[f(z)] =
n∑
k=0

λkckp
(r)
k (z) (5.6)

=
n∑
k=0

λkck
1

rk
qk(rz) (5.7)

=
n∑
k=0

λkbkqk(rz), (5.8)
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where bk = ck
rk

, and
∑n

k=0 bkqk(rz) = f(z) ∈ PΩ. Since Ω is a union of closed sectors,∑n
k=0 bkqk(rz) ∈ PΩ if and only if

∑n
k=0 bkqk(z) ∈ PΩ. Therefore, T [

∑n
k=0 bkqk(z)] =∑n

k=0 λbkqk(z) ∈ PΩ. Again, because Ω is a union of sectors, we may replace z

with rz for r > 0, thus
∑n

k=0 λbkqk(rz) = T (r)[f ] ∈ PΩ. This shows that T (r) is a

PΩ-preserver.

Note that T (r) → M as r → ∞. For any f ∈ PΩ, r > 0, T (r)[f ] ∈ PΩ, and

by Hurwitz’s Theorem (Theorem 9),

lim
r→∞

T (r)[f ] = M [f ] ∈ PΩ ∪ {0},

since Ω is closed. Thus, M is a PΩ-preserver.

Note the following special cases of Theorem 191.

Corollary 192. Let Ω be a line through the origin, a closed sector with vertex at the

origin, or a closed double sector with vertex at the origin. If T is any PΩ-preserver

which is diagonal on the basis {pk}∞k=0, with T [pk] = λkpk, then the operator diagonal

on monomials, defined by M [zk] = λkz
k for all k ∈ N ∪ {0}, is also a PΩ-preserver.

Theorem 193. Let {qk}∞k=0 be a simple set of real polynomials, with only simple

real zeros and positive leading coefficients. If {λk}∞k=0 is a non-negative q-multiplier

sequence with at least 3 non-zero terms, then λk ≥ λk−1 for all k ∈ N.

Proof. Let {λk}∞k=0 be a non-negative q-multiplier sequence with at least 3 non-zero

terms. Because any q-multiplier sequence {λk}∞k=0 is a multiplier sequence by Corol-

lary 192, it can have no internal zeros (see Remark 166), and it must satisfy the Turán

inequalities (Proposition 26), λ2
k − λk+1λk−1 ≥ 0 for all k = 1, 2, 3, . . . . Assume there

is a d ∈ N such that λd−1 > λd > 0. We obtain a contradiction as follows.

First suppose that λd+1 = 0. Then λd−2 6= 0, because {λk}∞k=0 has no internal

zeros and at least 3 non-zero terms. Let f(x) = cqd−2(x) + qd(x) + dqd+1(x) ∈ R[x],

where c is chosen sufficiently large that cλd−2

λd
qd−2(x) + qd(x) has non-real zeros by

Lemma 190, and d is chosen such that (1/d)(cqd−2(x)+qd(x))+qd+1(x), and therefore

f(x) has only real zeros (d exists because the zeros of qd+1 are simple). Applying the

sequence {λk}∞k=0 to f(x) results in cλd−2qd−2(x)+λdqd(x) = λd(c
λd−2

λd
qd−2(x)+qd(x)),
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which has non-real zeros by the choice of c. This contradicts that {λk}∞k=0 is a q-

multiplier sequence.

Otherwise, if λd+1 > 0, then the Turán inequalities imply

λd
λd−1

≥ λd+1

λd
. (5.9)

Our assumption that λd−1 > λd > 0, with the aid of (5.9), implies that λd−1 >

λd > λd+1. Let f(x) = cqd−1(x) + qd+1(x) ∈ R[x], where c > 0 is chosen sufficiently

small that f has only real zeros (c exists because the zeros of qd+1 are simple). Since

by assumption, {λk}∞k=0 is a Q-multiplier sequence, we may repeatedly apply the

sequence to f and the resulting polynomial will have only real zeros. Applying {λk}∞k=0

to f , n times, produces

λnd+1

(
c

(
λd−1

λd+1

)n
qd−1(x) + qd+1(x)

)
. (5.10)

Because λd−1 > λd+1, for n sufficiently large the polynomial in (5.10) has non-real

zeros by Lemma 190. This contradicts that {λk}∞k=0 is a multiplier sequence, and

proves the theorem.

T. Forgács and A. Piotrowski have obtained detailed results about L(α)-

multiplier sequences [45], where L
(α)
n is the nth generalized Laguerre polynomial [90, p.

200]. In particular, Forgács and Piotrowski have shown that the necessary condition

given in Theorem 193, λk ≥ λk−1, is not sufficient for a real sequence {λk}∞k=0 to

be a nontrivial L(α)-multiplier sequence. Therefore, L(α)-multiplier sequences form

a proper subset of the Hermite multiplier sequences. The following proposition pro-

vides an example of a multiplier sequence on the Legendre polynomial basis, denoted

{Pk}∞k=0 (see Section 3).

Proposition 194. The sequence {k(k + 1)}∞k=0 is a Legendre polynomial basis mul-

tiplier sequence.

Proof. The Legendre polynomials satisfy the differential equation [90]

(1− z2)P ′′k (z)− 2zP ′k(z) + k(k + 1)Pk(z) = 0.
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Thus, the linear operator T := (z2 − 1)D2 + 2zD acts as a P -multiplier sequence,

T [Pk(z)] = k(k+1)Pk(z). By Theorem 113, it is sufficient to show that T [(x+w)n] ∈
H2(R) ∪ {0} for all n ∈ N. Direct computation yields

T [(z + w)n] = n(z + w)n−2((n+ 1)z2 + 2zw + (1− n)). (5.11)

It is then sufficient to show the quadratic factor in (5.11) is upper half-plane stable

or identically zero. A computation shows that T [(z +w)0] ≡ 0, and T [(z +w)1] = 2z

is upper half-plane stable. For n ≥ 2, let the zeros of the quadratic factor in (5.11)

be α, β ∈ C. Then

α + β =
−2w

n+ 1
and αβ =

1− n
n+ 1

< 0 (n ≥ 2) (5.12)

Since αβ < 0, arg(α) = π − arg(β). This implies Im[α]Im[β] ≥ 0. If

Im[w] > 0, then (5.12) implies Im[α] < 0 and Im[β] < 0. Therefore, T [(x + w)n] 6= 0

when Im[w] > 0 and Im[x] > 0. Since n was arbitrary the proposition is proved.

Remark 195. The sequence {(k + 1)(k + 2)}∞k=0 is not a Legendre basis multiplier

sequence; p(x) = (x + 1)3 serves as a counterexample. Since {(k + 1)(k + 2)}∞k=0 is

an increasing multiplier sequence, the Legendre multiplier sequences form a proper

subset of the Hermite multiplier sequences.

3 The monomial to Legendre polynomial basis trans-

form

Let Pn(x) represent the nth Legendre polynomial, defined by the generating

function [90, p. 157],

G(x, µ) := (1− 2xµ+ µ2)−
1
2 =

∞∑
n=0

Pn(x)µn. (5.13)

Recall that the Legendre polynomials satisfy the orthogonality relation [90, p. 174-

175]
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∫ 1

−1

Pn(x)Pm(x)dx =


2

2n+1
, for m = n

0, for m 6= n.
(5.14)

In this section, we prove the following conjecture from S. Fisk’s book [43],

which is left as an open problem in the book’s empirical tables of basis transforma-

tions.

Conjecture 196 (S. Fisk [43, p. 711]). If f(x) =
∑n

k=0 anx
n ∈ R[x] has all of its

zeros in the interval (−1, 1), then T [f ](x) =
∑n

k=0 anPn(x) has all of its zeros in

[−1, 1].

In the proof of Conjecture 196, we rely on the strict sign regularity (Defini-

tion 197) of a generating function related to the transformation.

Definition 197 (Strict Sign Regularity). The kernel function G : X × Y → R is

said to be strictly sign regular (SSR), if given any two increasing m-tuples x1 < x2 <

. . . < xm, y1 < y2 < . . . < ym, in X and Y respectively,

ε(m)

∣∣∣∣∣∣∣∣∣∣∣

G(x1, y1) G(x1, y2) . . . G(x1, ym)

G(x2, y1) G(x2, y2) . . . G(x2, ym)
...

...
. . .

...

G(xm, y1) G(xm, y2) . . . G(xm, ym)

∣∣∣∣∣∣∣∣∣∣∣
> 0. (5.15)

for all m ∈ N, where ε(m) is a function of m only and has the range {−1, 1}. If

ε(m) = 1, the kernel G(x, µ) is said to be strictly totally positive (STP) (see [57]).

The following theorem of A. Iserles and E. B. Saff is required for our proof

of Conjecture 196.

Theorem 198 (A. Iserles and E. B. Saff [55]). Let {Qn(x)}∞n=0 be an orthogonal

sequence of polynomials satisfying

∫ b

a

Qn(x)Qm(x)dx =

hm, for m = n

0, for m 6= n.
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Given that the generating function G(x, µ) =
∑∞

µ=0 δkQk(x)µk is SSR for all x ∈ (a, b)

and µ ∈ (c, d) and that all the zeros of the polynomial
∑n

k=0 qkx
k are in the interval

(c, d), all of the zeros of the polynomial
∑n

k=0
qk
δkhk

Qk(x) reside in [a, b].

Theorem 198 is proved using properties of biorthogonal polynomials [55].

For reference, we list some fundamental results on totally positive kernels here.

Theorem 199 ([57, p. 15]).

K(x, y) = exy

is STP, and therefore SSR, for x, y ∈ R.

Theorem 200 ([57, p. 18]). Let K(x, y) be SSR (x ∈ X and y ∈ Y ), and let ϕ(x)

and ψ(x) maintain the same constant sign on X and Y , respectively. Then

i. L(x, y) = ϕ(x)ψ(y)K(x, y) is SSR.

ii. Now let u = ϕ−1(x) and v = ψ−1(x) be strictly increasing functions mapping X

and Y onto U and V , respectively, where ϕ−1 and ψ−1 are the inverse functions

of ϕ and ψ, respectively. Consider

L(u, v) = K[ϕ(u), ψ(x)] u ∈ U, v ∈ V.

Then L(u, v) is SSR and with signs εm(K) = εm(L). If φ(u) is strictly in-

creasing while ψ(v) is strictly decreasing, then L(u, v) is SSR and εm(K) =

(−1)
m(m−1)

2 εm(L).

Theorem 201 ([57, p. 16](Composition Rule)). Let K, L and M be Borel-measurable

functions of two variables satisfying

M(x, y) =

∫
Z

K(x, η)L(η, y)dσ(η),

where the integral is assumed to converge absolutely. The variables x, y, and η are in

subsets of the real line X, Y , and Z respectively, and dσ(η) is a sigma finite measure

on Z. If both K and L are strictly sign regular, then so is M .
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Theorem 201 is a direct result of generalizing the Cauchy-Binet theorem for matrix

products (G. Pólya and G. Szegő [87, p. 61]) and in it “strictly sign regular” may be

replaced by a requirement for strict or non-strict sign regularity or total positivity of

arbitrary order.

We now prove two preliminary lemmas.

Lemma 202.

K(x, y) = e−xy

is strictly sign regular (SSR) for all x, y ∈ R.

Proof. Given two arbitrary increasing m-tuples x1 < x2 < . . . < xm, y1 < y2 < . . . <

ym, in R, then −xm < −xm−1 < . . . < −x1 is also an increasing m-tuple in X. Since,

by Theorem 199, exy is stricly totally positive,∣∣∣∣∣∣∣∣∣∣∣

e−xmy1 e−xmy2 . . . e−xmym

e−xm−1y1 e−xm−1y2 . . . e−xm−1ym

...
...

. . .
...

e−x1y1 e−x1y2 . . . e−x1ym

∣∣∣∣∣∣∣∣∣∣∣
> 0. (5.16)

Let bxc denote “the greatest integer less than or equal to x”. After bm
2
c row exchanges

(first row with last row, second row with second to last, etc...) on the determinant in

(5.16), we obtain

(−1)b
m
2
c

∣∣∣∣∣∣∣∣∣∣∣

e−x1y1 e−x1y2 . . . e−x1ym

e−x2y1 e−x2y2 . . . e−x2ym

...
...

. . .
...

e−xmy1 e−xmy2 . . . e−xmym

∣∣∣∣∣∣∣∣∣∣∣
> 0.

Thus K(x, y) = e−xy is SSR as claimed. Note this also follows immediately by the

second part of Theorem 200.

A statement similar to Lemma 203 is made by A. Iserles and E. B. Saff, but

here a different statement and proof are given due to an apparent mistake in [55].
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Lemma 203. The function

K(x, y) =
1

(x+ y)β+1
,

where β > −1, is SSR for x, y ∈ (0,∞)

Proof. By Lemma 202 both e−xη and e−yη are SSR for all x, y ∈ R. Theorem 201

then implies

1

Γ(β + 1)

∫ ∞
0

e−xηe−yηηβdη =
1

Γ(β + 1)

∫ ∞
0

e−(x+y)ηηβdη

=
1

Γ(β + 1)

1

(x+ y)β+1

∫ ∞
0

zβe−zdz

=
1

(x+ y)β+1
,

is SSR for all x, y ∈ (0,∞), and β > −1 (both conditions are requirements for

convergence of the integral).

We now prove Fisk’s conjecture (Conjecture 196), which results in the fol-

lowing Theorem.

Theorem 204. If f(x) =
∑n

k=0 anx
n ∈ R[x] has all of its zeros in the interval [−1, 1],

then T [f ](x) =
∑n

k=0 anPn(x) has all of its zeros in [−1, 1].

Proof of Conjecture 196 and Theorem 204. First assume that f(x) has all of its zeros

in the interval (−1, 1) as in Conjecture 196. The series on the right-hand side of (5.13)

is known to converge for all x, µ ∈ (−1, 1). Operating on (5.13) with
(

2µ ∂
∂µ

+ 1
)

, we

obtain a second generating function which converges for the same range of parameters:

G2(x, µ) =

(
2µ

∂

∂µ
+ 1

)
G(x, µ)

=
1− µ2

(1− 2xµ+ µ2)
3
2

=
∞∑
n=0

(2n+ 1)Pn(x)µn.

To prove the conjecture, by Theorem 198 (with δk = 2k + 1, hk = 2
2k+1

), it

is sufficient to show that G2(x, µ) is SSR for x, µ ∈ (−1, 1).

G2(x, µ) = (1− µ2)
1

(1 + µ2)
3
2

(
1− 2xµ

1+µ2

) 3
2

,
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and applying the first part of Theorem 200 twice, it suffices to show F (x, µ) =

1(
1− 2xµ

1+µ2

) 3
2

is SSR. Setting η = 2µ
µ2+1

, it is then sufficient to show that

1

(1− xη)
3
2

is SSR for x, η ∈ (−1, 1). Replacing x with x−1
x+1

and η with y−1
y+1

we can equivalently

show that the function (
(x+ 1)(y + 1)

2(x+ y)

) 3
2

is SSR for x, y ∈ (0,∞). Applying the first part of Theorem 200 again, we can drop

the factors (x + 1)
3
2 , (y + 1)

3
2 , and 1/2

3
2 , leaving 1

(x+y)
3
2

. By Lemma 203, 1

(x+y)
3
2

is

indeed SSR for x, y ∈ (0,∞), and this completes the proof of the conjecture when f

has all of its zeros in (−1, 1). By continuity of the transformation T , f(x) may have

its zeros in the closed interval [−1, 1] as well.

4 Differential operator representations

The following theorem is stated using the multivariate notation of

Definition 145.

Theorem 205. If T : C[z1, . . . , zn]→ C[z1, . . . , zn] is a linear operator, then it has a

unique representation

T =
∑
β∈Nno

Qβ(z)∂β, (5.17)

where Qβ ∈ C[z1, . . . , zn], and the sum may be infinite.

It is instructive to consider the case T : C[z1, z2] → C[z1, z2]. Suppose that

T can be expressed in the form

T = Q(0,0)(z) +Q(1,0)(z)∂1 +Q(0,1)(z)∂2 +Q(1,1)(z)∂1∂2 +Q(2,0)(z)∂2
1 + · · · . (5.18)
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When T operates on the first few monomial basis polynomials it produces,

T [1] = Q(0,0)(z),

T [z1] = Q(1,0)(z) + z1Q(0,0)(z),

T [z2] = Q(0,1)(z) + z2Q(0,0)(z),

T [z1z2] = Q(1,1)(z) + z2Q(1,0)(z) + z1Q(0,1)(z) + z1z2Q(0,0)(z), and

T [z2
1 ] = 2Q(2,0)(z) + 2z1Q(0,1)(z) + z2

1Q(0,0)(z).

These equations can then be used to recursively solve for the first few coefficients

Qβ(z), using only the values of T evaluated on the basis polynomials. For example,

Q(2,0)(z) =
1

2

(
T [z2

1 ]− (2z1Q(0,1)(z) + z2
1Q(0,0)(z))

)
.

It is clear that we can continue to solve for any Qβ in the same way, and we formalize

this procedure in the following proof.

Proof of Theorem 205. One finds Q(0,...,0) by operating on 1,

T [1] = Q(0,...,0)(z),

where z = (z1, . . . , zn). We then recursively define

Qβ(z) =
1

β!
T [zβ]−

∑
α<β

zβ−α

(β − α)!
Qβ(z), (5.19)

where α < β if α ≤ β and α 6= β. The right hand side of (5.17) agrees with T on the

basis zβ, β ∈ Nn
o , by construction, and therefore by the linearity of T , (5.17) holds on

C[z1, . . . , zn]. The uniqueness of the Qβ follows from the uniqueness of the solution

to the system of recursive linear equations (5.19).

Remark 206. In the univariate case we may write (5.19) as

Qn+1(z) =
1

(n+ 1)!

[
T [zn+1]−

n∑
k=0

(
n+ 1

k

)
k!Qk(z)zn+1−k

]
. (5.20)

For the remainder of this section Qk and Qβ will denote to complex polynomials in

the representation (5.17).
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The Weyl algebra, An[C], was introduced in Chapter 4 (see Definition 145).

For reference, we list recently proved characterizations of Weyl algebra preservers in

n variables.

Theorem 207 ([12]). An operator T ∈ An[C] is a stability preserver if and only if

FT (z,−w) ∈ H2n.

Theorem 208 ([12]). An operator T ∈ An[R] is a hyperbolicity preserver if and only

if FT (z,−w) ∈ H2n(R).

Note that Theorems 207 and 208 follow immediately from Theorem 153 (and its

hyperbolicity analog) and equation 4.16. Theorems 207 and 208 yield the following

information about linear stability and hyperbolicity preservers which can be written

as finite order differential operators.

Proposition 209. If the linear operator T : R[z]→ R[z] is a hyperbolicity perserver,

and if T can be represented as a differential operator of finite order,

T =
N∑
k=0

Qk(z)Dk, (Qk ∈ R[z]), (5.21)

then the polynomials Qk have only real zeros.

Proof. By Theorem 208, the symbol of T satisfies

FT (z,−w) =
N∑
k=0

Qk(z)(−w)k ∈ H2(R).

It is known that ∂w := ∂
∂w

preserves multivariate stability as a simple consequence of

the Gauss-Lucas Theorem [74, p. 22]. Therefore, for any j = 0, 1, 2, . . .,

∂jwFT (z,−w) =
N∑
k=j

Qk(z)(−1)k
k!wk−j

(k − j)!
∈ H2(R) ∪ 0.

By Theorem 208, there is a hyperbolicity preserving operator T (j) = FT (j)(z, ∂) asso-

ciated with the symbol FT (j)(z,−w) = ∂jwFT (z,−w). Then T (j)[1] = (−1)jj!Qj(z) is

hyperbolic, or equal to 0. Since j is arbitrary, this completes the proof.
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Proposition 210. If the linear operator T : C[z] → C[z] preserves upper half-plane

stability, and if T can be represented as a differential operator of finite order,

T =
N∑
k=0

Qk(z)Dk, (Qk ∈ C[z]),

then the polynomials Qk are upper half-plane stable.

Proof. Similar to the proof of Proposition 209.

In a similar fashion the multivariate versions of Propositions 209 and 210

hold—this has also been observed in the recent paper [16]. As one might guess, a

linear operator T possessing coefficients Qk(z) with only real zeros in representation

(5.21) is not necessarily a hyperbolicity preserver.

Example 211. The converses of Propositions 209 and 210 are false. If T = (z2 −
1)D + 1, p(x) = z + 5, then all Qk associated with T have only real zeros. The

polynomial T [p(z)] = z2 + z + 4 does not have real zeros, so T does not preserve

hyperbolicity or stability. Moreover, violating the hypotheses of Laguerre’s Theorem

(Theorem 16) is enough to show the converses of Propositions 209 and 210 are false.

The operator T = zD − 1, and the polynomial p(z) = z2 − 7, also produce a counter

example.

Example 212. Propositions 209 and 210 can not be extended to infinite order dif-

ferential operators. Let T1, T2 be the linear transformations given by T1[zk] = zk

k!
and

T2[zk] = Hk(x), for all k ∈ No, where Hk is the kth Hermite polynomial. Both T1 and

T2 preserve hyperbolicity (see Remark 213). Hence, T = T2T1 preserves hyperbolicity,

and in the representation

T =
∞∑
k=0

Qk(z)Dk,

the coefficient

Q2(z) = −1

2
(z2 + 1)

has non-real zeros.
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Remark 213. Note that {1/k!} is a multiplier sequence by Laguerre’s Theorem (The-

orem 16). When T has the action of a multiplier sequence, such as T1[zk] = zk/k!

for all k ∈ N0, the coefficients Qk(z) in (5.20) have only real zeros (see Remark 215).

The linear transformation defined by T2[zk] = Hk(z), where Hk is the kth Hermite

polynomial, can be represented as T2 = e−D
2/2 [84], which is hyperbolicity preserving

by the Hermite-Poulain Theorem (Theorem 25).

Note that if T =
∑∞

k=0Qk(z)Dk maps polynomials of degree n to polyno-

mials of degree n or less, each Qk has at most degree k. This is the case when T is a

degree preserving basis transformation.

Proposition 214. If T =
∑∞

k=0 Qk(z)Dk is the monomial to Chebyshev polynomial

basis transformation, defined by T [zk] = cos(k arccos(z)), for all k ∈ No, then the

coefficients Qk(z) have only real zeros. Furthermore,

Q2k(z) =
1

(2k)!
(z2 − 1)k, Q2k+1 = 0, k = 0, 1, 2, . . . .

Proof. The Chebyshev polynomials are given by the formula [90, p. 301]

Tn(z) =

bn
2
c∑

k=0

(
n

2k

)
(z2 − 1)kzn−2k.

For k = 0, T [1] = 1 = Q0(x), and k = 1, Q1(z) = T [z] − zQ0(z) = 0. Assume that

the formulas for Qk hold up to some even n. Then n+ 1 is odd, and by (5.20),

Qn+1(z) =
1

(n+ 1)!

[
T [zn+1]−

n∑
k=0

Qk(z)k!

(
n+ 1

k

)
zn+1−k

]

=
1

(n+ 1)!

Tn+1(z)−
bn
2
c∑

k=0

Q2k(z)(2k)!

(
n+ 1

2k

)
zn+1−2k


=

1

(n+ 1)!

Tn+1(z)−
bn
2
c∑

k=0

(z2 − 1)k
(
n+ 1

2k

)
zn+1−2k


= 0.
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If we show that Qn+2(z) = 1
(n+2)!

(z2 − 1)
n+2
2 , the proposition will hold by induction

on n. Since Qn+1 ≡ 0,

Qn+2(z) =
1

(n+ 2)!

[
T [zn+2]−

n∑
k=0

Qk(z)k!

(
n+ 2

k

)
zn+2−k

]

=
1

(n+ 2)!

Tn+2(z)−
bn
2
c∑

k=0

Q2k(z)(2k)!

(
n+ 2

2k

)
zn+2−2k


=

1

(n+ 2)!

n
2

+1∑
k=0

(
n+ 2

2k

)
(z2 − 1)kzn+2−2k −

bn
2
c∑

k=0

(z2 − 1)k
(
n+ 1

2k

)
zn+2−2k


=

1

(n+ 2)!
(z2 − 1)

n
2

+1

=
1

(n+ 2)!
(z2 − 1)

n+2
2 .

Hence the claim holds.

Remark 215. Let {qk}∞k=0 be a simple set of polynomials. Using FT (z, w) as a gen-

erating function and (4.16) (see Proposition 216), one may readily deduce that for a

change of basis transformation T , which maps zk → qk(z), the associated coefficients

in representation (5.20) are

Qk(z) =
1

k!

k∑
j=0

(
k

j

)
qj(z)(−z)k−j. (5.22)

In the case where T has the action of a multiplier sequence {γk}∞k=0, (5.22) reduces

to

Qk(z) =
zk

k!

k∑
j=0

(
k

j

)
(−1)k−jγk =

zk

k!
g∗k(−1), (5.23)

where g∗k(z) =
∑k

j=0

(
k
j

)
γkz

k−j is the reverse of the kth Jensen polynomial (equation

(5.23) for multiplier sequences first appears in the dissertation of A. Piotrowski [84, p.

35], where a different proof is given).

Proposition 216. If T : C[z]→ C[z] is a linear operator, then in the representation

T =
∑∞

k=0 Qk(z)Dk, the coefficients are given by

Qk(z) =
1

k!

k∑
j=0

(
k

j

)
T [zj](−z)k−j (5.24)
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Proof. Using (4.16), the operator symbol is given by

FT (z, w) = T [ezw]e−zw

=

(
∞∑
j=0

T [zj]wj

j!

)(
∞∑
`=0

(−z)`w`

`!

)

=
∞∑
k=0

k∑
j=0

T [zj](−z)k−j

j!(k − j)!
wk

=
∞∑
k=0

(
1

k!

k∑
j=0

(
k

j

)
T [zj](−z)k−j

)
wk.

Formula (5.24) follows immediately.

An operator is stability reversing if it maps polynomials which are non-zero

in the open upper half-plane to polynomials which are non-zero in the open lower

half-plane. In [11], it is shown that any hyperbolicity preserver is either stability

preserving or stability reversing. From Theorem 113, one can identify the conditions

that characterize a hyperbolicity preserver T , which is stability reversing, as T [(z −
w)n] ∈ H2(R) ∪ {0} for all n ∈ No, or equivalently T [ezw] ∈ H(R). Example 212

shows not all hyperbolicity preservers have hyperbolic coefficients in the differential

operator representation (5.20). The following proposition gives a sufficient condition

for hyperbolic polynomial coefficients in (5.20).

Proposition 217. Let T : C[z]→ C[z] be a linear hyperbolicity preserver. If T is sta-

bility reversing, then the coefficients Qk(z) in the representation T =
∑∞

k=0Qk(z)Dk

are either hyperbolic or identically zero.

Proof. If T is stability reversing, then by Theorem 113 it satisfies

T [(z − w)k] =
k∑
j=0

(
k

j

)
T [zj](−w)k−j ∈ H2(R) ∪ {0}

for all k ∈ No. Specializing w = z, and using (5.24), yields

k!Qk(z) =
k∑
j=0

(
k

j

)
T [zj](−z)k−j ∈ H1(R) ∪ {0}.

108



Remark 218. Note that the multivariate versions of Propositions (216) and (217) hold

also, with essentially identical proofs. Formula (5.24) for representation (5.17), with

n complex variables, is

Qβ(z) =
1

β!

κ≤β∑
κ∈Nno

(
β

κ

)
T [zκ](−z)β−κ, (5.25)

where
(
β
κ

)
:= β!

κ!(β−κ)!
.

5 Conjectures and Open Problems

In this section we present some questions related to the stability preserving

transformations we have discussed in Chapters 4 and 5, along with open problems

from the literature. It was shown in Theorem 193 that any non-trivial multiplier

sequence on a monic simple basis (where each basis polynomial has only simple zeros),

is necessarily non-decreasing. This includes the case of multiplier sequences with

respect to the classical orthogonal polynomial sets, such as Hermite, Laguerre, and

Legendre polynomials.

Problem 219 ([6]). Let {qk}∞k=0 be a simple set of real polynomials in L -P. Char-

acterize all real sequences {γk}∞k=0 such that

if f(x) :=
n∑
k=0

akqk(z) ∈ L -P , then
n∑
k=0

akγkqk(z) ∈ L -P (5.26)

Problem 220 ([84]). Classify all q-multiplier sequences where {qk}∞k=0 is an arbitrary

orthogonal set.

We ask the following question as a generalization of Problem 220.

Question 221. Let γ be a continuous curve in the complex plane. One can construct

a simple set of orthogonal polynomials {qn}∞n=0 with zeros in the convex hull of the

curve γ [93]. What are qn-multipliers {λn}∞n=0 which preserve the property that all

the zeros of a polynomial lie in the convex hull of γ?
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In a fashion similar to Proposition 214, the following conjecture appears to

hold.

Conjecture 222. If T =
∑∞

k=0Qk(z)Dk is the monomial to Legendre polynomial

basis transformation then the Qk(z) have only real zeros. Furthermore,

Q2k(z) = C2k(z
2 − 1)k Q2k+1 = 0 k = 0, 1, 2, . . . ,

where C0 = 1 and

C2k =
(4k + 1)!!

((2k + 1)!)2
−

k−1∑
j=0

C2j

(2k − 2j + 1)!
.

Based on the observations in this chapter, we propose the following bold,

and perhaps overly speculative, conjecture.

Conjecture 223. If T : R[z]→ R[z] or T : C[z]→ C[z] is a linear PΩ-preserver, for

some convex region Ω ⊂ C, and can be represented in the form

T =
N∑
k=0

Qk(z)Dk,

then each Qk(z) has zeros only in Ω.

More conservatively, we ask the following questions.

Question 224. Let Ω1 ⊂ C and Ω2 ⊂ C. What are the properties of the Qk

coefficients in representation (5.20) of a linear operator T : C[z] → C[z] which maps

polynomials having zeros only in Ω1 to polynomials whose zeros lie only in Ω2?

Question 225. For T =
∑∞

k=0Qk(z)Dk, what conditions on Qk will guarantee that

every truncation of T is a hyperbolicity preserver? Given an n ∈ N, what conditions

will guarantee there exists m > n such that T̂ =
∑m

k=0 Qk(z)Dk is a hyperbolicity

preserver?

In reference to approach (ii) listed in the introduction of this chapter, we

ask the following question.
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Question 226. Let Ω ⊂ C. Suppose T : C[z]→ C[z] has the representation

T [p] =

∫
C(0,1)

p(w)K(w, z)dw,

where C(0, 1) is the unit circle and

K(w, z) =
∞∑
k=0

k!

2πi

Qk(z)

(w − z)k+1
.

What properties characterize K(w, z) when T is a PΩ-preserver?

Seeking an extension of Proposition 138, we pose the following question.

Question 227. Let T : C[z1, . . . , zn] → C[z1, . . . , zn] be a linear operator. If T is

diagonal with T [zα] = λαz
α, where {λα}α∈No is a positive multivariate multiplier

sequence (a multivariate multiplier sequence is an Hn(R)-preserver, T : Hn(R) →
Hn(R)), is T an Sn(θ, δ)-preserver?
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Index of Notation

The closure of a set B of real or complex numbers is denoted B. Additional

notation is listed in the table below.

Notation Description Page

B(a,R) open ball centered at a with radius R 6

Bn n-fold Cartesian product of the set B 77

∆ foward difference operator 18

(x)j falling factorial 20

FT symbol associated with the operator T 73

gn,p Jensen polynomial 7

Jk(ϕ) kth Turán expression for 3rd Jensen polynomial 81

H+ open upper half-plane 71

Hδ H+ rotated counterclockwise by δ 71

H set of univariate polynomials that are H+-stable 56

Hn set of polynomials which are H+-stable in n variables 56

Hα set of univariate polynomials that are Hα-stable 71

Hαn set of polynomials which are H+
α -stable in n variables 71

H(R) set of (univariate) hyperbolic polynomials 56

Hn(R) set of real stable polynomials in n variables 56

H closure of H under locally uniform limits 57

Hαn closure of Hαn under locally uniform limits 57

L -P the Laguerre-Pólya class 7

L -P+ set of functions in L -P with positive Taylor coefficients 7

L -P(−∞, 0] set of functions in L -P whose zeros all lie in (−∞, 0] 7

No No = N ∪ {0} 57

PΩ the set of polynomials whose zeros all lie in Ω 88

S(θ, δ) open sector with vertex at the origin 55

S(θ, δ) set of polynomials with zeros only in S(θ, δ) 56

S(θ, δ) closure of S(θ, δ) under locally uniform limits 57, 61

Tk(ϕ) kth Turán expression for the coefficients of ϕ 17, 81
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MA, 2006.
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successive derivatives of real entire functions, Acta Math. 197 (2006), 145–166.

[5] W. Bergweiler, A. Eremenko, and J. K. Langley, Real entire functions of infinite

order and a conjecture of Wiman, Geom. Funct. Anal. 13 (2003), 975–991.

[6] D. Bleecker and G. Csordas, Hermite expansions and the distribution of zeros of

entire functions, Acta Sci. Math. (Szeged) 67 (2001), 177–196.
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the Weyl algebra, Proc. Lond. Math. Soc. 101 (2010), 73–104.
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réels., C. R. Acad. Bulg. Sci. 13 (1960), 7–10.

[78] N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome,

VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.

[79] R. E. O’Donnell, A note on the location of the zeros of polynomials, Proc. Amer.

Math. Soc. 3 (1952), 116–119.
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[85] G. Pólya, Collected Papers Vol. II: Location of Zeros, Edited by R. P. Boas,

Mathematicians of Our Time, Vol. 8.The MIT Press, Cambridge, Mass.-London,

1974.
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