
FAMILIES OF ZERO CYCLES AND DIVIDED POWERS: II.
THE UNIVERSAL FAMILY

DAVID RYDH

Abstract. In this paper, we continue the study of the scheme of di-
vided powers Γd(X/S). In particular, we construct the universal family
of Γd(X/S) as a family of cycles supported on Γd−1(X/S) ×S X and
discuss the “Hilbert-Chow” morphism. We also give a description of the
k-points of Γd(X/S) as effective zero cycles with certain rational coef-
ficients and give an alternative description of families of zero cycles as
multivalued morphisms. Finally, we construct sheaves of divided powers
and a generalized norm functor.

Introduction

Let X/S be a separated algebraic space. In [Ryd08a], a natural functor
Γd

X/S from S-schemes to sets parameterizing effective zero-cycles of degree d
was introduced and shown to be an algebraic space — the space of divided
powers Γd(X/S). This is a globalization of the algebra of divided powers
and the “correct” Chow scheme of points on X/S. Indeed, the space of di-
vided powers commutes with base change and coincides with the symmetric
product Symd(X/S) in characteristic zero or when X/S is flat, e.g., when
X = Pn

S . In particular, we obtain a functorial description of Symd(X/S) in
the flat case.

We let Γd
1(X/S) = Γd−1(X/S) ×S X. A geometric point of Γd

1(X/S) is
a zero-cycle of degree d with one marked point. It is thus expected that
the addition morphism ΦX/S : Γd

1(X/S) → Γd(X/S), which forgets the
marked point, should be related to the universal family of Γd(X/S). When
the addition morphism ΦX/S is flat, then it has a tautological family of
cycles given by the norm. Iversen [Ive70, Thm. II.3.4] showed that if ΦX/S

is flat, then ΦX/S together with the norm family is the universal family. It
should be noted that ΦX/S is rarely flat, the notable exception being when
X/S is a smooth curve. The main result of this paper is a generalization
of Iversen’s result to arbitrary X/S for which ΦX/S need not be flat. More
precisely, we construct a family of zero cycles on ΦX/S , that is, a morphism
ϕX/S : Γd(X/S) → Γd(Γd

1(X/S)), and show that it is the universal family.

Multiplicative polynomial laws. To define the universal family, we need
a couple of results on multiplicative laws. Firstly, we show in §1 that it is
enough to consider the category of polynomial A-algebras in the definition
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2 D. RYDH

of a multiplicative law B → C of A-algebras. Secondly, we define the norm
law of a locally free algebra in §3. Thirdly, we construct universal shuffle
laws in §4. These are canonical multiplicative laws Γd1

A (B) ⊗ Γd2
A (B) →

Γd1+d2
A (B) of degree ((d1, d2)) for positive integers d1 and d2. Apparently, it

is difficult to directly define these laws. It is however easy to define canonical
multiplicative laws TSd1

A (B)⊗TSd2
A (B) → TSd1+d2

A (B) and we use these laws
to define the universal shuffle laws. The universal shuffle law with d1 = d−1
and d2 = 1 will be of particular interest as this law gives a description of
the universal family of Γd

A(B), cf. Proposition (4.8).

The universal family. From the functorial description of Γd(X/S) we have
that the identity on Γd(X/S) corresponds to a family of cycles on X param-
eterized by Γd(X/S) — the universal family. The image of the universal
family is a closed subspace Zuniv of Γd(X/S) ×S X which is integral over
Γd(X/S). The nilpotent structure of this subspace is difficult to describe and
we do not accomplish this. However, in §5 we show that Zuniv is contained in
the closed subscheme Γd

1(X/S) := Γd−1(X/S)×SX ↪→ Γd(X/S)×SX which
has the same underlying topological space as Zuniv. In fact, we construct
a family of cycles on Γd

1(X/S) → Γd(X/S) and show that this induces the
identity on Γd(X/S). This result is a globalization of the universal shuffle
law in §4 described above. When Γd

1(X/S) → Γd(X/S) is flat and gener-
ically étale then the scheme Γd

1(X/S) completely determines the universal
family.

Relation with the Hilbert scheme. In §6 we briefly mention the natu-
ral morphism from the Hilbert scheme of d points on X to Γd(X/S). This
morphism takes a flat family to its determinant law and is known as the
Grothendieck-Deligne norm map. When Γd

1(X/S) is flat and generically
étale over Γd(X/S), the morphism Hilbd(X/S) → Γd(X/S) is an isomor-
phism. In particular, it is an isomorphism over the non-degeneracy locus
Γd(X/S)nondeg and an isomorphism when X/S is a family of smooth curves.

Points of Γd(X/S). In §8 we describe the k-points of Γd(X/S). If k is
a perfect field, then the k-points of Γd(X/S) correspond to effective zero
cycles of degree d on Xk with integral coefficients. For an arbitrary field k
there is a similar correspondence if we also allow certain rational coefficients.
The denominators of these coefficients are powers of the characteristic of k
and the maximal exponent allowed is explicitly determined. This result
also follows from [Kol96, Thm. I.4.5], using that the k-points of the space of
divided powers and the Chow variety coincide, but our proof is more direct.

Multi-morphisms. Let X be a scheme such that any set of d points is
contained in an affine open subset, e.g., let X be quasi-projective. There is
then another striking description of families of zero cycles of degree d on X
parameterized by any space T , that is, of morphisms T → Γd(X/S). We
show that a family can be described as a multi-morphism f : T → X of
degree d. This consists of a multivalued map f : T → X together with a
semi-local multiplicative law θ : OX → f∗OT . The formalism is very close
to that of ordinary morphisms of schemes. The condition on X is used to
ensure that for every point t ∈ T the set f(t) ⊆ X is contained in an affine
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subset. Similarly, a morphism of algebraic spaces f : T → X cannot be
described as a morphism of locally ringed spaces unless every point in X
has an affine neighborhood, that is, unless X is a scheme.

Norm functor and Weil restriction. Let f : X → Y be a morphism.
The Weil restriction RX/Y is a functor fromX-schemes to Y -schemes defined
by the property HomY (T,RX/Y (W )) = HomX(T ×Y X,W ). The existence
of the Weil restriction of W , under suitable conditions on f and W , can
be established using Hilbert schemes [FGA, BLR90, Ryd08c]. The norm
functor NX/Y is a closely related functor which can be defined not only for
X-schemes but also for sheaves on X. The existence of the norm functor is
shown using a space or sheaf of divided powers. The classical setting is when
X/Y is flat of constant rank d and L is an invertible sheaf on X [EGAII,
§6.5]. For affine schemes and X/Y flat, the norm functor has been studied
intensively by Ferrand [Fer98] and we generalize these results.

Notation and conventions. We denote a closed immersion of schemes
or algebraic spaces with X ↪→ Y . When A and B are rings or modules
we use A ↪→ B for an injective homomorphism. We let N denote the set
of non-negative integers 0, 1, 2, . . . and use the notation ((a, b)) =

(
a+b
a

)
for

binomial coefficients.
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1. Determination of a multiplicative law

Recall [Rob63] that a polynomial law F : M → N is a set of maps
FA′ : M ⊗A A

′ → N ⊗A A
′ for every A-algebra A′ which are natural with

respect to A-algebra homomorphisms. The law F is homogeneous of degree
d if FA′(a′x′) = a′dFA′(x′) for every A-algebra A′ and elements a′ ∈ A′

and x′ ∈ M ⊗A A′. If M and N are A-algebras, then we say that F is
multiplicative if FA′(1) = 1 and FA′(x′y′) = FA′(x′)FA′(y′) for every A-
algebra A′ and every x′, y′ ∈M ⊗A A

′.
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In some cases, cf. §§3–4, it is not clear that a natural mapM → N extends
functorially to any base change. The following proposition shows that it is
enough to consider polynomial base changes.

Proposition (1.1). Let M and N be A-modules.
(i) In the definition of polynomial laws we can replace the category

A–Alg of A-algebras with the full subcategory of polynomial rings
over A. To be precise, there is a one-to-one correspondence between
polynomial laws F : M → N and sets of maps

Fn : M [t1, t2, . . . , tn] → N [t1, t2, . . . , tn], n ∈ N
such that Fm◦(idM⊗ϕ) = (idN⊗ϕ)◦Fn for any A-algebra homomor-
phism ϕ : A[t1, t2, . . . , tn] → A[t1, t2, . . . , tm]. This correspondence
is given by F 7→ (FA[t1,t2,...,tn])n∈N.

(ii) If (Fn) is homogeneous of degree d, that is, if Fn(az) = adFn(z) for
every n ≥ 0, a ∈ A[t1, t2, . . . , tn] and z ∈ M [t1, t2, . . . , tn], then the
corresponding polynomial law F is homogeneous of degree d.

In particular, in the definition of (homogeneous) polynomial laws, it is enough
to consider smooth A-algebras.

Proof. (i) It is immediately seen that to give a set of maps {Fn}n for n ∈
N commuting with A-algebra homomorphisms ϕ as in the proposition is
equivalent to give a single map F ′ : M [t1, t2, . . . ] → N [t1, t2, . . . ] such that
for every endomorphism ϕ of A[t1, t2, . . . ] the diagram

(1.1.1)

M [t1, t2, . . . ]
idM⊗ϕ

//

F ′

��

M [t1, t2, . . . ]

F ′

��

N [t1, t2, . . . ]
idN⊗ϕ

// N [t1, t2, . . . ]

commutes. A map F ′ such that (1.1.1) commutes, gives a unique polynomial
law F : M → N such that F ′ = FA[t1,t2,... ] [Rob63, Prop. IV.4, p. 271].
Moreover, if f : ΓA(M) → N is the corresponding homomorphism, then
f
(
γd1(x1) × γd2(x2) × · · · × γdn(xn)

)
is the coefficient of td1

1 t
d2
2 . . . tdn

n in
F ′(x1t1 + x2t2 + · · ·+ xntn).

(ii) Let z = x1t1 + x2t2 + · · ·+ xntn ∈M [t1, t2, . . . , tn] be a homogeneous
polynomial of degree one. If Fn is homogeneous of degree d then we have
that

tdn+1F
′(z) = F ′(tn+1z) = (F ′ ◦ (idM ⊗ ϕ))(z) = (idN ⊗ ϕ)(F ′(z))

where ϕ is given by ti 7→ tn+1ti. It follows that F ′(z) ∈ N [t1, t2, . . . , tn] is
homogeneous of degree d and thus that f : ΓA(M) → N factors through the
projection ΓA(M) → Γd

A(M). In particular, we have that F is homogeneous
of degree d. �

Proposition (1.2). Let B and C be A-algebras. In the correspondence
between polynomial laws F : B → C and sets of maps (Fn) as in Proposi-
tion (1.1), multiplicative polynomial laws correspond to multiplicative maps,
i.e., maps (Fn) such that

(i) Fn(1B) = 1C .
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(ii) Fn(xy) = Fn(x)Fn(y), ∀x, y ∈ B[t1, t2, . . . , tn].

In particular, in the definition of a multiplicative polynomial law it is enough
to consider smooth A-algebras.

Proof. If F is a multiplicative law, then Fn = FA[t1,t2,...,tn] is multiplica-
tive by definition. Conversely, assume that we are given a set (Fn) of
multiplicative maps. This set of maps corresponds to a polynomial law
F : B → C such that Fn = FA[t1,t2,...,tn] by Proposition (1.1). It is clear
that F (1B) = 1C . Let A′ be an A-algebra and x, y ∈ B ⊗A A′. Then
there is a positive integer n, a homomorphism A[t1, t2, . . . , tn] → A′ and
xn, yn ∈ B[t1, t2, . . . , tn] such that xn and yn are mapped to x and y respec-
tively. The multiplicativity of Fn implies that FA′(xy) = FA′(x)FA′(y). �

2. Inhomogeneous families

It is sometimes convenient to work with families which do not have con-
stant degree. We therefore make the following definition:

Definition (2.1). LetX/S be a separated algebraic space. We let Γ?(X/S) =∐
d≥0 Γd(X/S) and let Γ?

X/S(−) = HomS(−,Γ?(X/S)) be the corresponding
functor.

Thus, by definition, a morphism α : T → Γ?(X/S) corresponds to an
open and closed partition T =

∐
d≥0 Td and families αd : Td → Γd(X/S).

We let
Image(α) =

∐
d≥0

Image(αd) ↪→
∐
d≥0

X ×S Td = X ×S T

and Supp(α) = Image(α)red. We say that the degree of α at t ∈ T is d if
α(t) ∈ Γd(X/S).

Proposition (2.2) ([Zip86, Prop. 1.7.9 a)]). Let F : B → C be a mul-
tiplicative law of A-algebras. Then there is an integer n, a complete set
of orthogonal idempotents e0, e1, . . . , en in C and a canonical decomposition
F = F0 + F1 + F2 + · · · + Fn where Fd : B → Ced is a homogeneous
multiplicative law of degree d. Note that ed = 0 is possible.

Note that conversely if e0, e1, . . . , en is a complete set of orthogonal idem-
potents and

(
Fd : B → Ced

)
d=0,1,...,n

are multiplicative laws of degrees
0, 1, . . . , n, then F = F0 + F1 + · · · + Fn is a multiplicative law. In fact,
F (1) =

∑
i ei = 1 and F (x)F (y) =

∑
i Fi(x)Fi(y) = F (xy).

Theorem (2.3). Let S = Spec(A), X = Spec(B) be affine schemes and
let T = Spec(A′) be an affine S-scheme. Then there is a one-to-one cor-
respondence between multiplicative laws B → A′ and inhomogeneous fam-
ilies T → Γ?(X/S). This correspondence takes f : T → Γ?(X/S) onto
Γ(f) ◦ (γ0, γ1, γ2, . . . ) : B → A′. The expression Γ(f) is the induced map
Γ(Γ?(X/S)) =

∏
d≥0 Γd

A(B) → Γ(T ) = A′ on global sections.

Proof. As T is quasi-compact, any morphism f : T → Γ?(X/S) factors
through Γ≤n(X/S) =

∐
d≤n Γd(X/S). The theorem thus follows from Propo-

sition (2.2). �
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3. Determinant laws and étale families

Let A be a ring, B an A-algebra and M a B-module which is free of
rank d as an A-module. We then have the determinant or norm map

NB/A : B → EndA(M) → EndA(∧dM) = A

where the first map takes b to the endomorphism on M which is multiplica-
tion by B. This map extends to a homogeneous multiplicative polynomial
law which we denote the determinant law. We can also extend this defini-
tion to B-modules M which are locally free of rank d over A taking an open
cover of Spec(A). Similarly, if M is locally free but not of constant rank,
then we obtain an inhomogeneous multiplicative law NB/A : B → A.

Assume now that A is an integral domain with fraction field K, that B
is an A-algebra and that M is a B-module which is of finite type as an
A-module but not necessarily flat. If we let d be the generic rank of M then
we have the norm map

NB/A : B → EndA(M) → EndK(M ⊗A K) → EndK

(
∧d(M ⊗A K)

)
= K

and according to [EGAII, Prop. 6.4.3] the elements NB/A(b) are integral
over A. In particular, if A is in addition integrally closed then NB/A has
image A. Under this assumption this map extends to a determinant law as
it is enough to define the multiplicative polynomial law over the integrally
closed polynomial rings A[t1, . . . , tn] by Proposition (1.2).

Definition (3.1). Let S be an algebraic space and f : X → S affine. Let
F be a quasi-coherent sheaf on X such that f∗F is a finite OS-module and
one of the following conditions holds:

(i) f∗F is a locally free OS-module.
(ii) S is normal.

To F we associate the canonical family NF : S → Γ?(X/S) given by the
determinant law. To abbreviate, we let NX = NOX

when this is defined.

Proposition (3.2). Let S be an algebraic space and let X/S be finite and
étale. Then NX is the unique morphism S → Γ?(X/S) such that Supp(NX) =
Xred and such that the degree of NX at a point s ∈ S is the rank of X/S
at s. Furthermore we have that Image(NX) = X. In particular, the image
of NX commutes with arbitrary base change.

Proof. The question is local on S so we can assume that X/S is of constant
rank d. Let S′ → S be an étale cover such that X ′ = X ×S S′ → S′

trivializes, i.e., such that X ′ = S′qd. It is clear that the only family S′ →
Γd(X ′/S′) with support X ′

red is the family with multiplicity one on each
component. This is given by the morphism S′ ∼= Γ1

S′(S
′)×S′d ↪→ Γd(X ′). The

corresponding multiplicative law is the multiplication map (OS′)d → OS′

which coincides with the determinant law. Thus NX′ is the unique family
with support X ′

red. As the image commutes with étale base change, the last
statement of the proposition follows. �
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4. Universal shuffle laws

The A-algebra Γd
A(B) represents multiplicative polynomial laws of de-

gree d [Fer98, Prop. 2.5.1]. We thus have a canonical bijection

HomA–Alg

(
Γd

A(B), A′
)
→ PoldA(B,A′) = PoldA′(A′ ⊗A B,A

′)

and under this correspondence, the identity on Γd
A(B) corresponds to the

universal law U : Γd
A(B)⊗AB → Γd

A(B). There is a natural surjection, the
canonical homomorphism of Iversen,

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

and we will show that U factors through ω. For this purpose, we first
construct the multiplicative shuffle law SL : Γd−1

A (B)⊗A B → Γd
A(B).

(4.1) We recall [Ryd08a, 1.2.14] that the universal multiplication of laws

ρd1,d2 : Γd1+d2
A (M) → Γd1

A (M)⊗A Γd2
A (M)

is the homomorphism corresponding to the law x 7→ γd1(x)⊗ γd2(x). In
particular, we have that

(4.1.1) ρd1,d2

(
γν(x)

)
=

∑
ν1+ν2=ν

|ν1|=d1, |ν2|=d2

γν1(x)⊗ γν2(x).

(4.2) The shuffle product — For any A-module M , the product of ΓA(M)
gives A-module homomorphisms

× : Γd1
A (M)⊗A Γd2

A (M) → Γd1+d2
A (M).

The composition of the universal multiplication of laws ρd1,d2 followed by ×
is multiplication by ((d1, d2)). In particular, if ((d1, d2)) is invertible in A,
then x⊗ y 7→ ((d1, d2))−1x× y is a retraction of ρd1,d2 . If B is an A-algebra,
then × is Γd1+d2

A (B)-linear.

(4.3) The multiplicative shuffle law — Let M be a flat A-module. The
product on ΓA(M) is then identified with the shuffle product :

× : TSd1
A (M)⊗A TSd2

A (M) → TSd1+d2
A (M)

which is given by
x× y =

∑
σ∈Sd1,d2

σ(x⊗ y)

where the sum is taken in Td1+d2
A (M). If B = M is a flat A-algebra we can

replace the sum with a product. This gives a multiplicative map

(4.3.1) SL : TSd1
A (B)⊗A TSd2

A (B) → TSd1+d2
A (B)

defined by
SL(z) =

∏
σ∈Sd1,d2

σ(z).

Indeed, the set Sd1,d2 is a set of representatives of the left cosets of the
subgroup Sd1 × Sd2 ↪→ Sd1+d2 . If z ∈ TSd1

A (B) ⊗A TSd2
A (B) then σ(z) =

σ′(z) if σ and σ′ belongs to the same left coset. As left multiplication on
Sd1+d2 permutes the cosets, it is clear that SL(z) is invariant under Sd1+d2 .
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The composition of ρd1,d2 followed by SL is taking ((d1, d2))th powers and
SL extends to a multiplicative law which is homogeneous of degree ((d1, d2)).
In fact, by Proposition (1.2) it is enough to show that SL extends functorially
to

SLn : TSd1
A (B)⊗A TSd2

A (B)[t1, t2, . . . , tn] → TSd1+d2
A (B)[t1, t2, . . . , tn]

which is easily seen.

Definition (4.4). Let B be a flat A-algebra. The shuffle homomorphism is
the homomorphism

Λd1,d2 : Γ((d1,d2))

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B)

which corresponds to the shuffle law constructed in (4.3).

Proposition (4.5). Let d1, d2 be integers and N = ((d1, d2)). The shuffle
homomorphism, defined in (4.4) for flat A-algebras B, extends uniquely to
a homomorphism

Λd1,d2 : ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B).

for every A-algebra B such that for any homomorphism B → C of A-algebras
the following diagram is commutative

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
��

Λ
d1,d2
B // Γd1+d2

A (B)

��

ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

) Λ
d1,d2
C // Γd1+d2

A (C).

Proof. If C is an arbitrary A-algebra and B is a flat A-algebra with a sur-
jection B � C then the vertical arrows of the square are surjective and the
upper arrow Λd1,d2

B is given by Definition (4.4). We will verify that the com-
position of the upper and right arrows factors through the left arrow and
thus induces a unique homomorphism Λd1,d2

C . As the diagram is commuta-
tive for flat A-algebras, it is then easily seen that this definition of Λd1,d2

C is
independent on the choice of flat resolution B � C and that the diagram
becomes commutative for any homomorphism B → C.

Let I be the kernel of B � C. The kernel of the left arrow in the diagram

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
� ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

)
is the Γd1+d2

A (B)-module generated by the elements

γa
(
(γb1(i)× f)⊗ (γb2(j)× g)

)
× h

with a ≥ 1, b1 + b2 ≥ 1, i, j ∈ I, f ∈ Γd1−b1
A (B), g ∈ Γd2−b2

A (B) and h ∈
ΓN−a

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
by [Ryd08a, 1.2.10]. Furthermore, replacing

A with a faithfully flat extension we can assume that f, g and h are of
the form f = γd1−b1(x), g = γd2−b2(y) and h = γN−a(z) where x, y ∈ B
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and z ∈ Γd1
A (B) ⊗A Γd2

A (B) [Fer98, Lem. 2.3.1]. Finally, replacing A with
A[t, u, v], it is enough to show that the elements

γN
(
γd1(i+ tx)⊗ γd2(j + uy) + vz

)
γN

(
γd1(tx)⊗ γd2(uy) + vz

)
of ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B) ⊗A Γd2
A (B)

)
have the same image in Γd1+d2

A (C). This

follows by an easy computation. �

(4.6) Canonical homomorphism — Next, we consider the canonical homo-
morphism defined by Iversen in [Ive70, Prop. I.1.5]. This is the homomor-
phism

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

given by ρd−1,1 ⊗ idB followed by the multiplication map. In particular
ω(γd(f)⊗ g) = γd−1(f)⊗ fg. Furthermore, we let

u : Γd
Γd

A(B)

(
Γd

A(B)⊗A B
) ∼=−→ Γd

A(B)⊗A Γd
A(B) → Γd

A(B)

be the composition of the canonical base-change isomorphism followed by
the multiplication map. This is the homomorphism corresponding to the
universal law U given in the beginning of this section.

Proposition (4.7) ([Ive70, Prop. I.1.5]). The homomorphism ω is surjec-
tive.

Proof. It is enough to show that elements of the form
(
γd−1−k(1)× x

)
⊗ 1,

where 0 ≤ k ≤ d−1 and x ∈ Γk
A(B), are in the image of ω. When k = 0 this

is clear. We proceed by induction on k. The element
(
γd−k(1) × x

)
⊗ 1 ∈

Γd
A(B)⊗A B is mapped onto an element of the form(

γd−1−k(1)× x
)
⊗ 1 +

∑
α

(
γd−k(1)× yα

)
⊗ zα

by the formula (4.1.1). By the induction hypothesis it follows that the
second term belongs to the image of ω and hence so does the first term. �

The following Proposition generalizes [Ive70, Prop. I.3.1].

Proposition (4.8). We have that u = Λd−1,1 ◦ Γd
A(ω).

Proof. Let u′ = Λd−1,1 ◦ Γd(ω). As u and u′ are Γd
A(B)-algebra homomor-

phisms, it is enough to show that u and u′ coincides on elements of the
form γd1(1⊗ b1)× · · · × γdk(1⊗ bk). Replacing A with the polynomial ring
A[t1, t2, . . . , tk], it is further enough to show that u and u′ coincides on the
element γd(1 ⊗ b′) = γd

(
1 ⊗ (t1b1 + t2b2 + · · · + tkbk)

)
. This is clear as

ω(1⊗ b′) = 1⊗ b′ and Λd−1,1(γd(1⊗ b′)) = γd(b′). �

5. The universal family

To abbreviate, we use the notation

Γd
1(X/S) = Γd−1(X/S)×S X.

as in the introduction. This should be thought of as the space parameteriz-
ing zero cycles of degree d with one marked point. The addition morphism
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Γd
1(X/S) → Γd(X/S), which we will denote by Φd

X/S , corresponds to forget-
ting the marking of the point. We will denote the projection on the marked
point Γd

1(X/S) → X by πd. When X/S is affine, we let ϕX/S be the fam-
ily of zero cycles of degree d on Γd

1(X/S) parameterized by Γd(X/S) given
by the shuffle homomorphism Λd−1,1 of Proposition (4.5). If a geometric
point α ∈ Γd(X/S) corresponds to the cycle x1 +x2 + · · ·+xd then (ϕX/S)α

corresponds to the cycle (x2 + · · ·+ xd−1, x1) + · · ·+ (x1 + · · ·+ xd−1, xd).

(5.1) Let X/S and U/T be separated algebraic spaces. For any commuta-
tive diagram

(5.1.1)
U

f
//

  B
BB

BB
BB

B XT
//

��

X

��

T
g
// S

�

there is a natural commutative diagram

(5.1.2)

Γd
1(U/T )

η
//

ΦU/T ''OOOOOOOOOOO
(f∗)∗Γd

1(XT /T ) //

��

Γd
1(XT /T )

(ΦX/S)T

��

Γd(U/T )
f∗

// Γd(XT /T )

�

Proposition (5.2). Let X/S be a separated algebraic space. There is a
unique family of cycles ϕX/S of degree d on Φd

X/S such that for any commu-
tative diagram (5.1.1) with T and U affine, the pull-back of the family ϕX/S

to Γd(U/T ) coincides with the push-forward of ϕU/T along η.

Proof. In what follows, all spaces are over T . If f : U → XT is any
étale morphism then we let Γd(U)reg := Γd(U/T )|reg(f) be the regular lo-
cus [Ryd08a, Cor. 3.3.11]. When f : U → XT is étale then the morphism η
of diagram (5.1.2) is an isomorphism over Γd(U)reg by [Ryd08a, Cor. 3.3.11].
We let Γd

1(U)reg = Φ−1
U

(
Γd(U)reg

)
. If

∐
α Uα → XT is an étale cover, then

in the diagram∐
α,β Γd

1(Uα ×XT
Uβ)reg

//
//

Φd
Uα×XT

Uβ
|reg

��

∐
α Γd

1(Uα)reg //

Φd
Uα

|reg
��

Γd
1(XT )

Φd
XT
��∐

α,β Γd(Uα ×XT
Uβ)reg

//
//
∐

α Γd(Uα)reg // Γd(XT )

the natural squares are cartesian [Ryd08a, Cor. 3.3.11] and the horizontal
sequences are étale equivalence relations [Ryd08a, Cor. 3.3.16]. If we choose
a covering such that the Uα’s are affine, then we have families ϕd

Uα×Uβ
|reg

and ϕd
Uα
|reg on each component of the two leftmost vertical arrows. By

étale descent, we obtain a family ϕd
XT

on the rightmost arrow. From the
compatibility of ϕd with respect to base change and morphisms stated in
Proposition (4.5), we can glue the families ϕd

XT
for every T to a family ϕd

X
with the ascribed properties. �



FAMILIES OF ZERO CYCLES 11

Proposition (5.3). The morphism (ΦX/S , πd) : Γd
1(X/S) → Γd(X/S)×SX

is a closed immersion.

Proof. Follows from Proposition (4.7). �

Proposition (5.4). Let X/S be a separated algebraic space. The family(
Γd

1(X/S), ϕX/S

)
is a representative for the universal family of Γd(X/S).

Proof. We have to prove that the composition of the maps

ϕX/S : Γd(X/S) → Γd
(
Γd

1(X/S)/Γd(X/S)
)

Γd(ΦX/S , πd) : Γd
(
Γd

1(X/S)
)
↪→ Γd

(
Γd(X/S)×S X

)
π : Γd

(
Γd(X/S)×S X

)
= Γd(X/S)×S Γd(X/S) → Γd(X/S)

is the identity. This follows from Proposition (4.8). �

Remark (5.5). In general, we do not have that Γd
1(X/S) = Image(ϕX/S). It

is easily seen however that Γd
1(X/S)red = Supp(ϕX/S).

Proposition (5.6). The universal family Γd
1(X/S) is étale of rank d over

Γd(X/S)nondeg.

Proof. This is a special case of [Ryd08a, Prop. 4.1.8]. �

Corollary (5.7). Let X/S be a separated algebraic space, T an S-space and
α ∈ Γd

X/S(T ) a family of cycles. If α is non-degenerate at t ∈ T then there is
an open neighborhood U 3 t such that Image(α|U ) → U is étale of degree d.
In particular, the non-degeneracy locus of α is open in T . Moreover, α|U
is given by the canonical family NImage(α|U ) and the image of α|U commutes
with arbitrary base change.

Proof. Follows immediately from Propositions (3.2) and (5.6). �

Proposition (5.8). Let X/S be a separated family of smooth curves, i.e.,
X/S is a separated algebraic space, smooth of relative dimension one. Then
the universal family Φd

X/S is locally free of rank d and generically étale.

Proof. The spaces Γd
1(X/S) and Γd(X/S) are smooth of relative dimension

d over S [Ryd08a, Prop. 4.3.3]. In particular, they are flat over S and we can
check the statements about Φd

X/S on the fibers. Replacing S with a point
s we can thus assume that S is a point. Then Γd(X/S) and Γd

1(X/S) are
regular and in particular Cohen-Macaulay. As Φd

X/S is finite it follows that
Φd

X/S is flat, cf. [EGAIV, Prop. 15.4.2], and hence locally free. Moreover the
connected components of (X/S)d are irreducible and their generic points
are outside the diagonals. Thus Φd

X/S is generically étale of rank d, cf.
Proposition (5.6). It follows that Φd

X/S is locally free of constant rank d. �

6. The Grothendieck-Deligne norm map

In this section we briefly discuss the natural morphism Hilbd(X/S) →
Γd(X/S) which takes a flat subscheme to its norm family. We will call
this map the Grothendieck-Deligne norm map as it is introduced in [FGA,
No. 221, §6] and [Del73, 6.3.4]. This morphism is closely related to the
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Hilbert-Chow morphism [GIT, 5.4] and the Hilbert-Sym morphism [Nee91]
as discussed in [Ryd08b].

Definition (6.1). Let f : X → S be a separated algebraic space and
T an S-space. Let Qcohpf(X/S)(T ) be the set of isomorphism classes of
quasi-coherent finitely presented OX -modules which are flat and have proper
support over T . We let Qcohpfd(X/S)(T ) be the subset of Qcohpf(X/S)(T )
consisting of modules G with support finite over T such that f∗G is locally
free of constant rank d.

The usual pull-back makes Qcohpf(X/S) and Qcohpfd(X/S) into con-
travariant functors. It can be shown that Qcohpf(X/S) is the coarse functor
to an algebraic stack [LMB00, Thm. 4.6.2.1] but we will not use this.

We have natural transformations

Hilbd(X/S) → Qcohpfd(X/S)

Quotd(F/X/S) → Qcohpfd(X/S)

Qcohpfd(X/S) → Γd(X/S)
where the first two are forgetful morphisms and the last is given by G 7→ NG .
Here NG is the canonical family determined by G defined in (3.1). This gives
morphisms Hilbd(X/S) → Γd(X/S) and Quotd(F/X/S) → Γd(X/S).

When the canonical family is flat of rank d and generically étale, the mor-
phism Hilbd(X/S) → Γd(X/S) is an isomorphism [Ive70, Thm. II.3.4]. In
particular Hilbd(X/S) → Γd(X/S) is an isomorphism over Γd(X/S)nondeg

and an isomorphism if X/S is a family of smooth curves, cf. Proposi-
tions (5.6) and (5.8)

7. Composition of families and étale projections

(7.1) Universal composition of laws — We have a polynomial law M 7→
Γe

A(Γd
A(M)) given by x 7→ γe(γd(x)). This law is homogeneous of degree de

and thus gives a homomorphism

κd,e : Γde
A (M) → Γe

A(Γd
A(M)).

LetM , N and P be A-modules. Given polynomial laws F : M → N andG :
N → P homogeneous of degrees d and e respectively, we form the composite
polynomial law G ◦ F : M → P . If f : Γd

A(M) → N , g : Γe
A(N) → P and

g ∗ f : Γde
A (M) → P are the corresponding homomorphisms, we have that

g ∗ f = g ◦ Γe(f) ◦ κd,e.
When M , N and P are A-algebras, then κd,e is an algebra homomorphism

as the polynomial law defining κd,e is multiplicative. When B is an A-algebra
and C a B-algebra, it is also convenient to let κd,e be the natural map

Γde
A (C) → Γe

A(Γd
A(C)) → Γe

A(Γd
B(C)).

This is the universal composition of a multiplicative law F : C → B over
B which is homogeneous of degree d and a multiplicative law G : B → A
which is homogeneous of degree e.

Definition (7.2). Let X/Y and Y/S be separated algebraic spaces. Let T
be an S-space and α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles.
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Let Zα = Image(α) ↪→ X ×S T and Zβ = Image(β) ↪→ Y ×S T . Composing
the corresponding laws, we obtain a morphism

T → Γde(Zα ×Y×ST Zβ/T ) ↪→ Γde(X ×S T/T )

and we let β ∗ α ∈ Γde
X/S(T ) be the corresponding family. By definition

Image(β ∗α) ↪→ Image(α)×Y×ST Image(β). It is clear that the composition
(α, β) → β∗α is functorial in T and hence we obtain a natural transformation

∗ : Γe
Y/S(−)× Γd

X/Y (Y ×S −) → Γde
X/S(−).

of functors from S-schemes to sets. We define β ∗ α for inhomogeneous
families similarly.

Proposition (7.3). Let X/Y , Y/S be separated algebraic spaces. Let T be
an S-space and let α ∈ Γ?

X/Y (Y ×ST ) and β ∈ Γ?
Y/S(T ) be families of cycles.

(i) If f : X → X ′ is a Y -morphism, then

f∗(β ∗ α) = β ∗ f∗α.

(ii) Let g : Y ′ → Y be an S-morphism and g′ : X ′ → X be the pull-
back of g along X/Y . Let β′ ∈ Γ?

Y ′/S(T ) be a family of cycles.
Then

(g∗β′) ∗ α = g′∗(β
′ ∗ g∗α)

(iii) If α′ ∈ Γ?
X/Y (Y ×S T ) and β′ ∈ Γ?

Y/S(T ) are families of cycles, then

(β + β′) ∗ α = β ∗ α+ β′ ∗ α

β ∗ (α+ α′) = β ∗ α+ β ∗ α′.

Proof. (i) and (ii) are easily verified and (iii) follows from (i) and (ii). �

Remark (7.4). Let S = Spec(k) where k is an algebraically closed field. Let
X/Y and Y/S be algebraic spaces with families of cycles α and β of degrees d
and e respectively. Then β = y1+y2+· · ·+ye and β∗α = αy1+αy2+· · ·+αye .

Proposition (7.5). Let f : X → S be a separated morphism, let g : Y →
S be a finite and étale morphism and let α : S → Γ?(X/S) be a family of
zero cycles. Then NY/S ∗ g∗α = α ∗ NX×SY/X .

Proof. It is enough to show the equality after a faithfully flat base change.
We can thus assume that Y = Sqn is a trivial cover. Then both sides of the
identity are equal to α1 + α2 + · · ·+ αn where αi is the family α on the ith

component of X ×S Y = Xqn. �

Remark (7.6). The following generalization of Proposition (7.5) is probably
true. Let f : X → S and g : Y → S be separated morphisms and let
α : S → Γ?(X/S) and β : S → Γ?(Y/S) be families of zero cycles. Then
β ∗ g∗α = α ∗ f∗β.

Proposition (7.7). Let Y → S be a finite étale morphism and X → Y a
separated morphism. Then the morphism of presheaves

Γ?
X/Y (Y ×S −) → Γ?

X/S(−)
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given by α 7→ NY×S− ∗ α, is an isomorphism. In particular, if Y and S are
connected then the degree of any family α′ ∈ Γ?

X/S(T ) is a multiple of the
rank of Y → S.

Proof. As the presheaves are sheaves in the étale topology, we can replace
S with an étale cover and assume that Y = Sqn is a trivial étale cover.
We then have a corresponding decomposition X =

∐n
i=1Xi and any family

α′ ∈ Γ?
X/S(T ) decomposes as a sum α′ =

∑n
i=1 α

′
i where α′i is supported on

Xi ×S T . This gives a family α = (α′i) ∈ Γ?
X/Y (Y ×S T ) which composed

with the canonical family NY×ST is α′. �

For completeness, we mention the globalization of (7.1).

Definition (7.8) (Universal composition of families). Let X/Y and Y/S
be separated algebraic spaces and let d and e be positive integers. Consider
the natural projection morphisms

Γe(Γd(X/Y )/S)×S Γd(X/Y )×Y X

→ Γe(Γd(X/Y )/S)×S Γd(X/Y ) → Γe(Γd(X/Y )/S).

On the first morphism, we have the family idΓe(Γd(X/Y )/S) ×S Φd
X/Y and on

the second we have the family Φe
Γd(X/Y )/S

. The composition of these families
gives a morphism

κ′ : Γe(Γd(X/Y )/S) → Γde(Γd(X/Y )×Y X/S).

We let
κd,e

X/Y/S : Γe(Γd(X/Y )/S) → Γde(X/S)

be κ′ followed by the push-forward along the projection on the second factor.

Proposition (7.9). Let X/Y , Y/S be separated algebraic spaces, T an S-
space and let α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles.

Then
β ∗ α = κd,e ◦ Γe(α) ◦ (β, idT ).

Proof. Replacing X and Y with X×ST and Y ×ST we can assume that T =
S. Let β̃ be the pull-back of the universal family Φe

Γd(X/Y )/S
along Γe(α)◦β.

Note that κ′◦Γe(α)◦β corresponds to the family β̃∗Φd
X/Y . As β̃ is the push-

forward of β along the closed immersion α : Y → Γd(X/Y ), we have that
β̃∗Φd

X/Y is the push-forward of β∗α along α×Y idX : X ↪→ Γd(X/Y )×Y X.
As κd,e is the push-forward of κ′ along the projection Γd(X/Y )×Y X → X,
this ends the demonstration. �

8. Families of zero cycles over reduced parameter spaces

The geometric points of Γd(X/S) correspond to cycles of degree d. To
be precise, if k is an algebraically closed field and s is a k-point of S, then
the k-points of Γd(X/S) over s corresponds to the effective zero cycles of
degree d on (Xs)red [Ryd08a, Cor. 3.1.9]. To determine the k-points for an
arbitrary field k, we have to characterize the k-points which descends to k.
If k is perfect, these points are the ones corresponding to cycles invariant
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under the action of the Galois group Gal(k/k). The k-points of Γd(X/S) are
thus effective zero cycles of degree d on (Xs)red where the degree is counted
with multiplicity. The inseparable case is slightly more complicated.

Definition (8.1). Let k ↪→ K be a finite algebraic extension. There is then
a canonical factorization into a separable extension k ↪→ ks and a purely
inseparable extension ks ↪→ K. The separable degree of K/k is [ks : k]
and the inseparable degree is [K : ks]. The exponent of K/k is the smallest
positive integer n such thatKnk is separable over k, i.e., the smallest positive
integer n such that Kn ⊆ ks. We let the quasi-degree of K/k be the product
of the separable degree and the exponent. We let the inseparable discrepancy
be the quotient of the inseparable degree with the exponent.

Remark (8.2). If k is of characteristic zero, then the inseparable degree, the
exponent and the inseparable discrepancy are all one. If k is of characteristic
p, then the inseparable degree, the exponent and the inseparable discrepancy
are powers of p. Let ds be the separable degree, di the inseparable degree,
pe the exponent, d = [K : k] the degree, dq the quasi-degree and δ the
inseparable discrepancy. Then

d = dsdi, di = peδ, dq = dsp
e, d = dqδ.

The inseparable discrepancy is one if and only if ks ↪→ K is generated by one
element, or equivalently, if and only if k ↪→ K is generated by one element.

Example (8.3). The standard example of a field extension with exponent
different from the inseparable degree is the following: Let k = Fp(s, t) and
K = k1/p = k(s1/p, t1/p). Then K/k has inseparable degree p2 and expo-
nent p.

Lemma (8.4). Let k ↪→ K be a finite algebraic extension of fields of char-
acteristic p. The exponent of K/k is the smallest power pe such that kp−e

↪→
kp−e

K is separable.
Proof. Standard results on p-bases, cf. [Mat86, Thm. 26.7], show that if
k ↪→ k′ is a separable algebraic extension then kp−e

k′ = k′p
−e

. Thus
kp−e

↪→ kp−e
K is separable if and only if kp−e

s ↪→ kp−e

s K is separable. This
is equivalent to Kpe ⊆ ks, i.e., that K/k has exponent at most pe. �

The following proposition is a reinterpretation of [Kol96, Thm. I.4.5] as
will be seen in Proposition (8.13).

Proposition (8.5). Let k ↪→ K be a finite algebraic extension with quasi-
degree d. Then k is equal to the intersection of all purely inseparable exten-
sions k′/k such that k′ ↪→ Kk′ has degree at most d.
Proof. Let ds and pe be the separable degree and exponent of K/k. Let
k1 be the intersection of all fields k′ such that k′/k is purely inseparable
and k′ ↪→ Kk′ has degree at most d = dsp

e. If k 6= k1 we can find an
element x ∈ k1 \k such that xp ∈ k. Let k′ be a maximal purely inseparable
extension of k such that x /∈ k′. Then kp−e

k′ ⊆ k′(xp−e
) by [Kol96, Main

Lemma I.4.5.5]. In particular the degree of kp−e
k′/k′ is at most pe. Note

that by Lemma (8.4) we have that kp−e
↪→ kp−e

K is separable and hence has
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degree ds. Thus Kk′/k′ has degree at most dsp
e. This implies that x /∈ k1

which is a contradiction. �

Proposition (8.6). Let k ↪→ K be a finite field extension. Then Γd(K/k)
has at most one k-point. It has a k-point if and only if the quasi-degree of
K/k divides d. This k-point corresponds to the composition of the polynomial
laws

Finsep : K → ks, b 7→ bd/ds

Fsep : ks → k, b 7→ Nks/k(b)

where ds is the separable degree of K/k and Nks/k : ks → k is the norm, cf.
§3. In particular, there is a k-point if [K : k] | d.
Proof. Let ds and pe be the separable degree and the exponent ofK/k and ks

its separable closure. By Proposition (7.7) there is a one-to-one correspon-
dence between k-points of Γd(K/k) and ks-points of Γd/ds(K/ks). Replacing
k with ks and d with d/ds we can thus assume that K/k is separably closed.

Let F : K → k be a polynomial law, homogeneous of degree d. Then
Kpe ⊆ k and as F is multiplicative we have that F (b)pe

= F
(
bp

e)
=

(
bp

e)d

for any b ∈ K. As pth roots are unique in k it follows that F (b) = bd ∈ k.
As K/k is purely inseparable, it follows that pe | d. �

Definition (8.7). Let X/S be a separated algebraic space. Given a family
of zero cycles α on X/S parameterized by an S-space T , we define the
multiplicity of α at a point x ∈ X ×S T , denoted multx(α), as follows. Let
t ∈ T be the image of x in T . The pull-back of the family to k(t) is then
supported at Image(αt) = Supp(αt) = {x1, x2, . . . , xn} and given by the
morphism

αt : Spec
(
k(t)

)
→ Γd

(
Supp(αt)

)
=

∐
d1+d2+···+dn=d

n
×
i=1

Γdi
(
Spec(k(xi))

)
.

As each of the schemes Γdi
(
Spec(k(xi))

)
has at most one k(t)-point by

Proposition (8.6), the morphism αt is uniquely determined by the decom-
position d = d1 + d2 + · · · + dn. The multiplicity at xi is defined to be
di/[k(xi) : k(t)] and zero at points outside Supp(α). As the support com-
mutes with base change we have that

Supp(α) = {x ∈ X ×S T : multx(α) > 0}.

Definition (8.8). Let X/S be a separated algebraic space and let T be a
S-space. Given a family of zero cycles α on X/S parameterized by T , we
let its fundamental cycle [α] be the cycle on X ×S T with coefficients in Q
given by

[α] =
∑

x∈X×S(Tmax)

multx(α)
[
{x}

]
where Tmax is the set of generic points of T .

Proposition (8.9). Let X/S be a separated algebraic space and T a reduced
S-space. A family of zero cycles α ∈ Γd

X/S(T ) is then uniquely determined
by its fundamental cycle [α]. Moreover Supp(α) = Supp

(
[α]

)
.



FAMILIES OF ZERO CYCLES 17

Proof. As every component of Z = Supp(α) dominates a component of T
[Ryd08a, Thm. 2.4.6], the support of [α] coincides with the support of α. As
T is reduced, the morphism α : T → Γd(X/S) is determined by its restric-
tion to the generic points of T . If ξ ∈ Tmax then αξ : k(ξ) → Γd(Supp(αξ))
is determined by the multiplicities at the points of Supp(αξ) by Proposi-
tion (8.6). �

Definition (8.10). Let k be a field and X/k a separated algebraic space.
Let Z be a zero cycle on X with coefficients in Q. The degree of Z at a
point z ∈ Supp(Z) is the product of the multiplicity of Z at z and [k(z) : k].
We say that Z is quasi-integral if for any z ∈ Supp(Z) the following two
equivalent conditions are satisfied

(i) The product of multz(Z) and the inseparable discrepancy of k(z)/k
is an integer.

(ii) The degree of Z at z is an integer multiple of the quasi-degree of
k(z)/k.

Note that if k is perfect then Z is quasi-integral if and only if it has
integral coefficients.

Proposition (8.11). Let k be a field and X/k a separated algebraic space.
There is a one-to-one correspondence between k-points of Γd(X/k) and quasi-
integral effective zero cycles on X of degree d. This correspondence takes a
family of zero cycles α onto its fundamental cycle [α].
Proof. Follows from the definitions and Proposition (8.6). �

Definition (8.12). Let k be a field and X/k a separated algebraic space.
Let Z =

∑n
i=1 ai[Zi] be a zero cycle on X with coefficients in Q. For a field

extension k′/k we define the cycle Zk′ on Xk′ = X ×k Spec(k′) as

Zk′ =
n∑

i=1

ai[Zi ×k Spec(k′)]

where [Zi ×k Spec(k′)] is the fundamental cycle of Zi ×k Spec(k′), i.e., the
sum of the irreducible components of Zi×k Spec(k′) weighted by the lengths
of the local rings at their generic points.

If α ∈ Γd(X/k) and k′/k is a field extension, then [α]k′ = [αk′ ].

Proposition (8.13) ([Kol96, Thm. I.4.5]). Let k be a field and X/k a sep-
arated algebraic space. Let Z be a zero cycle on X with coefficients in Q.
Then Z is quasi-integral if and only if k is the intersection of all purely
inseparable field extensions k′ ⊇ k such that Zk′ has integral coefficients.
Proof. Follows immediately from Proposition (8.5). �

Remark (8.14). It is reasonable that an effective zero cycle on X with in-
tegral coefficients should give a family of zero cycles on X/k. The above
proposition explains why fractional coefficients are also sometimes allowed.
Indeed, let Z be an effective zero cycle on Xk with integral coefficients and
let α be the corresponding point in Γd(X/k). If k′/k is a field extensions
such that Z decends to X ×k Spec(k′) with integral coefficients, then α is
defined over k′. Thus the residue field of α has at least to be small enough
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to be contained in all such field extensions k′. Proposition (8.13) states that
the residue field is not smaller than this.

9. Families of zero cycles as multivalued morphisms

In this section, we give an alternative description of families of zero cycles
on AF-schemes as “multi-morphisms”.

Definition (9.1). A multivalued map f : X → Y is a map which to every
x ∈ X assigns a finite subset f(x) ⊆ Y . The inverse image of W ⊆ Y with
respect to f is

f−1(W ) = {x ∈ X : f(x) ⊆W}.
A multivalued map f : X → Y of topological spaces is continuous if f−1(U)
is open for every open subset U ⊆ Y . A multivalued map f : X → Y is of
degree at most d if |f(x)| ≤ d for every x ∈ X.

Note that it is allowed for f(x) to be the empty set.

Definition (9.2). Let X be a topological space. A d-cover of X is an open
cover {Uα} of X such that any set of at most d points of X is contained in
one of the Uα’s. A d-sheaf on X is a presheaf F on X such that

F(U) //
∏

αF(Uα) //
//
∏

α,β F(Uα ∩ Uβ)

is exact for any open subset U ⊆ X and every d-cover {Uα} of U . In other
words, a d-sheaf is a sheaf in the Grothendieck topology on X where the
covers are d-covers. A 1-sheaf is an ordinary sheaf.

Definition (9.3). Let f : X → Y be a continuous multivalued map of
degree at most d. If F is a presheaf of sets on X we let f∗F be the presheaf
U 7→ F(f−1(U)) for every open subset U ⊆ Y . If F is a k-sheaf then f∗F
is a dk-sheaf. If F is a dk-sheaf of sets on Y we let f∗F be the associated
k-sheaf to the presheaf U 7→ lim−→V⊇f(U)

F(V ), where U ⊆ X is open and the
limit is over all open subsets V ⊆ Y containing f(U). If F is a presheaf on
X and Z ⊆ X is a finite subset, we denote by

FZ = lim−→
V⊇Z

F(V )

the stalk at Z.
It is not difficult to see, as in the single-valued case, that if f : X → Y

is a continuous multivalued map of degree at most d, then f∗ and f∗ are
adjoint functors between the categories of k-sheaves on X and kd-sheaves
on Y and (f∗F)x = Ff(x).

Definition (9.4). Let X and Y be ringed spaces. A multi-morphism from
X to Y is a pair (f, θ) consisting of a multivalued continuous map f : X →
Y and a multiplicative law (of presheaves) θ : OY → f∗OX over Z. We say
that (f, θ) is of degree d if θ is homogeneous of degree d.

Remark (9.5). An ordinary morphism of ringed spaces is a multi-morphism
of degree 1. Given multi-morphisms f : X → Y and g : Y → Z we can
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form the composition g ◦ f : X → Z. If f and g has degrees d and e
respectively, then g ◦ f has degree de.

Proposition (9.6). Let (f, θ) : X → Y be a multi-morphism of ringed
spaces. There is a canonical partition X =

∐
d≥0Xd of open and closed

subsets Xd ⊆ X such that f |Xd
is a multi-morphism of degree d.

Proof. This follows easily from Proposition (2.2). �

Definition (9.7). Let A be a semi-local ring and B be a local ring. A
multiplicative Z-law A→ B is called semi-local if the kernel of the composite
law A→ B → B/mB is the Jacobson radical of A.

Note that if Y is an AF-scheme and Z ⊆ Y is finite, then the stalk OY,Z

is semi-local.

Definition (9.8). Let X and Y be schemes. A multi-morphism from X to
Y is a multi-morphism of ringed spaces (f, θ) such that OY,f(x) is semi-local
and the law θ]

x : OY,f(x) → OX,x is semi-local for every x ∈ X.

Remark (9.9). If f : X → Y and g : Y → Z are multi-morphisms of
schemes, then g ◦ f : X → Z is a multi-morphism of schemes if OZ,g(f(x))

is semi-local for every x ∈ X.

Proposition (9.10). Let (f, θ) : X → Y be a multi-morphism of schemes.
If (f, θ) has degree d, then the multivalued map f is of degree at most d. In
particular, there is a one-to-one correspondence between multi-morphisms of
degree one and ordinary morphisms of schemes.

Proof. If θ is of degree d then so is θ]
x. The kernel of OY,f(x) → OX,x/mx

is by assumption the Jacobson radical r of OY,f(x). Let B = OY,f(x)/r. We
thus have a non-degenerate multiplicative law B → k(x) of degree d. This
law factors through a homomorphism B → B ⊗Z k(x) � B′ where B′ is
a product of at most d fields [Ryd08a, Thm. 2.4.6]. As B → k(x) is non-
degenerate, we have by definition that B → B′ is injective and thus B is a
product of at most d fields. �

Definition (9.11). Let f = (f, θ) : X → Y be a multi-morphism of
schemes and let n be a positive integer. We denote by n · f the multi-
morphism (f, θn) from X to Y where θn is the homomorphism θ followed
by taking the nth power. If f has degree d then n · f has degree nd. More
generally, if f1, f2 : X → Y are multi-morphisms, we can define their sum
f1 + f2 : X → Y as the multi-morphism (f1 ∪ f2, θ1θ2). If OY,f1(x)∪f2(x) is
semi-local, this is a multi-morphism of schemes. If f1 and f2 have degrees
d1 and d2 respectively, then f1 + f2 has degree d1 + d2.

Definition (9.12). Let X and Y be S-schemes with structure morphisms
ϕX : X → S and ϕY : Y → S. We say that a multi-morphism (f, θ) :
X → Y is an S-multi-morphism if ϕY ◦ f = ϕX as multivalued maps and
θ : OY → f∗OX is a ϕ∗YOS-law. Here the ϕ∗YOS-algebra structure on
f∗OX is given by the homomorphism OS → (ϕX)∗OX = (ϕY )∗f∗OX and
adjointness.
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Proposition (9.13). Let ϕX : X → S and ϕY : Y → S be S-schemes. If
f : X → Y is an S-multi-morphism of degree d, then ϕY ◦ f = d · ϕX .
Proof. The law defining ϕY ◦ f is ψ : OS → (ϕY )∗OY → (ϕY )∗f∗OX . As
(ϕY )∗OY → (ϕY )∗f∗OX is an OS-law, it follows that ψ is the dth power of
OS → (ϕX)∗OX . �

It is not true, unless X is reduced, that if f : X → Y is a multi-morphism
of S-schemes such that ϕY ◦f = d ·ϕX , then f is a S-multi-morphism. This
is demonstrated by the following example.

Example (9.14). Let A = Z[x], B = A[y], C = A[ε]/ε2. Then it can be
shown that

Γ2
Z(B) =

Z[xp, xs, yp, ys, x× y]
(x× y)2 − xsys(x× y) + xpy2

s + x2
syp − 4xpyp

where xp = γ2(x), xs = x×1, yp = γ2(y) and ys = y×1. Let F : B → C be a
multiplicative Z-law of degree 2 and let f : Γ2

Z(B) → C be the corresponding
homomorphism. That the composite law A → B → C is a 7→ a2 · 1C is
equivalent to f(γ2(x)) = x2 and f(xs) = 2x. This implies that(

f(x× y)− xf(ys)
)2 = 0.

In particular, f(yp) = f(ys) = 0 and f(x× y) = ε defines a homomorphism
such that A→ B → C is taking squares. It is clear that F is not an A-law
as this would imply that f(x× y) = xf(ys) = 0.

Theorem (9.15). Let X/S be any scheme and Y/S be an AF-scheme.
There is a one-to-one correspondence between S-multi-morphisms f : X →
Y and families of zero cycles, i.e., morphisms α : X → Γ?(Y/S). In this
correspondence a family of cycles α corresponds to the multi-morphism (f, θ)
such that

(i) For every x ∈ X, the image f(x) is the projection of the support
Supp(α×X Spec(k(x))) ↪→ Y ×S Spec(k(x)) onto Y .

(ii) For any affine open subsets V ⊆ S and U ⊆ Y ×S V , the law

θ(U) : OY (U) → OX(f−1(U))

corresponds to the morphism

α|Γ?(U/V ) : α−1(Γ?(U/V )) → Γ?(U/V ).

Proof. To begin with, note that for any open U ⊆ Y , we have that f−1(U) =
α−1(Γ≥1(U/S)). In particular, f is continuous. It is further clear that
θ is a morphism of presheaves and that θ]

x is the law corresponding to
Spec(OX,x) → Γd(Spec(OY,f(x))) where d is the degree of α at x. This
law is semi-local by the definition of f .

We will now construct an inverse to the mapping α → (f, θ). For this,
we can assume that S is affine and that θ is homogeneous of degree d. As
Y is an AF-scheme, there is an open affine cover {Uβ} of Y such that any d
points of Y lie in some Uβ. This induces an open affine cover {Γd(Uβ/S)} of
Γd(Y/S) [Ryd08a, Prop. 3.1.10]. The laws θ(Uβ) correspond to morphisms
αβ : f−1(Uβ) → Γd(Uβ/S). The semi-locality of θ ensures that if x ∈
f−1(Uβ) then the projection of Supp(αβ)x onto Uβ is f(x). In particular,
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α−1
β

(
Γd(Uβ′/S)

)
= f−1(Uβ ∩ Uβ′). Thus the αβ’s glue to a morphism α :

X → Γd(Y/S) which corresponds to (f, θ). �

10. Sheaves of divided powers

Let X/S be a separated algebraic space and F a quasi-coherent OX -
module. In this section we construct a canonical quasi-coherent sheaf Γd(F)
on Γd(X/S). This is a globalization of the construction of the Γd

A(B)-module
Γd

A(M) for an A-algebra B and a B-module M . The sheaf Γd(F) has been
constructed by Deligne when X/S is flat [Del73, 5.5.29].

Proposition (10.1). Let X/S be a separated algebraic space and F a quasi-
coherent OX-module. There is then a canonical quasi-coherent sheaf Γd(F)
on Γd(X/S). If f : X ′ → X is étale, then there is a canonical isomor-
phism Γd(f−1F)|reg(f) → (f∗|reg)−1 Γd(F). If X/S is affine, then Γd(F) is
canonically isomorphic to Γd

OS
(F).

Proof. We will construct Γd(F) through étale descent via the étale equiva-
lence relation∐

α,β

Γd(Uα ×X Uβ/S)|reg //
//

∐
α

Γd(Uα/S)|reg // Γd(X/S)

for an étale covering {Uα → X} [Ryd08a, 3.3.16.1]. If the Uα’s are affine
then so are the Uα ×X Uβ’s. The proposition thus follows after we have
showed that

(10.1.1) Γd
OS

(f−1F)|reg(f) → (f∗|reg)−1Γd
OS

(F)

is an isomorphism for any étale morphism f : X ′ → X of affine schemes.
Let Y = V(F) = Spec(S(F)). Then

(10.1.2) Γd(Y ×X X ′/S)|reg(f) → (f∗|reg)−1Γd(Y/S)

is an isomorphism [Ryd08a, Cor. 3.3.11]. As F is a direct summand of OY ,
it follows from (10.1.2) that (10.1.1) is an isomorphism. �

11. Weil restriction and the norm functor

In this section, we globalize and generalize the results of Ferrand on the
norm functor [Fer98]. Let Spec(B) → Spec(A) be a finite faithfully flat and
finitely presented morphism of constant rank d. In this situation Ferrand
constructs a norm functor NB/A from B-modules to A-modules which is
uniquely determined by the following properties:

(i) NB/A(B) = A and the image of the multiplication by b in B is the
multiplication by NB/A(b) in A, cf. §3.

(ii) The norm functor commutes with base change, i.e., for any A-
algebra A′, denoting B′ = B ⊗A A

′, we have that the functors

M 7→ NB/A(M)⊗A A
′ and M 7→ NB′/A′(M ⊗B B′)

are isomorphic.
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The functoriality gives a polynomial law ν : M → NB/A(M), homogeneous
of degree d, which is compatible with the polynomial law NB/A. If C is a
B-algebra then NB/A(C) is an A-algebra. Ferrand constructs NB/A(M) as
the tensor product Γd

A(M) ⊗Γd
A(B) A where the Γd

A(B)-algebra structure of
A is given by the determinant law NB/A : B → A.

Given algebraic spaces X/S and Y/S together with a family of cycles
α : Y → Γ?(X/S) we will construct a norm functor Nα : CX → CY . Here
C is one of the following fibered categories over the category of algebraic
spaces:

• The category of quasi-coherent modules QCoh.
• The category of affine schemes Aff .
• The category of separated algebraic spaces AlgSp.

In Ferrand’s setting, S = Y is affine, X/S is finite flat of constant rank d
and α = NX/S is the canonical family given by the determinant, cf. Def-
inition (3.1). We construct the generalized norm functor in the obvious
way:

Definition (11.1). With notation as above, we let Nα(W ) = α∗Γ?(W/S)
where W ∈ CX . If W is an algebraic space, we let να(W ) be the induced
family of cycles να(W ) : Nα(W ) → Γ?(W/S) as in the diagram below:

Γ?(W/S)

��

Nα(W )
να(W )
oo

��

Γ?(X/S) Y.
αoo

�

When W is a quasi-coherent OX -module, we let να(W ) be the induced
homomorphism Γ?(W ) → α∗Nα(W ) on Γ?(X/S).

Remark (11.2). When W/X is étale (or unramified) it is possible to define
a “regular norm functor” using Nα(W )reg = α∗

(
Γ?(W/S)reg

)
.

Remark (11.3). If Z/S is a third space and β : Z → Γe(Y/S) is a family
of cycles, there is a functorial morphism Nβ(Nα(W )) → Nα◦β(W ) but this
is not always an isomorphism, cf. [Fer98, Ex. 4.4].

When W/X is a space, it is useful to think of Nα(W ) as the pull-back of
W along the multi-morphism α as in the following diagram:

W

��

Nα(W )
να(W )
oo_ _ _

��

X Y.
αoo_ _ _ _

Proposition (11.4). With notation as above, let W/X be a space and Y ′

be a Y -scheme. The Y ′-points of Nα(W ) corresponds to the set of liftings
of the family of cycles α ×Y Y ′ to a family of cycles β : Y ′ → Γ?(W/S).
In other words, it is the set of liftings of the multi-morphism α ×Y Y ′ to a
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multi-morphism β in the diagram

W

��

Nα(W )
να(W )
oo_ _ _

��

Nα(W )×Y Y ′oo

��

X Y
αoo_ _ _ _ Y ′.oo

β

jjV V V V V V V V V V V V V

If α is non-degenerate, the lifting β is non-degenerate and the Y ′-points of
Nα(W ) correspond to sections of W → X over Image(α)×Y Y

′ ↪→ X×S Y
′.

If W/X is unramified, the Y ′-points of Nα(W )reg correspond to sections of
W → X over Image(α×Y Y ′).
Proof. The correspondence follows from the construction of Nα(W ). The
last two assertions are immediate consequences of the definitions of non-
degenerate families and regular families [Ryd08a, Defs. 4.1.6 and 3.3.3] tak-
ing into account that Image(α ×Y Y ′) = Image(α) ×Y Y ′ when α is non-
degenerate, cf. Corollary (5.7). �

Definition (11.5). Let X → Y and W → X be morphism of algebraic
spaces. The Weil restriction RX/Y (W ) is the functor from Y -schemes to
sets that takes an Y -scheme Y ′ to the set of sections of W×Y Y

′ → X×Y Y
′.

Corollary (11.6) ([Fer98, Prop. 6.2.2]). Let X → Y be a morphism and
α : Y → Γ?(X/Y ) a family of cycles. Let W be an algebraic space separated
over X. There is then a canonical morphism RX/Y (W ) → Nα(W ) which is
functorial in W . Assume that X → Y is finite and étale and that α = NX/Y

is the canonical family given by the determinant. Then the above functor is
an isomorphism.
Proof. Follows immediately from Proposition (11.4) as α is non-degenerate
and hence Image(α×Y Y ′) = Image(α)×Y Y ′ = X ×Y Y ′. �

Corollary (11.7). Let f : X → Y be a finitely presented morphism such
that there exists a family of zero cycles α : Y → Γ?(X/Y ) with Supp(α) =
Xred, e.g., f finite and flat, or Y normal and f finite and open. If W is an
étale and separated scheme over X, then Nα(W )reg coincides with the Weil
restriction RX/Y (W ). In particular, the canonical morphism RX/Y (W ) →
Nα(W ) is an open immersion.
Proof. Note that Image(α ×Y Y ′) has the same support as X ×Y Y ′. As
W/X is étale, any section of W/X over Supp(α×Y Y

′) thus lifts to a unique
section over X ×Y Y ′. �

Example (11.8). The following counter-example, due to Ferrand [Fer98,
6.4], shows that even if W/X is finite and étale and X/Y is finite and flat,
but not étale, it may happen thatNα(W )reg ⊆ Nα(W ) is not an isomorphism
and that Nα(W ) → Y is not étale.

Let X = Spec(L) → Y = Spec(K) correspond to an inseparable field
extension K ⊆ L of degree d. Let W = Xqd. Then there is a closed
point in Nα(W ) with residue field L. This point corresponds to the family
s1 + s2 + · · · + sl where si : Spec(L) → W is the inclusion of the ith copy.
Thus Nα(W ) → Y is not étale and as Nα(W )reg → Y is étale the subset
Nα(W )reg ⊆ Nα(W ) is proper.
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