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Abstract. We prove that every algebraic stack, locally of finite type over an

algebraically closed field with affine stabilizers, is étale-locally a quotient stack
in a neighborhood of a point with linearly reductive stabilizer group. The

proof uses an equivariant version of Artin’s algebraization theorem proved in

the appendix. We provide numerous applications of the main theorems.

1. Introduction

Quotient stacks form a distinguished class of algebraic stacks which provide
intuition for the geometry of general algebraic stacks. Indeed, equivariant algebraic
geometry has a long history with a wealth of tools at its disposal. Thus, it has long
been desired—and more recently believed [Alp10, AK16]—that certain algebraic
stacks are locally quotient stacks. This is fulfilled by the main result of this article:

Theorem 1.1. Let X be a quasi-separated algebraic stack, locally of finite type over
an algebraically closed field k, with affine stabilizers. Let x ∈ X(k) be a point and
H ⊆ Gx be a subgroup scheme of the stabilizer such that H is linearly reductive and
Gx/H is smooth (resp. étale). Then there exists an affine scheme SpecA with an
action of H, a k-point w ∈ SpecA fixed by H, and a smooth (resp. étale) morphism

f :
(
[SpecA/H], w

)
→ (X, x)

such that BH ∼= f−1(BGx); in particular, f induces the given inclusion H → Gx
on stabilizer group schemes at w. In addition, if X has affine diagonal, then the
morphism f can be arranged to be affine.

This justifies the philosophy that quotient stacks of the form [SpecA/G], where
G is a linearly reductive group, are the building blocks of algebraic stacks near
points with linearly reductive stabilizers.

In the case of smooth algebraic stacks, we can provide a more refined descrip-
tion (Theorem 1.2) which resolves the algebro-geometric counterpart to the We-
instein conjectures [Wei00]—now known as Zung’s Theorem [Zun06, CF11, CS13,
PPT14]—on the linearization of proper Lie groupoids in differential geometry. Be-
fore we state the second theorem, we introduce the following notation: if X is
an algebraic stack over a field k and x ∈ X(k) is a closed point with stabilizer
group scheme Gx, then we let Nx denote the normal space to x viewed as a Gx-
representation. If I ⊆ OX denotes the sheaf of ideals defining x, then Nx = (I/I2)∨.
If Gx is smooth, then Nx is identified with the tangent space of X at x; see Section
3.1.
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Theorem 1.2. Let X be a quasi-separated algebraic stack, locally of finite type over
an algebraically closed field k, with affine stabilizers. Let x ∈ |X| be a smooth and
closed point with linearly reductive stabilizer group Gx. Then there exists an affine
and étale morphism (U, u)→ (Nx//Gx, 0), where Nx//Gx denotes the GIT quotient,
and a cartesian diagram(

[Nx/Gx], 0
)

��

(
[W/Gx], w

) f //

��

oo (X, x)

(Nx//Gx, 0) (U, u)oo

�

such that W is affine and f is étale and induces an isomorphism of stabilizer groups
at w. In addition, if X has affine diagonal, then the morphism f can be arranged
to be affine.

In particular, this theorem implies that X and [Nx/Gx] have a common étale
neighborhood of the form [SpecA/Gx].

The main techniques employed in the proof of Theorem 1.2 are

(1) deformation theory,
(2) coherent completeness,
(3) Tannaka duality, and
(4) Artin approximation.

Deformation theory produces an isomorphism between the nth infinitesimal neigh-

borhood N[n] of 0 in N = [Nx/Gx] and the nth infinitesimal neighborhood X
[n]
x of x

in X. It is not at all obvious, however, that the system of morphisms {f [n] : N[n] →
X} algebraizes. We establish algebraization in two steps.

The first step is effectivization. To accomplish this, we introduce coherent com-
pleteness, a key concept of the article. Recall that if (A,m) is a complete local
ring, then Coh(A) = lim←−n Coh(A/mn+1). Coherent completeness (Definition 2.1)

is a generalization of this, which is more refined than the formal GAGA results of
[EGA, III.5.1.4] and [GZB15] (see §4.4). What we prove in §2.1 is the following.

Theorem 1.3. Let G be a linearly reductive affine group scheme over a field k.
Let SpecA be a noetherian affine scheme with an action of G, and let x ∈ SpecA
be a closed point fixed by G. Suppose that AG is a complete local ring. Let X =

[SpecA/G] and let X
[n]
x be the nth infinitesimal neighborhood of x. Then the natural

functor

(1.1) Coh(X)→ lim←−
n

Coh
(
X[n]
x

)
is an equivalence of categories.

Tannaka duality for algebraic stacks with affine stabilizers was recently estab-
lished by the second two authors [HR19, Thm. 1.1] (also see Theorem 2.7). This
proves that morphisms between algebraic stacks Y → X are equivalent to sym-
metric monoidal functors Coh(X) → Coh(Y). Therefore, to prove Theorem 1.2,
we can combine Theorem 1.3 with Tannaka duality (Corollary 2.8) and the above
deformation-theoretic observations to show that the morphisms {f [n] : N[n] → X}
effectivize to f̂ : N̂→ X, where N̂ = N ×Nx//Gx Spec ÔNx//Gx,0. The morphism f̂ is
then algebraized using Artin approximation [Art69a].

The techniques employed in the proof of Theorem 1.1 are similar, but the
methods are more involved. Since we no longer assume that x ∈ X(k) is a non-

singular point, we cannot expect an étale or smooth morphism N[n] → X
[n]
x where

N = [Nx/H]. Using Theorem 1.3 and Tannaka duality, however, we can produce a
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closed substack Ĥ of N̂ and a formally versal morphism f̂ : Ĥ → X. To algebraize

f̂ , we apply an equivariant version of Artin algebraization (Corollary A.19), which
we believe is of independent interest.

For tame stacks with finite inertia, Theorem 1.1 is one of the main results of
[AOV08]. The structure of algebraic stacks with infinite stabilizers has been poorly
understood until the present article. For algebraic stacks with infinite stabilizers
that are not—or are not known to be—quotient stacks, Theorems 1.1 and 1.2 were
only known when X = Mss

g,n is the moduli stack of semistable curves. This is
the central result of [AK16], where it is also shown that f can be arranged to be
representable. For certain quotient stacks, Theorems 1.1 and 1.2 can be obtained
using traditional methods in equivariant algebraic geometry, see §4.2 for details.

1.1. Some remarks on the hypotheses. We mention here several examples il-
lustrating the necessity of some of the hypotheses of Theorems 1.1 and 1.2.

Example 1.4. Some reductivity assumption of the stabilizer Gx is necessary in
Theorem 1.1. For instance, consider the group scheme G = Spec k[x, y]xy+1 →
A1 = Spec k[x] (with multiplication defined by y 7→ xyy′ + y + y′), where the
generic fiber is Gm but the fiber over the origin is Ga. Let X = BG and x ∈ |X|
be the point corresponding to the origin. There does not exist an étale morphism
([W/Ga], w)→ (X, x), where W is an algebraic space over k with an action of Ga.

Example 1.5. It is essential to require that the stabilizer groups are affine in a
neighborhood of x ∈ |X|. For instance, let X be a smooth curve and let E → X
be a group scheme whose generic fiber is a smooth elliptic curve but the fiber over
a point x ∈ X is isomorphic to Gm. Let X = BE. There is no étale morphism
([W/Gm], w)→ (X, x), where W is an affine k-scheme with an action of Gm.

Example 1.6. In the context of Theorem 1.1, it is not possible in general to find
a Zariski-local quotient presentation of the form [SpecA/Gx]. Indeed, if C is the
projective nodal cubic curve with Gm-action, then there is no Zariski-open Gm-
invariant affine neighborhood of the node. If we view C (Gm-equivariantly) as the
Z/2Z-quotient of the union of two P1’s glued along two nodes, then after removing
one of the nodes, we obtain a (non-finite) étale morphism [Spec(k[x, y]/xy)/Gm]→
[C/Gm] where x and y have weights 1 and −1. This is in fact the unique such
quotient presentation (see Remark 4.18).

The following two examples illustrate that in Theorem 1.1 it is not always pos-
sible to obtain a quotient presentation f : [SpecA/Gx] → X, such that f is repre-
sentable or separated without additional hypotheses; see also Question 1.10.

Example 1.7. Consider the non-separated affine line as a group scheme G → A1

whose generic fiber is trivial but the fiber over the origin is Z/2Z. Then BG admits
an étale neighborhood f : [A1/(Z/2Z)] → BG which induces an isomorphism of
stabilizer groups at 0, but f is not representable in a neighborhood.

Example 1.8. Let Log (resp. Logal) be the algebraic stack of log structures (resp.
aligned log structures) over Spec k introduced in [Ols03] (resp. [ACFW13]). Let
r ≥ 2 be an integer and let Nr be the free log structure on Spec k. There is an étale
neighborhood [Spec k[Nr]/(GrmoSr)]→ Log of Nr which is not representable. Note
that Log does not have separated diagonal. Similarly, there is an étale neighbor-
hood [Spec k[Nr]/Grm]→ Logal of Nr (with the standard alignment) which is repre-
sentable but not separated. Because [Spec k[Nr]/Grm]→ Logal is inertia-preserving,
Logal has affine inertia and hence separated diagonal; however, the diagonal is not
affine. In both cases, this is the unique such quotient presentation (see Remark
4.18).



4 J. ALPER, J. HALL, AND D. RYDH

1.2. Generalizations. Using similar arguments, one can in fact establish a gen-
eralization of Theorem 1.1 to the relative and mixed characteristic setting. This
requires developing some background material on deformations of linearly reduc-
tive group schemes, a more general version of Theorem 1.3 and a generalization of
the formal functions theorem for good moduli spaces. To make this article more
accessible, we have decided to postpone the relative statement until the follow-up
article [AHR19].

If Gx is not reductive, it is possible that one could find an étale neighborhood
([SpecA/GLn], w)→ (X, x). However, this is not known even if X = Bk[ε]Gε where
Gε is a deformation of a non-reductive algebraic group [Con10].

In characteristic p, the linearly reductive hypothesis in Theorems 1.1 and 1.2
is quite restrictive. Indeed, a smooth affine group scheme G over an algebraically
closed field k of characteristic p is linearly reductive if and only if G0 is a torus and
|G/G0| is coprime to p [Nag62]. We ask however:

Question 1.9. Does a variant of Theorem 1.1 remain true if “linearly reductive”
is replaced with “reductive”?

We remark that if X is a Deligne–Mumford stack, then the conclusion of Theorem
1.1 holds. We also ask:

Question 1.10. If X has separated (resp. quasi-affine) diagonal, then can the mor-
phism f in Theorems 1.1 and 1.2 be chosen to be representable (resp. quasi-affine)?

If X does not have separated diagonal, then the morphism f cannot necessarily
be chosen to be representable; see Examples 1.7 and 1.8. We answer Question 1.10
affirmatively when X has affine diagonal (Proposition 3.2) or is a quotient stack
(Corollary 3.3), or when H is diagonalizable (Proposition 3.4).

1.3. Applications. Theorems 1.1 and 1.2 yield a number of applications to old
and new problems.

Immediate consequences. Let X be a quasi-separated algebraic stack, locally of finite
type over an algebraically closed field k with affine stabilizers, and let x ∈ X(k) be
a point with linearly reductive stabilizer Gx.

(1) There is an étale neighborhood of x with a closed embedding into a smooth
algebraic stack.

(2) There is an étale-local description of the cotangent complex LX/k of X in
terms of the cotangent complex LW/k of W = [SpecA/Gx]. If x ∈ |X| is a
smooth point (so that W can be taken to be smooth) and Gx is smooth,
then LW/k admits an explicit description. If x is not smooth but Gx is
smooth, then the [−1, 1]-truncation of LW/k can be described explicitly by
appealing to (1).

(3) For any representation V of Gx, there exists a vector bundle over an étale
neighborhood of x extending V .

(4) If Gx is smooth, then there are Gx-actions on the formal miniversal de-

formation space D̂ef(x) of x and its versal object, and the Gx-invariants

of D̂ef(x) is the completion of a finite type k-algebra. This observation is
explicitly spelled out in Remark 4.17.

(5) Any specialization y  x of k-points is realized by a morphism [A1/Gm]→
X. This follows by applying the Hilbert–Mumford criterion to an étale
quotient presentation constructed by Theorem 1.1.

Local applications. The following consequences of Theorems 1.1 and 1.2 to the local
geometry of algebraic stacks will be detailed in Section 4:



A LUNA ÉTALE SLICE THEOREM FOR ALGEBRAIC STACKS 5

(1) a generalization of Sumihiro’s theorem on torus actions to Deligne–Mumford
stacks (§4.1), confirming an expectation of Oprea [Opr06, §2];

(2) a generalization of Luna’s étale slice theorem to non-affine schemes (§4.2);
(3) the existence of equivariant miniversal deformation spaces for singular curves

(§4.3), generalizing [AK16];
(4) the étale-local quotient structure of a good moduli space (§4.4), which in

particular establishes formal GAGA for good moduli space morphisms, re-
solving a conjecture of Geraschenko–Zureick-Brown [GZB15, Conj. 32];

(5) the existence of coherent completions of algebraic stacks at points with
linearly reductive stabilizer (§4.5);

(6) a criterion for étale-local equivalence of algebraic stacks (§4.6), extending
Artin’s corresponding results for schemes [Art69a, Cor. 2.6];

(7) the resolution property holds étale-locally for algebraic stacks near a point
whose stabilizer has linearly reductive connected component (§4.7), which
in particular provides a characterization of toric Artin stacks in terms of
stacky fans [GS15, Thm. 6.1].

Global applications. In Section 5, we provide the following global applications:

(1) compact generation of derived categories of algebraic stacks (§5.1);
(2) a criterion for the existence of a good moduli space (§5.2), generalizing

[KM97, AFS17];
(3) algebraicity of stacks of coherent sheaves, Quot schemes, Hilbert schemes,

Hom stacks and equivariant Hom stacks (§5.3);
(4) a short proof of Drinfeld’s results [Dri13] on algebraic spaces with a Gm-

action and a generalization to Deligne–Mumford stacks with Gm-actions
(§5.4); and

(5) Bia lynicki-Birula decompositions for separated Deligne–Mumford stacks
(§5.5).

We also note that Theorem 1.1 was applied recently by Toda to resolve a wall-
crossing conjecture for higher rank DT/PT invariants by Toda [Tod20].

1.4. Leitfaden. The logical order of this article is as follows. In Section 2 we prove
the key coherent completeness result (Theorem 1.3). In Appendix A we state Artin
approximation and prove an equivariant version of Artin algebraization (Corollary
A.19). These techniques are then used in Section 3 to prove the main local structure
theorems (Theorems 1.1 and 1.2). In Sections 4 and 5 we give applications to the
main theorems.

1.5. Notation. An algebraic stack X is quasi-separated if the diagonal and the
diagonal of the diagonal are quasi-compact. An algebraic stack X has affine sta-
bilizers if for every field K and point x : SpecK → X, the stabilizer group Gx is
affine. If X is an algebraic stack and Z ⊆ X is a closed substack, we will denote by

X
[n]
Z the nth nilpotent thickening of Z ⊆ X (i.e., if I ⊆ OX is the ideal sheaf defining

Z, then X
[n]
Z → X is defined by In+1). If x ∈ |X| is a closed point, then the nth

infinitesimal neighborhood of x is the nth nilpotent thickening of the inclusion of
the residual gerbe Gx → X.

Recall from [Alp13] that a quasi-separated and quasi-compact morphism f : X→
Y of algebraic stacks is cohomologically affine if the push-forward functor f∗ on
the category of quasi-coherent OX-modules is exact. If Y has quasi-affine diag-
onal and f has affine diagonal, then f is cohomologically affine if and only if
Rf∗ : D+

QCoh(X) → D+
QCoh(Y) is t-exact, cf. [Alp13, Prop. 3.10 (vii)] and [HNR19,

Prop. 2.1]; this equivalence is false if Y does not have affine stabilizers [HR15,
Rem. 1.6]. If G → Spec k is an affine group scheme of finite type, then we say
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that G is linearly reductive if BG → Spec k is cohomologically affine. A quasi-
separated and quasi-compact morphism f : X → Y of algebraic stacks is a good
moduli space if Y is an algebraic space, f is cohomologically affine and OY → f∗OX

is an isomorphism.
If G is an affine group scheme of finite type over a field k acting on an algebraic

space X, then we say that a G-invariant morphism π : X → Y of algebraic spaces is
a good GIT quotient if the induced map [X/G]→ Y is a good moduli space; we often
write Y = X//G. In the case that G is linearly reductive, a G-equivariant morphism
π : X → Y is a good GIT quotient if and only if π is affine and OY → (π∗OX)G is
an isomorphism.

An algebraic stack X is said to have the resolution property if every quasi-coherent
OX-module of finite type is a quotient of a locally free OX-module of finite type.
By the Totaro–Gross theorem [Tot04, Gro17], a quasi-compact and quasi-separated
algebraic stack is isomorphic to [U/GLN ], where U is a quasi-affine scheme and N
is a positive integer, if and only if the closed points of X have affine stabilizers
and X has the resolution property. We will only use the easy implication (=⇒) in
this article which can be strengthened as follows. If G is a group scheme of finite
type over a field k acting on a quasi-affine scheme U , then [U/G] has the resolution
property. This is a consequence of the following two simple observations: (1) BG
has the resolution property; and (2) if f : X → Y is quasi-affine and Y has the
resolution property, then X has the resolution property.

If X is a noetherian algebraic stack, then we denote by Coh(X) the abelian
category of coherent OX-modules.

Acknowledgements. We thank Andrew Kresch for many useful conversations as
well as Dragos Oprea and Michel Brion for some helpful comments. Finally, we
thank the referee whose careful reading greatly improved this article.

2. Coherently complete stacks and Tannaka duality

2.1. Coherently complete algebraic stacks. Motivated by Theorem 1.3, we
begin this section with the following key definition.

Definition 2.1. Let X be a noetherian algebraic stack with affine stabilizers and

let Z ⊆ X be a closed substack. For a coherent OX-module F, the restriction to X
[n]
Z

is denoted Fn. We say that X is coherently complete along Z if the natural functor

Coh(X)→ lim←−
n

Coh
(
X

[n]
Z

)
, F 7→ {Fn}n≥0

is an equivalence of categories.

We now recall some examples of coherently complete algebraic stacks. Tradi-
tionally, such results have been referred to as “formal GAGA” theorems.

Example 2.2. Let A be a noetherian ring and let I ⊆ A be an ideal. Assume
that A is I-adically complete, that is, A ' lim←−nA/I

n+1. Then SpecA is coherently

complete along SpecA/I. More generally if an algebraic stack X is proper over
SpecA, then X is coherently complete along X×SpecASpecA/I. See [EGA, III.5.1.4]
for the case of schemes and [Ols05, Thm. 1.4], [Con05, Thm. 4.1] for algebraic stacks.

Example 2.3. Let (R,m) be a complete noetherian local ring and let π : X →
SpecR be a good moduli space of finite type. If X has the resolution property
(e.g., X ' [SpecB/GLn], where BGLn = R), then X is coherently complete along
π−1(SpecR/m) [GZB15, Thm. 1.1].
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Note that in the examples above, completeness was always along a substack that
is pulled back from an affine base. Theorem 1.3 is quite different, however, as the
following example highlights.

Example 2.4. Let k be a field, then the quotient stack [A1
k/Gm] has good moduli

space Spec k. Theorem 1.3 implies that [A1
k/Gm] is coherently complete along the

closed point BGm. In this special case, one can even give a direct proof of the
coherent completeness (see Proposition 5.18).

We now prove Theorem 1.3.

Proof of Theorem 1.3. Let m ⊂ A be the maximal ideal corresponding to x. A
coherent OX-module F corresponds to a finitely generated A-module M with an
action of G. Note that since G is linearly reductive, MG is a finitely generated
AG-module [Alp13, Thm. 4.16(x)]. We claim that the following two sequences of
AG-submodules {(mnM)G} and {(mG)nMG} of MG define the same topology, or
in other words that

(2.1) MG → lim←−M
G/
(
mnM

)G
is an isomorphism of AG-modules.

To this end, we first establish that

(2.2)
⋂
n≥0

(
mnM

)G
= 0,

which immediately informs us that (2.1) is injective. Let N =
⋂
n≥0 m

nM . The

Artin–Rees lemma implies that N = mN so N ⊗A A/m = 0. Since AG is a local
ring, SpecA has a unique closed orbit {x}. Since the support of N is a closed
G-invariant subscheme of SpecA which does not contain x, it follows that N = 0.

We next establish that (2.1) is an isomorphism if AG is artinian. In this case,
{(mnM)G} automatically satisfies the Mittag-Leffler condition (it is a sequence of
artinian AG-modules). Therefore, taking the inverse limit of the exact sequences
0 → (mnM)G → MG → MG/(mnM)G → 0 and applying (2.2), yields an exact
sequence

0→ 0→MG → lim←−M
G/(mnM)G → 0.

Thus, we have established (2.1) when AG is artinian.
To establish (2.1) in the general case, let J = (mG)A ⊆ A and observe that

(2.3) MG = lim←−M
G/
(
mG
)n
MG = lim←−

(
M/JnM

)G
,

since G is linearly reductive. For each n, we know that

(2.4)
(
M/JnM

)G
= lim←−

l

MG/
(
(Jn + ml)M

)G
using the artinian case proved above. Finally, combining (2.3) and (2.4) together
with the observation that Jn ⊆ ml for n ≥ l, we conclude that

MG = lim←−
n

(
M/JnM

)G
= lim←−

n

lim←−
l

MG/
(
(Jn + ml)M

)G
= lim←−

l

MG/
(
mlM

)G
.

We now show that (1.1) is fully faithful. Suppose that G and F are coherent

OX-modules, and let Gn and Fn denote the restrictions to X
[n]
x , respectively. We

need to show that
Hom(G,F)→ lim←−Hom(Gn,Fn)



8 J. ALPER, J. HALL, AND D. RYDH

is bijective. Since X has the resolution property (see §1.5), we can find locally free
OX-modules E′ and E and an exact sequence

E′ → E→ G→ 0.

This induces a diagram

0 // Hom(G,F) //

��

Hom(E,F) //

��

Hom(E′,F)

��
0 // lim←−Hom(Gn,Fn) // lim←−Hom(En,Fn) // lim←−Hom(E′n,Fn)

with exact rows. Therefore, it suffices to assume that G is locally free. In this case,

Hom(G,F) = Hom(OX,G
∨ ⊗ F) and Hom(Gn,Fn) = Hom

(
O

X
[n]
x
, (G∨n ⊗ Fn)

)
.

Therefore, we can also assume that G = OX and we need to verify that the map

(2.5) Γ(X,F)→ lim←−Γ
(
X[n]
x ,Fn

)
is an isomorphism. But Γ

(
X

[n]
x ,Fn

)
= Γ(X,F)/Γ(X,mn+1

x F) since G is linearly
reductive, so the map (2.5) is identified with the isomorphism (2.1), and the full
faithfulness of (1.1) follows.

We now prove that the functor (1.1) is essentially surjective. Let {Fn} ∈
lim←−Coh(X

[n]
x ) be a compatible system of coherent sheaves. Since X has the res-

olution property (see §1.5), there is a vector bundle E on X together with a sur-
jection ϕ0 : E → F0. We claim that ϕ0 lifts to a compatible system of morphisms
ϕn : E → Fn for every n > 0. It suffices to show that for n > 0, the natural map
Hom(E,Fn+1)→ Hom(E,Fn) is surjective. But this is clear: Ext1

OX
(E,mn+1Fn+1) =

0 since E is locally free and G is linearly reductive. It follows that we obtain an
induced morphism of systems {ϕn} : {En} → {Fn} and, by Nakayama’s Lemma,
each ϕn is surjective.

The system of morphisms {ϕn} admits an adic kernel {Kn} (see [HR19, §3.2],
which is a generalization of [Stacks, Tag 087X] to stacks). Note that, in general,
Kn 6= kerϕn and Kn is actually the “stabilization” of kerϕn (in the sense of the
Artin–Rees lemma). Applying the procedure above to {Kn}, there is another vector
bundle H and a morphism of systems {ψn} : {Hn} → {En} such that coker(ψn) ∼=
Fn. By the full faithfulness of (1.1), the morphism {ψn} arises from a unique

morphism ψ : H → E. Letting F̃ = cokerψ, the universal property of cokernels

proves that there is an isomorphism F̃n ∼= Fn; the result follows. �

Remark 2.5. In this remark, we show that with the hypotheses of Theorem 1.3

the coherent OX-module F extending a given system {Fn} ∈ lim←−Coh(X
[n]
x ) can in

fact be constructed explicitly. Let Γ denote the set of irreducible representations
of G with 0 ∈ Γ denoting the trivial representation. For ρ ∈ Γ, we let Vρ be the
corresponding irreducible representation. For any G-representation V , we set

V (ρ) =
(
V ⊗ V ∨ρ

)G ⊗ Vρ.
Note that V =

⊕
ρ∈Γ V

(ρ) and that V (0) = V G is the subspace of invariants.

In particular, there is a decomposition A =
⊕

ρ∈ΓA
(ρ). The data of a coherent

OX-module F is equivalent to a finitely generated A-module M together with a
G-action, i.e., an A-module M with a decomposition M = ⊕ρ∈ΓM

(ρ), where each

M (ρ) is a direct sum of copies of the irreducible representation Vρ, such that the A-
module structure on M is compatible with the decompositions of A and M . Given

http://stacks.math.columbia.edu/tag/087X
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a coherent OX-module F = M̃ and a representation ρ ∈ Γ, then M (ρ) is a finitely
generated AG-module and

M (ρ) → lim←−
(
M/mkM

)(ρ)
is an isomorphism (which follows from (2.1)).

Conversely, given a system of {Fn = M̃n} ∈ lim←−Coh(X
[n]
x ) where each Mn is a

finitely generated A/mn+1-module with a G-action, then the extension F = M̃ can
be constructed explicitly by defining:

M (ρ) := lim←−M
(ρ)
n and M :=

⊕
ρ∈Γ

M (ρ).

One can show directly that each M (ρ) is a finitely generated AG-module, M is a
finitely generated A-module with a G-action, and M/mn+1M = Mn.

Remark 2.6. An argument similar to the proof of the essential surjectivity of (1.1)
shows that every vector bundle on X is the pullback of a G-representation under
the projection π : X → BG. Indeed, given a vector bundle E on X, we obtain
by restriction a vector bundle E0 on BG. The surjection π∗E0 → E0 lifts to a
map π∗E0 → E since X is cohomologically affine. By Nakayama’s Lemma, the
map π∗E0 → E is a surjection of vector bundles of the same rank and hence an
isomorphism.

In particular, suppose that G is a diagonalizable group scheme. Then using the
notation of Remark 2.5, every irreducible G-representation ρ ∈ Γ is one-dimensional
so that a G-action on A corresponds to a Γ-grading A =

⊕
ρ∈ΓA

(ρ), and an A-
module with a G-action corresponds to a Γ-graded A-module. Therefore, if A =⊕

ρ∈ΓA
(ρ) is a Γ-graded noetherian k-algebra with A(0) a complete local k-algebra,

then every finitely generated projective Γ-graded A-module is free. When G = Gm
and AG = k, this is the well known statement (e.g., [Eis95, Thm. 19.2]) that every
finitely generated projective graded module over a Noetherian graded k-algebra
A =

⊕
d≥0Ad with A0 = k is free.

2.2. Tannaka duality. The following Tannaka duality theorem proved by the sec-
ond and third author is crucial in our argument.

Theorem 2.7. [HR19, Thm. 1.1] Let X be an excellent stack and let Y be a noe-
therian algebraic stack with affine stabilizers. Then the natural functor

Hom(X,Y)→ Homr⊗,'
(
Coh(Y),Coh(X)

)
is an equivalence of categories, where Homr⊗,'(Coh(Y),Coh(X)) denotes the cate-
gory whose objects are right exact monoidal functors Coh(Y) → Coh(X) and mor-
phisms are natural isomorphisms of functors.

We will apply the following consequence of Tannaka duality:

Corollary 2.8. Let X be an excellent algebraic stack with affine stabilizers and let
Z ⊆ X be a closed substack. Suppose that X is coherently complete along Z. If Y is
a noetherian algebraic stack with affine stabilizers, then the natural functor

Hom(X,Y)→ lim←−
n

Hom
(
X

[n]
Z ,Y

)
is an equivalence of categories.
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Proof. There are natural equivalences

Hom(X,Y) ' Homr⊗,'
(
Coh(Y),Coh(X)

)
(Tannaka duality)

' Homr⊗,'
(
Coh(Y), lim←−Coh

(
X

[n]
Z

))
(coherent completeness)

' lim←−Homr⊗,'
(
Coh(Y),Coh

(
X

[n]
Z

))
' lim←−Hom

(
X

[n]
Z ,Y

)
(Tannaka duality). �

3. Proofs of Theorems 1.1 and 1.2

3.1. The normal and tangent space of an algebraic stack. Let X be a quasi-
separated algebraic stack, locally of finite type over a field k, with affine stabilizers.
Let x ∈ X(k) be a closed point. Denote by i : BGx → X the closed immersion of
the residual gerbe of x, and by I the corresponding ideal sheaf. The normal space
to x is Nx := (I/I2)∨ = (i∗I)∨ viewed as a Gx-representation. The tangent space
TX,x to X at x is the k-vector space of equivalence classes of pairs (τ, α) consisting
of morphisms τ : Spec k[ε]/(ε2) → X and 2-isomorphisms α : x → τ |Spec k. The
stabilizer Gx acts linearly on the tangent space TX,x by precomposition on the
2-isomorphism. If Gx is smooth, then there is an identification TX,x ∼= Nx of Gx-
representations. Moreover, if X = [X/G] is a quotient stack where G is a smooth
group scheme and x ∈ X(k) (with Gx not necessarily smooth), then Nx is identified
with the normal space TX,x/TG·x,x to the orbit G · x at x.

3.2. The smooth case. We now prove Theorem 1.2 even though it follows directly
from Theorem 1.1 coupled with Luna’s fundamental lemma [Lun73, p. 94]. We feel
that since the proof of Theorem 1.2 is more transparent and less technical than
Theorem 1.1, digesting the proof first in this case will make the proof of Theorem
1.1 more accessible.

Proof of Theorem 1.2. We may replace X with an open neighborhood of x and thus
assume that X is noetherian. Define the quotient stack N = [Nx/Gx], where Nx is
viewed as an affine scheme via Spec(SymN∨x ).

Since Gx is linearly reductive, we claim that there are compatible isomorphisms

X
[n]
x
∼= N[n]. To see this, first note that we can lift X

[0]
x = BGx to a unique morphism

tn : X
[n]
x → BGx for all n. Indeed, the obstruction to a lift from tn : X

[n]
x → BGx

to tn+1 : X
[n+1]
x → BGx is an element of the group Ext1

OBGx
(LBGx/k, I

n+1/In+2)

[Ols06], which is zero because BGx is cohomologically affine and LBGx/k is a perfect
complex supported in degrees [0, 1] as BGx → Spec k is smooth.

In particular, BGx = X
[0]
x ↪→ X

[1]
x has a retraction. This implies that X

[1]
x
∼= N[1]

since both are trivial deformations by the same module. Since N→ BGx is smooth,

the obstructions to lifting the morphism X
[1]
x
∼= N[1] ↪→ N to X

[n]
x → N for every

n vanish as H1(BGx,Ω
∨
N/BGx

⊗ In+1/In+2) = 0. We have induced isomorphisms

X
[n]
x
∼= N[n] by Proposition A.8.

Let N→ N = Nx//Gx be the good moduli space and denote by 0 ∈ N the image

of the origin. Set N̂ := Spec ÔN,0 ×N N. Since N̂ is coherently complete (Theorem

1.3), we may apply Tannaka duality (Corollary 2.8) to find a morphism N̂ → X

filling in the diagram

X
[n]
x
∼= N[n] // ((

N̂ //

��

((
N

��

X

Spec ÔN,0 //

�

N.
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Let us now consider the functor F : (Sch/N)op → Sets which assigns to a mor-
phism S → N the set of morphisms S ×N N → X modulo 2-isomorphisms. This

functor is locally of finite presentation and we have an element of F over Spec ÔN,0.
By Artin approximation [Art69a, Cor. 2.2] (cf. Theorem A.12), there exist an
étale morphism (U, u) → (N, 0) where U is an affine scheme and a morphism

f : (W, w) := (U ×N N, (u, 0))→ (X, x) agreeing with (N̂, 0)→ (X, x) to first order.
Since X is smooth at x, it follows by Proposition A.8 that f restricts to isomor-

phisms f [n] : W
[n]
w → X

[n]
x for every n, hence that f is étale at w. This establishes

the theorem after shrinking U suitably; the final statement follows from Proposition
3.2 below. �

3.3. The general case. We now prove Theorem 1.1 by a similar method to the
proof in the smooth case but using equivariant Artin algebraization (Corollary
A.19) in place of Artin approximation.

Proof of Theorem 1.1. We may replace X with an open neighborhood of x and thus
assume that X is noetherian and that x ∈ |X| is a closed point.

Let N := [Nx/H] and let N be the GIT quotient Nx//H; then the induced

morphism N→ N is a good moduli space. Further, let N̂ := Spec ÔN,0×NN, where

0 denotes the image of the origin. Let η0 : BH → BGx = X
[0]
x be the morphism

induced from the inclusion H ⊆ Gx; this is a smooth (resp. étale) morphism. We
first prove by induction that there are compatible 2-cartesian diagrams

Hn

ηn
��

� � // Hn+1

ηn+1

��
X

[n]
x
� � //

�

X
[n+1]
x ,

where H0 = BH and the vertical maps are smooth (resp. étale). Indeed, given

ηn : Hn → X
[n]
x , by [Ols06], the obstruction to the existence of ηn+1 is an element

of Ext2
OBH

(ΩBH/BGx , η
∗
0(In+1/In+2)), but this group vanishes as H is linearly re-

ductive and ΩBH/BGx is a vector bundle.
Let τ0 : H0 = BH ↪→ N be the inclusion of the origin. Since H is linearly

reductive, the deformation H0 ↪→ H1 is a trivial extension with ideal N∨x and
hence we have an isomorphism τ1 : H1

∼= N[1] (see proof of smooth case). Using
linear reductivity of H once again and deformation theory, we obtain compatible
morphisms τn : Hn → N extending τ0 and τ1. These are closed immersions by
Proposition A.8 (1).

The closed immersion τn : Hn ↪→ N factors through a closed immersion in : Hn ↪→
N[n]. Since N̂ is coherently complete, the inverse system of epimorphisms ON[n] →
in,∗OHn

, in the category lim←−n Coh(N[n]), lifts uniquely to an epimorphism O
N̂
→

O
Ĥ

in the category Coh(N̂). This defines a closed immersion i : Ĥ → N̂ rendering
the following square 2-cartesian for all n:

Hn� _

in
��

� � // Ĥ� _

i
��

N[n] �
� // N̂.
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Since Ĥ also is coherently complete, Tannaka duality (Corollary 2.8) yields a mor-

phism η : Ĥ→ X such that the following square is 2-commutative for all n:

Hn

ηn
��

� � // Ĥ

η

��
X

[n]
x

// X.

The morphism η is formally versal (resp. universal) by Proposition A.14. We may
therefore apply Corollary A.19 to obtain a stack W = [SpecA/H] together with
a closed point w ∈ |W|, a morphism f : (W, w) → (X, x) of finite type, a flat

morphism ϕ : Ĥ → W, identifying Ĥ with the completion of W at w, and a 2-
isomorphism f ◦ ϕ ∼= η. In particular, f is smooth (resp. étale) at w. Moreover,

(f ◦ ϕ)−1(X
[0]
x ) = H0 so we have a flat morphism BH = H0 → f−1(BGx) which

equals the inclusion of the residual gerbe at w. It follows that w is an isolated point
in the fiber f−1(BGx). We can thus replace W with an open neighborhood of w
such that W → X becomes smooth (resp. étale) and f−1(BGx) = BH. Since w is
a closed point of W, we may further shrink W so that it remains cohomologically
affine (see Lemma 3.1 below).

The final statement follows from Proposition 3.2 below. �

3.4. The refinement. The results in this section can be used to show that under
suitable hypotheses, the quotient presentation f : W→ X in Theorems 1.1 and 1.2
can be arranged to be affine (Proposition 3.2), quasi-affine (Corollary 3.3), and
representable (Proposition 3.4).

The following trivial lemma will be frequently applied to a good moduli space
morphism π : X→ X. Note that any closed subset Z ⊆ X satisfies the assumption
in the lemma in this case.

Lemma 3.1. Let π : X → X be a closed morphism of topological spaces and let
Z ⊆ X be a closed subset. Assume that every open neighborhood of Z contains
π−1(π(Z)). If Z ⊆ U is an open neighborhood of Z, then there exists an open
neighborhood U ′ ⊆ X of π(Z) such that π−1(U ′) ⊆ U.

Proof. Take U ′ = X \ π(X \ U). �

We now come to our main refinement result.

Proposition 3.2. Let f : W → X be a morphism of noetherian algebraic stacks
such that W is cohomologically affine with affine diagonal. Suppose w ∈ |W| is
a closed point such that f induces an injection of stabilizer groups at w. If X has
affine diagonal, then there exists a cohomologically affine open neighborhood U ⊆W

of w such that f |U is affine.

Proof. By shrinking W, we may assume that ∆W/X is quasi-finite and after further
shrinking, we may arrange so that W remains cohomologically affine (Lemma 3.1).
Let p : V → X be a smooth surjection, where V is affine; then p is affine because
X has affine diagonal. Take fV : WV → V to be the pullback of f along p. Then
WV → W is affine, and so WV is cohomologically affine. Since WV also has
quasi-finite and affine diagonal, fV is separated [Alp14, Thm. 8.3.2]. By descent,
f is separated. In particular, the relative inertia of f , IW/X → W, is finite. By
Nakayama’s Lemma, there is an open substack U of W, containing w, with trivial
inertia relative to X. Thus U → X is quasi-compact, representable and separated.
Shrinking U further, U also becomes cohomologically affine. Since X has affine
diagonal, it follows that f is also cohomologically affine. By Serre’s Criterion [Alp13,
Prop. 3.3], f is affine. �
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Corollary 3.3. Let S be a noetherian scheme. Let f : W → X be a morphism of
noetherian algebraic stacks over S such that W is cohomologically affine with affine
diagonal. Suppose w ∈ |W| is a closed point such that f induces an injection of
stabilizer groups at w. If X = [X/G] where X is an algebraic space and G is an
affine flat group scheme of finite type over S, then there exists a cohomologically
affine open neighborhood U ⊆W of w such that f |U is quasi-affine.

Proof. Consider the composition W→ [X/G]→ BG. By Proposition 3.2, we may
suitably shrink W so that the composition W → [X/G] → BG becomes affine.
Since X is a noetherian algebraic space, it has quasi-affine diagonal; in particular
[X/G]→ BG has quasi-affine diagonal. It follows immediately that W→ [X/G] is
quasi-affine. �

Proposition 3.4. Let S be a noetherian scheme. Let f : W→ X be a morphism of
locally noetherian algebraic stacks over S. Assume that X has separated diagonal
and that W = [W/H], where W is affine over S and H is of multiplicative type
over S. If w ∈ W is fixed by H and f induces an injection of stabilizer groups at
w, then there exists an H-invariant affine open U of w in W such that [U/H]→ X

is representable.

Remark 3.5. The separatedness of the diagonal is essential; see Examples 1.7 and
1.8.

Proof. There is an exact sequence of groups over W:

1 // IW/X
// IW/S

// IX/S ×X W.

Since f induces an injection of stabilizer groups at w, it follows that (IW/X)w is
trivial. Also, since IX/S → X is separated, IW/X → IW/S is a closed immersion.

Let I = IW/X ×W W and pull the inclusion IW/X → IW/S back to W . Since
IW/S ×W W → H ×S W is a closed immersion, it follows that I → H ×S W is a
closed immersion. Since H → S is of multiplicative type and Iw is trivial, it follows
that I → W is trivial in a neighborhood of w [SGA3II, Exp. IX, Cor. 6.5]. By
shrinking this open subset using Lemma 3.1, we obtain the result. �

4. Local applications

4.1. Generalization of Sumihiro’s theorem on torus actions. In [Opr06,
§2], Oprea speculates that every quasi-compact Deligne–Mumford stack X with
a torus action has an equivariant étale atlas SpecA → X. He proves this when
X = M0,n(Pr, d) is the moduli space of stable maps and the action is induced by
any action of Gm on Pr and obtains some nice applications. We show that Oprea’s
speculation holds in general.

For group actions on stacks, we follow the conventions of [Rom05]. Let T be
a torus acting on an algebraic stack X, locally of finite type over a field k, via
σ : T × X → X. Let Y = [X/T ]. Let x ∈ X(k) be a point with image y ∈ Y(k).
There is an exact sequence

(4.1) 1 // Gx // Gy // Tx // 1 ,

where the stabilizer Tx ⊆ T is defined by the fiber product

Tx ×BGx
σx //

��

BGx

��
T ×BGx

σ|x //

�

X

(4.2)

and σ|x : T ×BGx
id×ιx−−−−→ T × X

σ−→ X.
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Observe that Gy = Spec k×BGx Tx. The exact sequence (4.1) is trivially split if
and only if the induced action σx of Tx on BGx is trivial. The sequence is split if
and only if the action σx comes from a group homomorphism T → Aut(Gx).

Theorem 4.1. Let X be a quasi-separated algebraic (resp. Deligne–Mumford) stack
with affine stabilizers, locally of finite type over an algebraically closed field k. Let
T be a torus acting on X. Let x ∈ X(k) be a point such that Gx is smooth and
the exact sequence (4.1) is split (e.g., X is an algebraic space). There exists a T -
equivariant smooth (resp. étale) neighborhood (SpecA, u)→ (X, x) that induces an
isomorphism of stabilizers at u.

Proof. Let Y = [X/T ] and y ∈ Y(k) be the image of x. As the sequence (4.1)
splits, we can consider Tx as a subgroup of Gy. By applying Theorem 1.1 to Y at y
with respect to the subgroup Tx ⊆ Gy, we obtain a smooth (resp. étale) morphism
f : [W/Tx] → Y, where W is an affine scheme with an action of Tx, which induces
the given inclusion Tx ⊆ Gy at stabilizer groups at a preimage w ∈ [W/Tx] of y.
Consider the cartesian diagram

[W/Tx]×Y X //

��

X

��

// Spec k

��
[W/Tx] // Y // BT

The map [W/Tx]→ Y→ BT induces the injection Tx ↪→ T on stabilizers groups at
w. Thus, by Proposition 3.2, there is an open neighborhood U ⊆ [W/Tx] of w such
that U is cohomologically affine and U → BT is affine. The fiber product X ×Y U

is thus an affine scheme SpecA and the induced map SpecA→ X is T -equivariant.
If u ∈ SpecA is a closed point above w and x, then the map SpecA → X induces
an isomorphism Tx → Tx of stabilizer groups at u. �

In the case that X is a normal scheme, Theorem 4.1 was proved by Sumi-
hiro [Sum74, Cor. 2], [Sum75, Cor. 3.11]; then SpecA → X can be taken to be an
open neighborhood. The nodal cubic with a Gm-action provides an example where
an étale neighborhood is needed: there does not exist a Gm-invariant affine open
neighborhood of the node. Theorem 4.1 was also known if X is a quasi-projective
scheme [Bri15, Thm. 1.1(iii)] or if X is a smooth, proper, tame and irreducible
Deligne–Mumford stack, whose generic stabilizer is trivial and whose coarse moduli
space is a scheme [Sko13, Prop. 3.2].

Remark 4.2. The theorem above fails when (4.1) does not split because an equivari-
ant, stabilizer-preserving, affine, and étale neighborhood induces a splitting. For
a simple example when (4.1) does not split, consider the Kummer exact sequence

1→ µµµn → Gm
n−→ Gm → 1 for some invertible n. This gives rise to a T = Gm action

on the Deligne–Mumford stack X = Bµµµn with stack quotient Y = [X/T ] = BGm
such that (4.1) becomes the Kummer sequence and hence does not split. The action
of Gm on Bµµµn has the following explicit description: for t ∈ Gm(S) = Γ(S,OS)×

and (L, α) ∈ Bµµµn(S) (where L is a line bundle on S and α : L⊗n → OS is an
isomorphism), then t · (L, α) = (L, t ◦ α).

There is nevertheless an étale presentation Spec k → Bµµµn which is equivariant

under Gm
n−→ Gm. The following theorem shows that such étale presentations exist

more generally.

Theorem 4.3. Let X be a quasi-separated Deligne–Mumford stack, locally of finite
type over an algebraically closed field k. Let T be a torus acting on X. If x ∈
X(k), then there exist a reparameterization α : T → T and an étale neighborhood
(SpecA, u)→ (X, x) that is equivariant with respect to α.
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Proof. In the exact sequence (4.1), Gx is étale and Tx is diagonalizable. This implies
that (Gy)0 is diagonalizable. Indeed, first note that we have exact sequences:

1 // Gx ∩ (Gy)0 // (Gy)0 // (Tx)0 // 1

1 // Gx ∩ (Gy)0 // (Gy)0
red

// (Tx)0
red

// 1.

The second sequence shows that (Gy)0
red is a torus (as it is connected, reduced

and surjects onto a torus with finite kernel) and, consequently, that Gx ∩ (Gy)0

is diagonalizable. It then follows that (Gy)0 is diagonalizable from the first se-
quence [SGA3II, Exp. XVII, Prop. 7.1.1 b)].

Theorem 1.1 produces an étale neighborhood f : ([SpecA/(Gy)0], w) → (Y, y)
such that the induced morphism on stabilizers groups is (Gy)0 → Gy. Replacing
X → Y with the pull-back along f , we may thus assume that Gy is connected and
diagonalizable.

If we let Gy = D(N), Tx = D(M) and T = D(Zr), then we have a surjective
map q : Zr → M and an injective map ϕ : M → N . The quotient N/M is torsion
but without p-torsion, where p is the characteristic of k. Since all torsion of M and
N is p-torsion, we have that ϕ induces an isomorphism of torsion subgroups. We
can thus find splittings of ϕ and q as in the diagram

Zr =Zs ⊕M/Mtor
� � α=id⊕ϕ2 //

q=q1⊕id
����

Zs ⊕N/Ntor= Zr

q′=ϕ1q1⊕id
����

M =Mtor ⊕M/Mtor
� � ϕ=ϕ1⊕ϕ2 // Ntor ⊕N/Ntor= N.

The map q′ corresponds to an embedding Gy ↪→ T and the map α to a reparame-
terization T → T . After reparameterizing the action of T on X via α, the surjection
Gy � Tx becomes split. The result now follows from Theorem 4.1. �

We can also prove:

Theorem 4.4. Let X be a quasi-separated algebraic space, locally of finite type
over an algebraically closed field k. Let G be an affine group scheme of finite type
over k acting on X. Let x ∈ X(k) be a point with linearly reductive stabilizer Gx.
Then there exists an affine scheme W with an action of G and a G-equivariant
étale neighborhood (W,w) → (X,x) that induces an isomorphism of stabilizers at
w.

Proof. By Theorem 1.1, there exists an étale neighborhood f : (W, w)→ ([X/G], x)
such that W is cohomologically affine, f induces an isomorphism of stabilizers at
w, and w is a closed point. By Proposition 3.2, we can assume after shrinking W

that the composition W→ [X/G]→ BG is affine. It follows that W = W×[X/G]X
is affine and that W → X is a G-equivariant étale neighborhood of x. If we also
let w ∈W denote the unique preimage of x, then Gw = Gx. �

Theorem 4.4 is a partial generalization of another result of Sumihiro [Sum74,
Lem. 8], [Sum75, Thm. 3.8]. He proves the existence of an open G-equivariant
covering by quasi-projective subschemes when X is a normal scheme and G is
connected.

4.2. Generalization of Luna’s étale slice theorem. We now provide a refine-
ment of Theorem 1.1 in the case that X = [X/G] is a quotient stack, generalizing
Luna’s étale slice theorem.
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Theorem 4.5. Let X be a quasi-separated algebraic space, locally of finite type over
an algebraically closed field k. Let G be an affine smooth group scheme acting on
X. Let x ∈ X(k) be a point with linearly reductive stabilizer Gx. Then there exists
an affine scheme W with an action of Gx which fixes a point w, and an unramified

Gx-equivariant morphism (W,w)→ (X,x) such that f̃ : W ×Gx G→ X is étale.1

If X admits a good GIT quotient X → X//G, then it is possible to arrange that
the induced morphism W//Gx → X//G is étale and W ×Gx G ∼= W//Gx ×X//G X.

Let Nx = TX,x/TG·x,x be the normal space to the orbit at x; this inherits a
natural linear action of Gx. If x ∈ X is smooth, then it can be arranged that there
is an étale Gx-equivariant morphism W → Nx such that W//Gx → Nx//Gx is étale
and

Nx ×Gx G

��

W ×Gx G
f̃ //

��

oo X

Nx//Gx W//Gxoo

�

is cartesian.

Proof. By applying Theorem 4.4, we can find an affine scheme X ′ with an action of
G and a G-equivariant, étale morphism X ′ → X. This reduces the theorem to the
case when X is affine, which was established in [Lun73, p. 97], cf. Remark 4.6. �

Remark 4.6. The theorem above follows from Luna’s étale slice theorem [Lun73] if
X is affine. In this case, Luna’s étale slice theorem is stronger than Theorem 4.5 as
it asserts additionally that W → X can be arranged to be a locally closed immersion
(which is obtained by choosing a Gx-equivariant section of TX,x → Nx and then
restricting to an open subscheme of the inverse image of Nx under a Gx-equivariant
étale morphism X → TX,x). Note that while [Lun73] assumes that char(k) = 0 and
G is reductive, the argument goes through unchanged in arbitrary characteristic
if G is smooth, and Gx is smooth and linearly reductive. Moreover, with minor
modifications, the argument in [Lun73] is also valid if Gx is not necessarily smooth.

Remark 4.7. More generally, if X is a normal scheme, it is shown in [AK16, §2.1]
that W → X can be arranged to be a locally closed immersion. However, when X
is not normal or is not a scheme, one cannot always arrange W → X to be a locally
closed immersion and therefore we must allow unramified “slices” in the theorem
above.

4.3. Existence of equivariant versal deformations for curves. By a curve,
we mean a proper scheme over k of pure dimension one. An n-pointed curve is a
curve C together with n points p1, . . . , pn ∈ C(k). The points are not required to
be smooth nor distinct. We introduce the following condition on (C, {pj}):

(†) every connected component of C of arithmetic genus 1 contains a point pj .

Theorem 4.8. Let k be an algebraically closed field and let (C, {pj}) be an n-
pointed reduced curve over k satisfying (†). Suppose that a linearly reductive group
scheme H acts on C. If Aut(C, {pj}) is smooth, then there exist an affine scheme
W of finite type over k with an action of H fixing a point w ∈W and a miniversal
deformation

C

��

Coo

��
W

sj

HH

Spec k

pj

VV

woo

�

1Here, W ×Gx G denotes the quotient (W × G)/Gx. Note that there is an identification of
GIT quotients (W ×Gx G)//G ∼= W//Gx.
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of C ∼= Cw such that there exists an action of H on the total family (C, {sj})
compatible with the actions of H on W and C.

The theorem above was proven for Deligne–Mumford semistable curves in [AK16].

Proof. The stack Un parameterizing all n-pointed proper schemes of dimension 1 is
algebraic and quasi-separated [Smy13, App. B]. The substack Mn ⊂ Un parameter-
izing reduced n-pointed curves is open and the substack M†n ⊂Mn, parameterizing
reduced n-pointed curves satisfying (†) is open and closed.

We claim that M†n has affine stabilizers. To see this, let (C, {pj}) be an n-pointed
curve satisfying (†). The stabilizer of (C, {pj}) is a closed subgroup Aut(C, {pj}) ⊆
Aut(C̃, Z) where η : C̃ → C is the normalization, Z = η−1(SingC∪{p1, p2, . . . , pn})
with the reduced structure and Aut(C̃, Z) denotes the automorphisms of C̃ that

maps Z onto Z. Since Aut(π0(C̃)) is finite, it is enough to prove that Aut(C̃i, Z∩C̃i)
is affine for every component C̃i of C̃. This holds since (†) guarantees that either

g(C̃i) 6= 1 or Z ∩ C̃i 6= ∅.
Since H is linearly reductive and Aut(C, {pj})/H is smooth, Theorem 1.1 pro-

vides an affine scheme W with an action of H, a k-point w ∈ W fixed by H and
a smooth map [W/H] → M†n with w mapping to (C, {pj}). This yields a family
of n-pointed curves C → W with an action of H on C compatible with the action
on W and C ∼= Cw. The map W → M†n is smooth and adic at w. Indeed, it is
flat by construction and the fiber at (C, {pj}) is Spec k → BAut(C, {pj}) which
is smooth. In particular, the tangent space of W at w coincides with the tangent
space of M†n at (C, {pj}); that is, C → W is a miniversal deformation of C (see
Remark A.7). �

Remark 4.9. From the proof, it is clear that Theorem 4.8 is valid for pointed curves
such that every deformation has an affine automorphism group. It was pointed out
to us by Bjorn Poonen that if (C, {pj}) is an n-pointed curve and no connected
component of Cred is a smooth unpointed curve of genus 1, then Aut(C, {pj}) is an
affine group scheme over k. It follows that Theorem 4.8 is valid for pointed curves
(C, {pj}) satisfying the property that for every deformation (C ′, {p′j}) of (C, {pj}),
there is no connected component of C ′red which is a smooth unpointed curve of
genus 1.

In a previous version of this article, we erroneously claimed that if no connected
component of Cred is a smooth unpointed curve of genus 1, then this also holds for
every deformation of C. The following example shows that this is not the case.

Example 4.10. Let S = A1
C = SpecC[t], let S′ = SpecC[t, x]/(x2 − t2) and let

C = E ×C S
′ where E is a smooth genus 1 curve and C → S′ → S is the natural

map. Then the fiber over t = 0 is E ×C SpecC[x]/(x2) and the fiber over t = 1
is E q E. Choosing a point p ∈ E and a section of S′ → S, e.g., x = t, gives a
section s of C which only passes through one of the two components over t = 1. In
particular, the fiber of (C, s) over t = 1 does not have affine automorphism group.
Alternatively, one could in addition pick a pointed curve (C, c) of genus at least 1
and glue C with C × S along s and c. This gives an unpointed counterexample.

Remark 4.11. If C→ S is a family of pointed curves such that there is no connected
component of any fiber whose reduction is a smooth unpointed curve of genus 1,
then the automorphism group scheme Aut(C/S) → S of C over S has affine fibers
but need not be affine (or even quasi-affine). This even fails for families of Deligne–
Mumford semistable curves; see [AK16, §4.1].
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4.4. Good moduli spaces. In the following result, we determine the étale-local
structure of good moduli space morphisms.

Theorem 4.12. Let X be a noetherian algebraic stack over an algebraically closed
field k. Let X → X be a good moduli space with affine diagonal. If x ∈ X(k) is a
closed point, then there exists an affine scheme SpecA with an action of Gx and a
cartesian diagram

[SpecA/Gx] //

��

X

π

��
SpecA//Gx //

�

X

such that SpecA//Gx → X is an étale neighborhood of π(x).

In the proof of Theorem 4.12 we will use the following minor variation of [Alp10,
Thm. 6.10]. We provide a direct proof here for the convenience of the reader.

Proposition 4.13 (Luna’s fundamental lemma). Let f : X→ Y be an étale, sepa-
rated and representable morphism of noetherian algebraic stacks such that there is
a commutative diagram

X
f //

πX

��

Y

πY

��
X // Y

where πX and πY are good moduli spaces. Let x ∈ |X| be a closed point. If f(x) ∈
|Y| is closed and f induces an isomorphism of stabilizer groups at x, then there
exists an open neighborhood U ⊂ X of πX(x) such that U → X → Y is étale and
π−1
X (U) ∼= U ×Y Y.

Proof. By Zariski’s main theorem [LMB, Cor. 16.4(ii)], there is a factorization

X ↪→ X̃ → Y, where X ↪→ X̃ is an open immersion and X̃ → Y is finite. There is a

good moduli space π
X̃

: X̃ → X̃ such that the induced morphism X̃ → Y is finite

[Alp13, Thm. 4.16(x)]. Note that x ∈ |X̃| is closed. By Lemma 3.1 we may thus
replace X with an open neighborhood U ⊂ X of x that is saturated with respect

to π
X̃

(i.e., U = π−1

X̃
(π

X̃
(U))). Then X → X̃ becomes an open immersion so that

X → Y is quasi-finite.
Further, the question is étale local on Y . Hence, we may assume that Y is the

spectrum of a strictly henselian local ring with closed point πY(f(x)). Since Y is
henselian, after possibly shrinking X further, we can arrange that X → Y is finite

with X the spectrum of a local ring with closed point πX(x). Then X → X̃ is a

closed and open immersion, hence so is X→ X̃. It follows that X→ Y is finite. As
f is stabilizer-preserving at x and Y is strictly henselian, f induces an isomorphism
of residual gerbes at x. We conclude that f is a finite, étale morphism of degree 1,
hence an isomorphism. �

Proof of Theorem 4.12. By Theorem A.1, X→ X is of finite type. We may assume
that X = SpecR, where R is a noetherian k-algebra. By noetherian approximation
along k → R, there is a finite type k-algebra R0 and an algebraic stack X0 of
finite type over SpecR0 with affine diagonal such that X ' X0×SpecR0 SpecR. We
may also arrange that the image x0 of x in X0 is closed with linearly reductive
stabilizer Gx. We now apply Theorem 1.1 to find a pointed affine étale k-morphism
f0 : ([SpecA0/Gx], w0)→ (X0, x0) that induces an isomorphism of stabilizers at w0.
Pulling this back along SpecR → SpecR0, we obtain an affine étale morphism
f : [SpecA/Gx]→ X inducing an isomorphism of stabilizers at all points lying over
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the preimage of w0. The result now follows from Luna’s fundamental lemma for
stacks (Proposition 4.13). �

The following corollary answers negatively a question of Geraschenko–Zureick-
Brown [GZB15, Qstn. 32]: does there exist an algebraic stack, with affine diagonal
and good moduli space a field, that is not a quotient stack? In the equicharacteristic
setting, this result also settles a conjecture of theirs: formal GAGA holds for good
moduli spaces with affine diagonal [GZB15, Conj. 28]. The general case will be
treated in forthcoming work [AHR19].

Corollary 4.14. Let X be a noetherian algebraic stack over a field k (not assumed
to be algebraically closed) with affine diagonal. Suppose that there exists a good
moduli space π : X→ SpecR, where (R,m) is a complete local ring.

(1) Then X ∼= [SpecB/GLn]; in particular, X has the resolution property; and
(2) the natural functor

Coh(X)→ lim←−Coh
(
X×SpecR SpecR/mn+1

)
is an equivalence of categories.

Proof. By [GZB15, Thm. 1], we have (1) =⇒ (2); thus, it suffices to prove (1).
If R/m = k and k is algebraically closed, then X = [SpecA/Gx] by Theorem

4.12. Embed Gx ⊆ GLN,k for some N . Then X = [U/GLN,k] where U = (SpecA×
GLN,k)/Gx is an algebraic space. Since U is affine over X it is cohomologically
affine, hence affine by Serre’s criterion [Alp13, Prop. 3.3]. In this case, (1) holds
even if R is not complete but merely henselian.

If R/m = k and k is not algebraically closed, then we proceed as follows. Let k be
an algebraic closure of k. By [EGA, 0III.10.3.1.3], R = R⊗k k = lim−→k⊆k′⊆k R⊗k k

′

is a noetherian local ring with maximal ideal m = mR and residue field R/m ∼= k,
and the induced map R/m → R/m coincides with k → k. Since each R ⊗k k′ is

henselian, R is henselian. By the case considered above, there is a vector bundle E

on Xk such that the associated frame bundle is an algebraic space (even an affine
scheme). Equivalently, for every geometric point y of X, the stabilizer Gy acts

faithfully on Ey, cf. [EHKV01, Lem. 2.12].

We can find a finite extension k ⊆ k′ ⊆ k and a vector bundle E on Xk′ that
pulls back to E. If p : Xk′ → X denotes the natural map, then p∗E is a vector
bundle and the counit map p∗p∗E → E is surjective. In particular, the stabilizer
actions on p∗E are also faithful so the frame bundle U of p∗E is an algebraic space
and X = [U/GLN ′ ] is a quotient stack. Since X is cohomologically affine and
U → [U/GLN ′ ] is affine, U is affine by Serre’s criterion [Alp13, Prop. 3.3].

In general, let K = R/m. Since R is a complete k-algebra, it admits a coefficient
field; thus, it is also a K-algebra. We are now free to replace k with K and the
result follows. �

Remark 4.15. If k is algebraically closed, then in Corollary 4.14(1) above, X is in
fact isomorphic to a quotient stack [SpecA/Gx] where Gx is the stabilizer of the
unique closed point. If in addition X is smooth, then X ∼= [Nx/Gx] where Nx is the
normal space to x (or equivalently the tangent space of X at x if Gx is smooth).

4.5. Existence of coherent completions. Recall that a complete local stack is an
excellent local stack (X, x) with affine stabilizers such that X is coherently complete
along the residual gerbe Gx (Definition A.9).

The coherent completion of a noetherian stack X at a point x is a complete

local stack (X̂x, x̂) together with a morphism η : (X̂x, x̂)→ (X, x) inducing isomor-
phisms of nth infinitesimal neighborhoods of x̂ and x. If X has affine stabilizers,
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then the pair (X̂x, η) is unique up to unique 2-isomorphism by Tannaka duality
(Corollary 2.8).

The next result asserts that the coherent completion always exists under very
mild hypotheses.

Theorem 4.16. Let X be a quasi-separated algebraic stack with affine stabilizers,
locally of finite type over an algebraically closed field k. For any point x ∈ X(k)

with linearly reductive stabilizer Gx, the coherent completion X̂x exists.

(1) The coherent completion is an excellent quotient stack X̂x = [SpecB/Gx],
and is unique up to unique 2-isomorphism. The invariant ring BGx is the
completion of an algebra of finite type over k and BGx → B is of finite
type.

(2) If f : (W, w) → (X, x) is an étale morphism, such that W = [SpecA/Gx],
the point w ∈ |W| is closed and f induces an isomorphism of stabilizer

groups at w; then X̂x = W×W Spec ÔW,π(w), where π : W→W = SpecAGx

is the morphism to the GIT quotient.

(3) If π : X→ X is a good moduli space with affine diagonal, then X̂x = X×X
Spec ÔX,π(x).

Proof. Theorem 1.1 gives an étale morphism f : (W, w) → (X, x), where W =
[SpecA/Gx] and f induces an isomorphism of stabilizer groups at the closed point

w. The main statement and Parts (1) and (2) follow by taking X̂x = W ×W
Spec ÔW,π(w) and B = A⊗AGx ÂGx . Indeed, X̂x = [SpecB/Gx] is coherently com-
plete by Theorem 1.3 and B is excellent since it is of finite type over the complete

local ring BGx = ÂGx . Part (3) follows from (2) after applying Theorem 4.12. �

Remark 4.17. With the notation of Theorem 4.16 (2), observe that if Gx is smooth,
then (SpecA,w)→ (X, x) is smooth and adic so the formal miniversal deformation

space of x is D̂ef(x) = Spf Â where Â denotes the completion of A at the Gx-fixed

point w (see Remark A.7). The stabilizer Gx acts on Spf Â and its versal object,

and it follows from Theorem 1.3 that there is an identification ÂGx = ÂGx . In
particular, ÂGx is the completion of a k-algebra of finite type.

Remark 4.18. If there exists an étale neighborhood f : W = [SpecA/Gx] → X of
x such that AGx = k, then the pair (W, f) is unique up to unique 2-isomorphism.
This follows from Theorem 4.16 as W is the coherent completion of X at x.

The henselization of X at x is the stack Xhx = W×W Spec(AGx)h. This stack also
satisfies a universal property (initial among pro-étale neighborhoods of the residual
gerbe at x) and will be treated in forthcoming work [AHR19].

4.6. Étale-local equivalences. Before we state the next result, let us recall that
if X is an algebraic stack, and x ∈ X(k) is a point, then a formal miniversal de-

formation space of x is a one-point affine formal scheme D̂ef(x), together with a

formally smooth morphism D̂ef(x)→ X that is an isomorphism on tangent spaces
at x, see Remark 4.17. If the stabilizer group scheme Gx is smooth and linearly

reductive, then D̂ef(x) inherits an action of Gx.

Theorem 4.19. Let X and Y be quasi-separated algebraic stacks with affine stabi-
lizers, locally of finite type over an algebraically closed field k. Suppose x ∈ X(k)
and y ∈ Y(k) are points with smooth linearly reductive stabilizer group schemes Gx
and Gy, respectively. Then the following are equivalent:
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(1) There exist an isomorphism Gx → Gy of group schemes and an isomor-

phism D̂ef(x) → D̂ef(y) of formal miniversal deformation spaces which is
equivariant with respect to Gx → Gy.

(2) There exists an isomorphism X̂x → Ŷy.
(3) There exist an affine scheme SpecA with an action of Gx, a point w ∈

SpecA fixed by Gx, and a diagram of étale morphisms

[SpecA/Gx]
f

yy

g

%%
X Y

such that f(w) = x and g(w) = y, and both f and g induce isomorphisms
of stabilizer groups at w.

If additionally x ∈ |X| and y ∈ |Y| are smooth, then the conditions above are
equivalent to the existence of an isomorphism Gx → Gy of group schemes and an
isomorphism TX,x → TY,y of tangent spaces which is equivariant under Gx → Gy.

Remark 4.20. If the stabilizers Gx and Gy are not smooth, then the theorem above
remains true (with the same argument) if the formal miniversal deformation spaces
are replaced with formal completions of equivariant flat adic presentations (Def-
inition A.4) and the tangent spaces are replaced with normal spaces. Note that
the composition SpecA → [SpecA/Gx] → X produced by Theorem 1.1 is a Gx-
equivariant flat adic presentation.

Proof of Theorem 4.19. The implications (3) =⇒ (2) =⇒ (1) are immediate. We

also have (1) =⇒ (2) as X
[n]
x = [D̂ef(x)[n]/Gx] and Y

[n]
y = [D̂ef(y)[n]/Gy]. We now

show that (2) =⇒ (3). We are given an isomorphism α : X̂x
∼→ Ŷy. Let f : (W, w)→

(X, x) be an étale neighborhood as in Theorem 1.1, that is, W = [SpecA/Gx] and
f induces an isomorphism of stabilizer groups at the closed point w. Let W =
SpecAGx denote the good moduli space of W and let w0 be the image of w. Then

X̂x = W×W Spec ÔW,w0
. The functor F : (T →W ) 7→ Hom(W×W T,Y) is locally of

finite presentation. Artin approximation applied to F and α ∈ F (Spec ÔW,w0
) thus

gives an étale morphism (W ′, w′)→ (W,w) and a morphism ϕ : W′ := W×WW ′ →
Y such that ϕ[1] : W

′[1]
w′ → Y

[1]
y is an isomorphism. Since Ŵ′w′ ∼= X̂x ∼= Ŷy, it follows

that ϕ induces an isomorphism Ŵ′ → Ŷ by Proposition A.10 (2). After replacing
W ′ with an open neighborhood we thus obtain an étale morphism (W′, w′)→ (Y, y).
The final statement is clear from Theorem 1.2. �

4.7. The resolution property holds étale-locally. In [Ryd15, Def. 2.1], an
algebraic stack X is said to be of global type (resp. s-global type) if there is a repre-
sentable (resp. representable and separated) étale surjective morphism p : [V/GLn]→
X of finite presentation where V is quasi-affine. That is, the resolution property
holds for X étale-locally. We will show that if X has linearly reductive stabilizers
at closed points and affine diagonal, then X is of s-global type. We begin with a
more precise statement.

Theorem 4.21. Let X be a quasi-separated algebraic stack, of finite type over a
perfect (resp. arbitrary) field k, with affine stabilizers. Assume that for every closed
point x ∈ |X|, the unit component G0

x of the stabilizer group scheme Gx is linearly
reductive. Then there exists

(1) a finite field extension k′/k;
(2) a linearly reductive group scheme G over k′;
(3) a finitely generated k′-algebra A with an action of G; and
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(4) an étale (resp. quasi-finite flat) surjection p : [SpecA/G]→ X.

Moreover, if X has affine diagonal, then p can be arranged to be affine.

Proof. First assume that k is algebraically closed. Since X is quasi-compact, Theo-
rem 1.1 gives an étale surjective morphism q : [U1/G1]q · · · q [Un/Gn]→ X where
Gi is a linearly reductive group scheme over k acting on an affine scheme Ui. If we
let G = G1 ×G2 × · · · ×Gn and let U be the disjoint union of the Ui ×G/Gi, we
obtain an étale surjective morphism p : [U/G] → X. If X has affine diagonal, then
we can assume that q, and hence p, are affine.

For general k, write the algebraic closure k as a union of its finite subextensions
k′/k. A standard limit argument gives a solution over some k′ and we compose this
with the étale (resp. flat) morphism Xk′ → X. �

Corollary 4.22. Let X be an algebraic stack with affine diagonal and of finite type
over a field k (not necessarily algebraically closed). Assume that for every closed
point x ∈ |X|, the unit component G0

x of the stabilizer group scheme Gx is linearly
reductive. Then X is of s-global type.

Proof. By Theorem 4.21 there is an affine, quasi-finite and faithfully flat morphism
W→ X of finite presentation where W = [SpecA/G] for a linearly reductive group
scheme G over k′. If we choose an embedding G ↪→ GLn,k′ , then we can write
W = [SpecB/GLn], see proof of Corollary 4.14. By [Ryd15, Prop. 2.8 (iii)], it
follows that X is of s-global type. �

Geraschenko and Satriano define generalized toric Artin stacks in terms of gen-
eralized stacky fans. They establish that over an algebraically closed field of char-
acteristic 0, an Artin stack X with finite quotient singularities is toric if and only if
it has affine diagonal, has an open dense torus T acting on the stack, has linearly
reductive stabilizers, and [X/T ] is of global type [GS15, GS19, Thm. 6.1]. If X has
linearly reductive stabilizers at closed points, then so has [X/T ]. Corollary 4.22
thus shows that the last condition is superfluous.

5. Global applications

5.1. Compact generation of derived categories. For results involving derived
categories of quasi-coherent sheaves, perfect (or compact) generation of the un-
bounded derived category DQCoh(X) continues to be an indispensable tool at one’s
disposal [Nee96, BZFN10]. We prove:

Theorem 5.1. Let X be an algebraic stack of finite type over a field k (not as-
sumed to be algebraically closed) with affine diagonal. If the stabilizer group Gx has
linearly reductive identity component G0

x for every closed point of X, then X has the
Thomason condition; that is,

(1) DQCoh(X) is compactly generated by a countable set of perfect complexes;
and

(2) for every open immersion U ⊆ X, there exists a compact and perfect complex
P ∈ DQCoh(X) with support precisely X \ U.

Proof. This follows from Corollary 4.22 together with [HR17, Thm. B] (characteris-
tic 0) and Theorem 4.21 together with [HR15, Thm. D] (positive characteristic). �

Theorem 5.1 was previously only known for stacks with finite stabilizers [HR17,
Thm. A] or quotients of quasi-projective schemes by a linear action of an affine
algebraic group in characteristic 0 [BZFN10, Cor. 3.22].

In positive characteristic, the theorem is almost sharp: if the reduced identity
component (Gx)0

red is not linearly reductive, i.e., not a torus, at some point x, then
DQCoh(X) is not compactly generated [HNR19, Thm. 1.1].
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If X is an algebraic stack of finite type over k with affine stabilizers such that
either

(1) the characteristic of k is 0; or
(2) every stabilizer is linearly reductive;

then X is concentrated, that is, a complex of OX-modules with quasi-coherent coho-
mology is perfect if and only if it is a compact object of DQCoh(X) [HR15, Thm. C].
If X admits a good moduli space π : X → X with affine diagonal, then one of the
two conditions hold by Theorem 4.12. If X does not admit a good moduli space and
is of positive characteristic, then it is not sufficient that closed points have linearly
reductive stabilizers as the following example shows.

Example 5.2. Let X = [X/(Gm × Z/2Z)] be the quotient of the non-separated
affine line X by the natural Gm-action and the Z/2Z-action that swaps the origins.
Then X has two points, one closed with stabilizer group Gm and one open point with
stabilizer group Z/2Z. Thus if k has characteristic two, then not every stabilizer
group is linearly reductive and there are non-compact perfect complexes [HR15,
Thm. C].

5.2. Characterization of when X admits a good moduli space. Using the
existence of completions, we can give an intrinsic characterization of those algebraic
stacks that admit a good moduli space.

We will need one preliminary definition. We say that a geometric point y : SpecK →
X is geometrically closed if the image of (y, id) : SpecK → X⊗kK is a closed point
of |X⊗k K|.

Theorem 5.3. Let X be an algebraic stack with affine diagonal, locally of finite
type over an algebraically closed field k. Then X admits a good moduli space if and
only if

(1) For every point y ∈ X(k), there exists a unique closed point in the closure

{y}.
(2) For every closed point x ∈ X(k), the stabilizer group scheme Gx is linearly

reductive and the morphism X̂x → X from the coherent completion of X at
x satisfies:

(a) The morphism X̂x → X is stabilizer preserving at every point; that is,

X̂x → X induces an isomorphism of stabilizer groups for every point

ξ ∈ |X̂x|.
(b) The morphism X̂x → X maps geometrically closed points to geometri-

cally closed points.

(c) The map X̂x(k)→ X(k) is injective.

Remark 5.4. The quotient [P1/Gm] (where Gm acts on P1 via multiplication) does
not satisfy (1). If X = [X/(Z/2Z)] is the quotient of the non-separated affine line
X by the Z/2Z-action which swaps the origins (and acts trivially elsewhere), then

the map Spec kJxK = X̂0 → X from the completion at the origin does not satisfy
(2a). If X = [(A2 \0)/Gm] where Gm-acts via t ·(x, y) = (x, ty) and p = (0, 1) ∈ |X|,
then the map Spec kJxK = X̂p → X does not satisfy (2b). If X = [C/Gm] where
C is the nodal cubic curve with a Gm-action and p ∈ |X| denotes the image of the

node, then [Spec(k[x, y]/xy)/Gm] = X̂p → X does not satisfy (2c). (Here Gm acts
on coordinate axes via t · (x, y) = (tx, t−1y).) These pathological examples in fact
appear in many natural moduli stacks; see [AFS17, App. A].

Remark 5.5. Consider the non-separated affine line as a group scheme G → A1

whose generic fiber is trivial but the fiber over the origin is Z/2Z and let X = [A1/G].
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In this case (2a) is not satisfied. Nevertheless, the stack X does have a good moduli
space X = A1 but X→ X has non-separated diagonal.

Remark 5.6. When X has finite stabilizers, then conditions (1), (2b) and (2c) are
always satisfied. Condition (2a) is satisfied if and only if the inertia stack is finite
over X. In this case, the good moduli space of X coincides with the coarse space of
X, which exists by [KM97].

Proof of Theorem 5.3. For the necessity of the conditions, properties of good mod-
uli spaces imply (1) [Alp13, Thm. 4.16(ix)] and that Gx is linearly reductive for a
closed point x ∈ |X| [Alp13, Prop. 12.14]. The rest of (2) follows from the explicit
description of the coherent completion in Theorem 4.16 (3).

For the sufficiency, we claim it is enough to verify:

(I) For every closed point x ∈ |X|, there exists an affine étale morphism

f : (X1, w)→ (X, x),

such that X1 = [SpecA/Gx] and for each closed point w′ ∈ X1,
(a) f induces an isomorphism of stabilizer groups at w′; and
(b) f(w′) is closed.

(II) For every y ∈ X(k), the closed substack {y} admits a good moduli space.

This is proven in [AFS17, Thm. 1.2] but we provide a quick proof here for the
convenience of the reader. For a closed point x ∈ |X|, consider the Čech nerve of
an affine étale morphism f satisfying (I)

· · ·X3 ////
//
X2

p1 //
p2
// X1

f // X0 = im(f).

Since f is affine, there are good moduli spaces Xi → Xi for each i ≥ 1, and

morphisms · · ·X3
//
//// X2

//// X1.

We claim that both projections p1, p2 : X2 → X1 send closed points to closed
points. If x2 ∈ |X2| is a closed point, to check that pj(x2) ∈ |X1| is also closed
for either j = 1 or j = 2, we may replace the Xi with the base changes along
{f(pj(x2))} ↪→ X0. In this case, there is a good moduli space X0 → X0 by (II)
and X1 → X0 sends closed points to closed points and are stabilizer preserving at
closed points by (I). Luna’s fundamental lemma (Proposition 4.13) then implies
that X1

∼= X0 ×X0 X1 and the claim follows.
Luna’s fundamental lemma (Proposition 4.13) now applies to pj : X2 → X1 and

says that X2 → X1 is étale and that pj is the base change of this map along
X1 → X1. The analogous fact holds for the maps X3 → X2. The universality of
good moduli spaces induces an étale groupoid structure X2 ⇒ X1. To check that
this is an étale equivalence relation, it suffices to check that X2 → X1 × X1 is
injective on k-points but this follows from the observation the |X2| → |X1| × |X1|
is injective on closed points. It follows that there is an algebraic space quotient
X0 := X1/X2 and a commutative cube

X2
//

��

}}

X1

��

||
X1

//

��

X0

��

X2
//

}}

X1

||
X1

// X0.

Since the top, left, and bottom faces are cartesian, it follows from étale descent
that the right face is also cartesian and that X0 → X0 is a good moduli space.
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Moreover, each closed point of X0 remains closed in X by (Ib). Therefore, if we
apply the construction above to find such an open neighborhood Xx around each
closed point x, the good moduli spaces of Xx glue to form a good moduli space
of X.

We now verify condition (I). Let x ∈ X(k) be a closed point. By Theorem 1.1,
there exist a quotient stack W = [SpecA/Gx] with a closed point w ∈ |W| and
an affine étale morphism f : (W, w) → (X, x) such that f is stabilizer preserving

at w. As the coherent completion of W at w is identified with X̂x, we have a
2-commutative diagram

X̂x

��   
W

f // X.

(5.1)

The subset Qa ⊆ |W| consisting of points ξ ∈ |W| such that f is stabilizer preserving

at ξ is constructible. Since Qa contains every point in the image of X̂x → W

by hypothesis (2a), it follows that Qa contains a neighborhood of w. Thus after
replacing W with an open saturated neighborhood containing w (Lemma 3.1), we
may assume that f : W→ X satisfies condition (Ia).

Let π : W → W be the good moduli space of W and consider the morphism
g = (f, π) = W → X ×W . For a point ξ ∈ |W |, let ξ0 ∈ |W| denote the unique
point that is closed in the fiber Wξ. Let Qb ⊆ |W | be the locus of points ξ ∈ |W |
such that g(ξ0) is closed in |(X×W )ξ| = |Xκ(ξ)|. This locus is constructible. Indeed,

the subset W0 = {ξ0 : ξ ∈ |W |} ⊆ |W| is easily seen to be constructible; hence
so is g(W0) by Chevalley’s theorem. The locus Qb equals the set of points ξ ∈ |W |
such that g(W0)ξ is closed which is constructible by [EGA, IV.9.5.4]. The locus Qb
contains SpecOW,π(w) by hypothesis (2b) (recall that X̂x = W ×W Spec ÔW,π(w)).
Therefore, after replacing W with an open saturated neighborhood of w, we may
assume that f : W→ X satisfies condition (Ib).

For condition (II), we may replace X by {y}. By (1), there is a unique closed

point x ∈ {y} and we can find a commutative diagram as in (5.1) for x. By (2b) we
can, since f is étale, also assume that W has a unique closed point. Now let B =
Γ(W,OW); then B is a domain of finite type over k [Alp13, Thm. 4.16(viii),(xi)]; in
particular, B is a Jacobson domain. Since W has a unique closed point, so too does
SpecB [Alp13, Thm. 4.16(iii)]. Hence, B is also local and so Γ(W,OW) = k. By

Theorem 4.16(2), X̂x = W. By hypothesis (2c), f : W → X is an étale monomor-
phism which is also surjective by hypothesis (1). We conclude that f : W → X is
an isomorphism establishing condition (II). �

5.3. Algebraicity results. In this subsection, we fix a field k (not necessarily
algebraically closed), an algebraic space X locally of finite type over k, and an
algebraic stack X of finite type over X with affine diagonal over X such that X→ X
is a good moduli space. We prove the following algebraicity results.

Theorem 5.7 (Stacks of coherent sheaves). The X-stack CohX/X , whose objects
over T → X are finitely presented quasi-coherent sheaves on X ×X T flat over T ,
is an algebraic stack, locally of finite type over X, with affine diagonal over X.

Corollary 5.8 (Quot schemes). Let F be a quasi-coherent OX-module. The X-sheaf
Quot

X/X
(F), whose objects over T → X are quotients p∗1F → G, where p1 : X ×X

T → X is the projection and G is a finitely presented quasi-coherent OX×XT -module
that is flat over T , is a separated algebraic space over X. In addition, if F is
coherent, then Quot

X/X
(F) is locally of finite type over X.
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Corollary 5.9 (Hilbert schemes). The X-sheaf HilbX/X , whose objects over T →
X are closed substacks Z ⊆ X×X T such that Z is flat and locally of finite presen-
tation over T , is a separated algebraic space locally of finite type over X.

Theorem 5.10 (Hom stacks). Let Y be a quasi-separated algebraic stack, locally
of finite type over X with affine stabilizers. If X → X is flat, then the X-stack
HomX(X,Y), whose objects are pairs consisting of a morphism T → X of alge-
braic spaces and a morphism X ×X T → Y of algebraic stacks over X, is an alge-
braic stack, locally of finite type over X, with quasi-separated diagonal. If Y → X
has affine (resp. quasi-affine, resp. separated) diagonal, then the same is true for
HomX(X,Y)→ X.

A general algebraicity theorem for Hom stacks was also considered in [HLP14].
In the setting of Theorem 5.10—without the assumption that X → X is a good
moduli space—[HLP14, Thm. 1.6] establishes the algebraicity of HomX(X,Y) under
the additional hypotheses that Y has affine diagonal and that X → X is cohomo-
logically projective [HLP14, Def. 1.12]. We note that as a consequence of Theorem
4.12, if X → X is a good moduli space, then X → X is necessarily étale-locally
cohomologically projective.

We also prove the following, which we have not seen in the literature before.

Corollary 5.11 (G-equivariant Hom stacks). Let Z and S be quasi-separated al-
gebraic spaces, locally of finite type over k. Let X be a quasi-separated Deligne–
Mumford stack, locally of finite type over k. Let G be a linearly reductive affine
group scheme acting on Z and X. Let Z → S and X → S be G-invariant mor-
phisms. Suppose that Z → S is flat and a good GIT quotient. Then the S-
groupoid HomG

S (Z,X), whose objects over T → S are G-equivariant S-morphisms
Z×S T → X, is a Deligne–Mumford stack, locally of finite type over S. In addition,
if X is an algebraic space, then so is HomG

S (Z,X), and if X has quasi-compact and

separated diagonal, then so has HomG
S (Z,X).

The results of this section will largely be established using Artin’s criterion, as
formulated in [Hal17, Thm. A]. This uses the notion of coherence, in the sense of
Auslander [Aus66], which we now briefly recall.

Let A be a ring. An additive functor F : Mod(A) → Ab is coherent if there is a
morphism of A-modules ϕ : M → N and a functorial isomorphism:

F (−) ' coker(HomA(N,−)
ϕ∗−−→ HomA(M,−)).

Coherent functors are a remarkable collection of functors, and form an abelian sub-
category of the category of additive functors Mod(A) → Ab that is closed under
limits [Aus66]. It is obvious that coherent functors preserve small (i.e., infinite)
products and work of Krause [Kra03, Prop. 3.2] implies that this essentially char-
acterizes them. They frequently arise in algebraic geometry as cohomology and
Ext-functors [Har98]. Fundamental results, such as cohomology and base change,
are very simple consequences of the coherence of cohomology functors [Hal14a].

Example 5.12. Let A be a ring and M an A-module. Then the functor I 7→
HomA(M, I) is coherent. Taking M = A, we see that the functor I 7→ I is coherent.

Example 5.13. Let R be a noetherian ring and Q a finitely generated R-module.
Then the functor I 7→ Q ⊗R I is coherent. Indeed, there is a presentation A⊕r →
A⊕s → Q→ 0 and an induced functorial isomorphism

Q⊗A I = coker(I⊕r → I⊕s).

Since the category of coherent functors is abelian, the claim follows from Example
5.12. More generally, if Q• is a bounded above complex of coherent R-modules,
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then for each j ∈ Z the functor:

I 7→ Hj(Q• ⊗L
R I)

is coherent [Har98, Ex. 2.3]. Such a coherent functor is said to arise from a complex.
An additive functor F : Mod(A)→ Ab is half-exact if for every short exact sequence
0 → I ′′ → I → I ′ → 0 the sequence F (I ′′) → F (I) → F (I ′) is exact. Functors
arising from complexes are half-exact. Moreover, if F : Mod(A) → Ab is coherent,
half-exact and preserves direct limits of A-modules, then it is the direct summand
of a functor that arises from a complex [Har98, Prop. 4.6].

The following proposition is a variant of [Hal14a, Thm. C] and [HR17, Thm. D].

Proposition 5.14. Let F• ∈ DQCoh(X) and G• ∈ DbCoh(X). If X = SpecR is affine,
then the functor

HF•,G•(−) := HomOX

(
F•,G• ⊗L

OX
Lπ∗QCoh(−)

)
: Mod(R)→ Ab

is coherent.

Proof. This follows immediately from Theorem 5.1, [Alp13, Thm. 4.16(x)] and
[HR17, Cor. 4.19]. The argument is reasonably straightforward, however, so we
sketch it here. To this end if F• = OX, then the projection formula [HR17,
Prop. 4.11] implies that

HomOX

(
OX,G

• ⊗L
OX

Lπ∗QCoh(−)
)

= H0
(
RΓ(X,G• ⊗L

OX
Lπ∗QCoh(−))

)
' H0

(
RΓ(X,G•)⊗L

R −
)
.

Since G• ∈ DbCoh(X) and X→ X is a good moduli space, it follows that RΓ(X,G•) ∈
DbCoh(R). Indeed Hj(RΓ(X,G•)) ' Γ(X,Hj(G•)), because RΓ(X,−) is t-exact on
quasi-coherent sheaves (see §1.5); now apply [Alp13, Thm. 4.16(x)]. By Example
5.13, the functor HOX,G• is coherent. If F• is perfect, then HF•,G• ' HOX,F•

∨⊗L
OX

G•

is also coherent by the case just established. Now let T ⊆ DQCoh(X) be the full sub-
category consisting of those F• such that HF•,G• is coherent for every G• ∈ DbCoh(X).
Certainly, T is a triangulated subcategory that contains the perfect complexes. If
{F•λ}λ∈Λ ⊆ DQCoh(X), then

∏
λ∈ΛHF•λ,G

• ' H⊕λF•λ,G• . Since small products of co-
herent functors are coherent [Hal14a, Ex. 4.9], it follows that T is closed under small
coproducts. By Thomason’s Theorem (e.g., [HR17, Cor. 3.14]), T = DQCoh(X). The
result follows. �

The following corollary is a variant of [Hal14a, Thm. D].

Corollary 5.15. Let F be a quasi-coherent OX-module and let G be a coherent OX-
module. If G is flat over X, then the X-presheaf HomOX/X

(F,G) whose objects over

T
τ−→ X are homomorphisms τ∗XF → τ∗XG of OX×XT -modules (where τX : X×X T →

X is the projection) is representable by an affine X-scheme.

Proof. We argue exactly as in the proof of [Hal14a, Thm. D], but using Proposition
5.14 in place of [Hal14a, Thm. C]. Again, the argument is quite short, so we sketch
it here for completeness. First, we may obviously reduce to the situation where
X = SpecR. Next, since G is flat over X, it follows that G ⊗L

OX
Lπ∗QCoh(−) '

G ⊗OX
π∗(−) ' G ⊗R (−). The functor H(−) = HomOX

(F,G ⊗OX
π∗(−)) is also

coherent and left-exact (Proposition 5.14). But coherent functors preserve small
products [Hal14a, Ex. 4.8], so the functor above preserves all limits. It follows
from the Eilenberg–Watts Theorem [Wat60, Thm. 6] (also see [Hal14a, Ex. 4.10]
for further discussion) that there is an R-module Q and an isomorphism of functors
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H(−) ' HomR(Q,−). Finally, consider an R-algebra C and let T = SpecC; then
there are functorial isomorphisms:

HomOX/X
(F,G)(T → X) = HomOX×XT

(τ∗XF, τ
∗
XG)

' HomOX
(F, (τX)∗τ

∗
XG)

' HomOX
(F,G⊗R C)

' HomR(Q,C)

' HomR−Alg(Sym•RQ,C)

' HomX(T, Spec(Sym•RQ)).

Hence, HomOX/X
(F,G) is represented by the affine X-scheme Spec(Sym•RQ). �

Proof of Theorem 5.7. The argument is very similar to the proof of [Hal17, Thm. 8.1].
We may assume that X = SpecR is affine. If C is an R-algebra, it will be conve-
nient to let XC = X ×X SpecC. We also let Cohflb(XC) = CohX/X(SpecC); that

is, it denotes the full subcategory of Coh(XC) with objects those coherent sheaves
that are C-flat.

Note that R is of finite type over a field k, so X is an excellent scheme. We may
now use the criterion of [Hal17, Thm. A]. There are six conditions to check.

(1) [Stack] CohX/X is a stack for the étale topology. This is immediate from
étale descent of quasi-coherent sheaves.

(2) [Limit preservation] If {Aj}j∈J is a direct system of R-algebras with limit A,

then the natural functor lim−→j
Cohflb(XAj ) → Cohflb(XA) is an equivalence

of categories. This is immediate from standard limit results [EGA, §§IV.8,
IV.11].

(3) [Homogeneity] Given a diagram of R-algebras [B → A← A′], where A′ →
A is surjective with nilpotent kernel, then the natural functor:

Cohflb(XB×AA′)→ Cohflb(XB)×Cohflb(XA) Coh
flb(XA′)

induces an equivalence of categories. This is just a strong version of Sch-
lessinger’s conditions, which is proved in [Hal17, Lem. 8.3] (see [Hal17,
p. 166] for further discussion).

(4) [Effectivity] If (A,m) is an m-adically complete noetherian local ring, then
the natural functor:

Cohflb(XA)→ lim←−
n

Cohflb(XA/mn+1)

is an equivalence of categories. This is immediate from Corollary 4.14(2)
and the local criterion of flatness.

(5) [Conditions on automorphisms and deformations] If A is a finite type R-

algebra and F ∈ Cohflb(XA), then the infinitesimal automorphism and de-
formation functors associated to F are coherent. It is established in [Hal17,
§8] that as additive functors from Mod(A)→ Ab:

AutCohX/X (F,−) = HomOXA
(F,F ⊗OXA

π∗A(−)) and

DefCohX/X (F,−) = Ext1
OXA

(F,F ⊗OXA
π∗A(−)).

By Proposition 5.14, the functors above are coherent.
(6) [Conditions on obstructions] IfA is a finite typeR-algebra and F ∈ Cohflb(XA),

then there is an integer n and a coherent n-step obstruction theory for F.
The obstruction theory is described in [Hal17, §8]. If X → X is flat, then
there is the usual 1-step obstruction theory

O2(F,−) = Ext2
OXA

(F,F ⊗OXA
π∗A(−)).
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If X→ X is not flat, then O2(F,−) is the second step in a 2-step obstruction
theory, whose primary obstruction lies in:

O1(F,−) = HomOXA
(F ⊗OXA

TorX1 (A,OX),F ⊗OXA
π∗A(−)).

By Proposition 5.14, these functors are coherent.

Hence, CohX/X is an algebraic stack that is locally of finite presentation over X.
Corollary 5.15 now implies that the diagonal is affine. This completes the proof. �

Corollaries 5.8 and 5.9 follow immediately from Theorem 5.7. Indeed, the natural
functor Quot

X/X
(F) → CohX/X is quasi-affine by Corollary 5.15 and Nakayama’s

Lemma (see [Lie06, Lem. 2.6] for details).

Proof of Theorem 5.10. This only requires small modifications to the proof of [HR19,
Thm. 1.2], which again uses Artin’s criterion as formulated in [Hal17, Thm. A]. In
more detail: We may assume that X = SpecR is affine; in particular, X is excellent
so we may apply [Hal17, Thm. A]. As in the proof of Theorem 5.7, there are six
conditions to check. The conditions (1) [Stack], (2) [Limit preservation] and (3)
[Homogeneity] are largely routine, and ultimately rely upon [Hal17, §9]. Condition
(4) [Effectivity] follows from an idea due to Lurie, and makes use of Tannaka dual-
ity. Indeed, if (A,m) is a noetherian and m-adically complete local R-algebra, then
the effectivity condition corresponds to the natural functor:

HomSpecA(XA,YA)→ lim←−
n

HomSpecA(XA/mn+1 ,YA)

being an equivalence. The effectivity thus follows from coherent completeness
(Corollary 4.14) and Tannaka duality (Corollary 2.8). Conditions (5) and (6) on
the coherence of the automorphisms, deformations, and obstructions follows from
[Ols06], Proposition 5.14, and the discussion in [Hal17, §9] describing the 2-term ob-
struction theory. A somewhat subtle point is that we do not deform the morphisms
directly, but their graph, because [Ols06] is only valid for representable morphisms.
This proves that the stack HomX(X,Y) is algebraic and locally of finite presentation
over X. The conditions on the diagonal follow from Corollary 5.15, together with
some standard manipulations of Weil restrictions. �

Proof of Corollary 5.11. A G-equivariant morphism Z → X is equivalent to a mor-
phism of stacks [Z/G]→ [X/G] over BG. This gives the 2-cartesian diagram

HomG
S (Z,X) //

��

HomS

(
[Z/G], [X/G]

)
��

S // HomS

(
[Z/G], BG

)�

where the bottom map is given by the structure map [Z/G] → BG and the right
map is given by postcomposition with the structure map [X/G] → BG. By The-
orem 5.10, the stacks HomS

(
[Z/G], [X/G]

)
and HomS

(
[Z/G], BG

)
are algebraic

and locally of finite type over S. The latter always has quasi-affine diagonal and
the former has quasi-affine diagonal when X has separated diagonal. In particular,
the bottom map is always quasi-affine. It follows that HomG

S (Z,X) is always an
algebraic stack locally of finite type over S and has quasi-affine (in particular, quasi-
compact and separated) diagonal whenever X has quasi-affine diagonal; since X is
Deligne–Mumford and quasi-separated, this is equivalent to it having separated di-
agonal. Clearly, HomG

S (Z,X) has no non-trivial infinitesimal automorphisms, hence

is a Deligne–Mumford stack. Similarly, if X is an algebraic space, then HomG
S (Z,X)

has no non-trivial automorphisms, hence is an algebraic space. �
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5.4. Deligne–Mumford stacks with Gm-actions. Let X be a quasi-separated
Deligne–Mumford stack, locally of finite type over a field k (not assumed to be
algebraically closed), with an action of Gm. Define the following stacks on Sch/k:

X0 := HomGm(Spec k,X) (the ‘fixed’ locus)2

X+ := HomGm(A1,X) (the attractor)

where Gm acts on A1 by multiplication, and define the stack X̃ on Sch/A1 by

X̃ := HomGm
A1 (A2,X× A1),

where Gm acts on A2 via t · (x, y) = (tx, t−1y) and acts on A1 trivially, and the
morphism A2 → A1 is defined by (x, y) 7→ xy.

Theorem 5.16. With the hypotheses above, X0 and X+ are quasi-separated Deligne–
Mumford stacks, locally of finite type over k. Moreover, the natural morphism
X0 → X is a closed immersion, and the natural morphism ev0 : X+ → X0 obtained

by restricting to the origin is affine. In addition, X̃ is a Deligne–Mumford stack,
locally of finite type over k, which is quasi-separated whenever X has quasi-compact
and separated diagonal (e.g., an algebraic space).

Remark 5.17. When X is an algebraic space, then X0, X+ and X̃ are algebraic
spaces and the above result is due to Drinfeld [Dri13, Prop. 1.2.2, Thm. 1.4.2 and
Thm. 2.2.2].

The algebraicity of X0, X+ and X̃ follows directly from Corollary 5.11. To
establish the final statements, we will need to establish several preliminary results.

Proposition 5.18. If S is a noetherian affine scheme, then [A1
S/Gm] is coherently

complete along [S/Gm], where S ↪→ A1
S is the zero section.

Proof. Let A = Γ(S,OS); then A1
S = SpecA[t] and V (t) = [S/Gm]. If F ∈

Coh([A1
S/Gm]), then we claim that there exists an integer n � 0 such that the

natural surjection Γ(F) → Γ(F/tnF) is bijective. Now every coherent sheaf on
[A1
S/Gm] is a quotient of a finite direct sum of coherent sheaves of the form p∗El,

where El is the weight l representation of Gm and p : [A1
S/Gm] → [S/Gm] is the

natural map. It is enough to prove that Γ(p∗El) → Γ(p∗El/t
np∗El) is bijective,

or equivalently, that Γ((tn) ⊗ p∗El) = 0. But (tn) = p∗En and Γ(p∗En+l) = 0 if
n+ l > 0, hence for all n� 0. We conclude that Γ(F)→ lim←−n Γ(F/tnF) is bijective.

What remains can be proven analogously to Theorem 1.3. �

Proposition 5.19. Let W be an excellent algebraic space over a field k and let G
be an algebraic group acting on W . Let Z ⊆ W be a G-invariant closed subspace.
Suppose that [W/G] is coherently complete along [Z/G]. Let X be a noetherian
algebraic stack over k with affine stabilizers with an action of G. Then the natural
map

HomG(W,X)→ lim←−
n

HomG
(
W

[n]
Z ,X

)
is an equivalence of groupoids.

Proof. As in the proof of Corollary 5.11, we have a cartesian diagram of groupoids

HomG(W,X) //

��

Hom
(
[W/G], [X/G]

)
��

∗ // Hom
(
[W/G], BG

)
2If X is an algebraic space, this is the fixed locus. If X is a Deligne–Mumford stack, we will

define the fixed locus XGm after allowing reparameterizations of the action; see Definition 5.25.
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and a similar cartesian diagram for W replaced with W
[n]
Z for any n which gives

the cartesian diagram

lim←−n HomG
(
W

[n]
Z ,X

)
//

��

lim←−n Hom
(
[W

[n]
Z /G], [X/G]

)
��

∗ // lim←−n Hom
(
[W

[n]
Z /G], BG

)
.

Since [W/G] is coherently complete along [Z/G], it follows by Tannaka duality that
the natural maps from the first square to the second square are isomorphisms. �

Proposition 5.20. If f : X → Y is an étale and representable Gm-equivariant
morphism of quasi-separated Deligne–Mumford stacks of finite type over a field k,
then X0 = Y0 ×Y X and X+ = Y+ ×Y0 X0.

Proof. For the first statement, let x : S → X be a morphism from a scheme S
such that the composition f ◦ x : S → Y is Gm-equivariant. To see that x is Gm-
equivariant, it suffices to base change f by S → Y and check that a section S → XS
of XS → S is necessarily equivariant. As XS → S is étale and representable, S →
XS is an open immersion, and since any Gm-orbit in XS is necessarily connected,
S is an invariant open of XS .

For the second statement, we need to show that there exists a unique Gm-
equivariant morphism filling in the Gm-equivariant diagram

Spec k × S //

��

X

f

��
A1 × S //

::

Y

(5.2)

where S is an affine scheme of finite type over k, and the vertical left arrow is the
inclusion of the origin. For each n ≥ 1, the formal lifting property of étaleness
yields a unique Gm-equivariant map Spec(k[x]/xn)× S → X such that

Spec k × S //

��

X

f

��
Spec(k[x]/xn)× S //

88

Y

commutes. By Propositions 5.18 and 5.19, there exists a unique Gm-equivariant
morphism A1 × S → X such that (5.2) commutes. �

Remark 5.21. If f : X → Y is not representable, then it is not true in general that
X0 = Y0×Y X, e.g., let f : Bµµµn → Spec k where Gm acts on Bµµµn as in Remark 4.2.

Remark 5.22. It is not true in general that X+ is the fiber product of f : X → Y

along the morphism ev1 : Y+ → Y defined by λ 7→ λ(1). Indeed, consider the
Gm-equivariant open immersion X = Gm ↪→ A1 = Y, where Gm acts by scaling
positively. Then Y+ = Y but X+ is empty.

Proof of Theorem 5.16. The algebraicity of X0, X+ and X̃ follows directly from
Corollary 5.11. To verify the final statements, we may assume that k is algebraically
closed. For any Gm-equivariant map x : Spec k → X, the stabilizer Tx of x (as
defined in (4.2)) is Gm and the map on quotients BGm → Y := [X/Gm] induces a
map Gm → Gy on stabilizers providing a splitting of (4.1). Our generalization of
Sumihiro’s theorem (Theorem 4.1) provides an étale Gm-equivariant neighborhood
(SpecA, u)→ (X, x). Proposition 5.20 therefore reduces the statements to the case
of an affine scheme, which can be established directly; see [Dri13, §1.3.4]. �
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We will now investigate how X0 and X+ change if we reparameterize the torus.
We denote by X〈d〉 the Deligne–Mumford stack X with Gm-action induced by the

reparameterization Gm
d−→ Gm. For integers d | d′, there are maps X0

〈d〉 → X0
〈d′〉

and X+
〈d〉 → X+

〈d′〉 (defined by precomposing with A1 → A1, x 7→ xd
′/d) that are

compatible with the natural maps to X.
Recall from Theorem 5.16 that X0

〈d〉 → X is a closed immersion. Also recall that

for x ∈ X(k), there is an exact sequence

(5.3) 1 // Gx // Gy // Tx // 1,

where y is the image of x in Y = [X/Gm]; and Tx := Gm ×X BGx ⊂ Gm is the

stabilizer, where Gm
id×x−−−→ Gm × X

σX−−→ X is the restriction of the action map; see
also (4.2).

Proposition 5.23. Let X be a quasi-separated Deligne–Mumford stack, locally of
finite type over a field k, with an action of Gm. Let x ∈ X(k) and let Tx ⊂ Gm be
its stabilizer.

(1) x ∈ X0 if and only if Tx = Gm and (5.3) splits.
(2) The following conditions are equivalent: (a) x ∈ X0

〈d〉 for sufficiently divis-

ible integers d; (b) Tx = Gm; and (c) dimGy = 1.

Proof. For (1), if x : Spec k → X is Gm-equivariant, then clearly Tx = Gm and the
map on quotients BGm → Y := [X/Gm] induces a map Gm → Gy on stabilizers
providing a splitting of (5.3). Conversely, a section Gm → Gy providing a splitting
of (5.3) induces a section BGm → BGy of BGy → BGm, and taking the base
change of the composition BGm → BGy → Y → BGm along Spec k → BGm
induces a unique Gm-equivariant map Spec k → X.

For (2), it is clear that (2b) and (2c) are equivalent, and that they are implied
by (2a). On the other hand, if (2b) holds, then the sequence (5.3) splits after

reparameterizing the action by Gm
d−→ Gm for sufficiently divisible integers d (see

proof of Theorem 4.3). It now follows from (1) that x ∈ X0
〈d〉. �

Proposition 5.24. Let X be a quasi-separated Deligne–Mumford stack, locally of
finite type over a field k, with an action of Gm.

(1) For d | d′, the map X0
〈d〉 → X0

〈d′〉 is an open and closed immersion, and

X+
〈d〉 = X+

〈d′〉 ×X0
〈d′〉

X0
〈d〉.

(2) If X is quasi-compact, then for sufficiently divisible integers d and d′, X0
〈d〉 =

X0
〈d′〉 and X+

〈d〉 = X+
〈d′〉.

Proof. We may assume k is algebraically closed. For (1), since X0
〈d〉 → X is a

closed immersion for all d (Theorem 5.16), we see that X0
〈d〉 → X0

〈d′〉 is a closed

immersion. For any x ∈ X0(k), Theorem 4.1 provides an étale Gm-equivariant
morphism (U, u) → (X, x) where U is an affine scheme. By Proposition 5.20, the
maps X0 → X0

〈d〉 and X+ → X+
〈d〉 pullback to the isomorphisms U0 → U0

〈d〉 and

U+ → U+
〈d〉. This shows both that X0 → X0

〈d〉 is an open immersion and that

X+ = X+
〈d〉 ×X0

〈d〉
X0, which implies (1).

For (2), the locus of points in Y = [X/Gm] with a positive dimensional stabilizer
is a closed substack. It follows from Proposition 5.23(2) that the locus of points in X

contained in X0
〈d〉 for some d is also closed. In particular, the substacks X0

〈d〉 stabilize

for sufficiently divisible integers d and by (1) the stacks X+
〈d〉 also stabilize. �

Proposition 5.24(2) justifies the following definition.
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Definition 5.25. Let X be a quasi-separated Deligne–Mumford stack, locally of
finite type over a field k, with an action of Gm. The fixed locus is the closed substack
of X defined as

XGm :=
⋃
d

X0
〈d〉.

Remark 5.26. Consider the action of Gm on X = Bµµµn as in Remark 4.2. Then X0

is empty but X0
〈d〉 = X for all integers d divisible by n. Thus, XGm = X.

5.5. Bia lynicki-Birula decompositions for Deligne–Mumford stacks. We
provide the following theorem establishing the existence of Bia lynicki-Birula de-
compositions for a Deligne–Mumford stack X. Our proof relies on the algebraicity
of the stacks X0 = HomGm(Spec k,X) and X+ = HomGm(A1,X) (Theorem 5.16)
and the existence of Gm-equivariant étale affine neighborhoods (Theorem 4.1). In
particular, our argument recovers the classical result from [BB73, Thm. 4.1]. Due
to subtleties arising from group actions on stacks, the proof is substantially simpler
in the case that X is an algebraic space, and the reader may want to consider this
special case on a first reading.

Theorem 5.27. Let X be a separated Deligne–Mumford stack, of finite type over
an arbitrary field k, with an action of Gm. Let XGm =

∐
i Fi be the fixed locus (see

Definition 5.25) with connected components Fi. There exists an affine morphism
Xi → Fi for each i and a monomorphism

∐
i Xi → X. Moreover,

(1) If X is proper, then
∐
i Xi → X is surjective.

(2) If X is smooth, then Fi is smooth and Xi → Fi is an affine fibration (i.e.,
Xi is affine space étale locally over Fi).

(3) Let X→ X be the coarse moduli space.
(a) If X is affine, then Xi ↪→ X is a closed immersion.
(b) If X has a Gm-equivariant affine open cover (e.g., X is a normal

scheme), then
(i) Xi ↪→ X is a local immersion (i.e., a locally closed immersion

Zariski-locally on the source) and Xi → X×Fi is a locally closed
immersion; and

(ii) if Z ⊂ Xi is an irreducible component, then Z ↪→ X is a locally
closed immersion.

(c) If X is smooth and X is a scheme, then Xi ↪→ X is a locally closed
immersion.

(d) If there exists a Gm-equivariant locally closed immersion X ↪→ P(V )
where V is a Gm-representation (e.g., X normal and X is quasi-
projective), then Xi ↪→ X is a locally closed immersion.

Remark 5.28. If X is a smooth scheme and k is algebraically closed, then this
statement (except Case (3b)) is the classical Bia lynicki-Birula decomposition theo-
rem [BB73, Thm. 4.1] (using Sumihiro’s theorem [Sum74, Cor. 2] ensuring that X

has a Gm-equivariant affine open cover). If X is an algebraic space, then this was
established in [Dri13, Thm. B.0.3] (except Case (3b)). Our formulation of Case
(3b)(i) was motivated by [Hes81, Thm. 4.5, p. 69] and [Mil17, Prop. 13.58] and
Case (3b)(ii) was motivated by [JS19, Prop. 7.6].

Using Drinfeld’s results and our Theorem 4.1, Jelisiejew and Sienkiewicz establish
the theorem above when X is an algebraic space as a special case of [JS19, Thm. 1.5]
and their proof in particular recovers the main result of [BB73]. Our proof follows
a similar strategy by relying on results of the previous section and Theorem 4.1 to
reduce to the affine case.

Remark 5.29. It is not true in general that Xi ↪→ X is a locally closed immersion.
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(1) The condition in (3c) that X is a scheme is necessary. Sommese has given
an example of a smooth algebraic space X such that Xi ↪→ X is not a
locally closed immersion [Som82]. This is based on Hironaka’s example of
a proper, non-projective, smooth 3-fold.

(2) The condition in (3d) that X is quasi-projective is necessary. Konarski has
provided an example of a normal proper scheme X (a toric variety) such
that Xi ↪→ X is not a locally closed immersion [Kon82].

For a smooth Deligne–Mumford stack X with a Gm-action, [Opr06, Prop. 5]
states that the existence of a Bia lynicki-Birula decomposition with each Xi ↪→ X

locally closed follows from the existence of a Gm-equivariant, étale atlas SpecA→ X

(as provided by Theorem 4.3). The counterexamples above show that [Opr06,
Prop. 5] is incorrect. Nevertheless, the main result [Opr06, Thm. 2] still holds as

a consequence of Theorem 5.27 since the Deligne–Mumford stack M0,n(Pr, d) of
stable maps is smooth and its coarse moduli space is a scheme (Case (3c)).

Moreover, [Sko13, Thm. 3.5] states the above theorem in the case that X is a
smooth, proper and tame Deligne–Mumford stack with X a scheme but the proof
is not valid as it relies on [Opr06, Prop. 5]. A similar error appeared in a previous
version of our article where it was claimed incorrectly that Xi ↪→ X is a locally
closed immersion for any smooth, proper Deligne–Mumford stack.

Remark 5.30. Let X be a separated scheme of finite type over k with finite quotient
singularities and with a Gm-action. There is a canonical smooth Deligne–Mumford
stack X whose coarse moduli space is X (see [FMN10, §4.1]). The Gm-action lifts
canonically to X. Applying Theorem 5.27(3c) to X and appealing to Proposition
5.32(2), we can conclude that the components Xi of X+ are locally closed in X.

The following proposition establishes properties of the evaluation map ev1 : X+ →
X, λ 7→ λ(1) in terms of properties of X. We find it prudent to state a relative version
that for a given morphism f : X→ Y between Deligne–Mumford stacks establishes
properties of the relative evaluation map

evf : X+ → Y+ ×Y X, λ 7→ (f ◦ λ, λ(1))

in terms of properties of f . In the proof of Theorem 5.27 we will only use the
absolute case where Y = Spec k.

Proposition 5.31. Let f : X→ Y be a Gm-equivariant morphism of quasi-separated
Deligne–Mumford stacks that are locally of finite type over an arbitrary field k.

(1) X+ → Y+ ×Y X is unramified.
(2) If f : X→ Y has separated diagonal, then X+ → Y+ ×Y X is representable.
(3) If f : X→ Y is separated, then X+ → Y+ ×Y X is a monomorphism.
(4) If f : X → Y is proper and Y is quasi-compact, then X+

〈d〉 → Y+
〈d〉 ×Y X is

surjective for sufficiently divisible integers d.

Proof. We may assume that k is algebraically closed. For (1), it suffices to show
that X+ → X is unramified. We follow the argument of [Dri13, Prop. 1.4.11(1)]. We

need to check that for any (A1 λ−→ X) ∈ X+(k), the induced map TλX
+ → Tλ(1)X

on tangent spaces is injective. This map can be identified with the restriction map

HomGm
OA1

(λ∗Ω1
X,OA1)→ HomGm

OA1\0
((λ∗Ω1

X)|A1\0,OA1\0),

which is clearly injective.
For (2), let (λ : A1 → X) ∈ X+(k). Automorphisms τ1, τ2 ∈ AutX+(λ) mapping

to the same automorphism of evf (λ) induce two sections τ̃1, τ̃2 of IsomX/Y(λ)→ A1

agreeing over A1 \ 0. The valuative criterion for separatedness implies that τ̃1 = τ̃2
and thus τ1 = τ2.
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For (3), since X+ → Y+ ×Y X is unramified and representable, it is enough to
prove that is universally injective. A k-point of Y+×Y X with two preimages in X+

corresponds to a Gm-equivariant 2-commutative square

A1 \ 0� _

��

// X

f

��
A1 //

h1

==

h2

==

Y

with two Gm-equivariant lifts h1, h2 : A1 → X. We need to produce a Gm-equivariant
2-isomorphism h1

∼→ h2. As f : X → Y is separated, I := IsomX/Y(h1, h2) → A1

is proper. The 2-isomorphism h1|A1\0
∼→ h2|A1\0 gives a Gm-equivariant section of

I → A1 over A1 \ 0 and the closure of its graph gives a Gm-equivariant section of

I → A1, i.e., a Gm-equivariant 2-isomorphism h1
∼→ h2.

For (4), by Proposition 5.24(2), it suffices to show that a Gm-equivariant com-
mutative diagram

A1 \ 0 //
� _

��

X

f

��
A1 λ //

λ′
==

Y

of solid arrows admits a Gm-equivariant lift λ′ : A1 → X after reparameterizing the
action. Let x ∈ X(k) be the image of 1 under A1 \ 0 → X. After replacing X with
the closure of im(A1 \ 0→ X) we may assume that X is integral of dimension ≤ 1.
Let X′ → X be the normalization and choose a preimage x′ of x. Since X′ → Y

is proper, the induced map A1 \ 0 → X′, defined by t 7→ t · x′, admits a unique
lift h : C → X′ compatible with λ after a ramified extension (C, c) → (A1, 0). Let
x′0 = h(c) ∈ X′(k).

By Theorem 4.3, there exists d > 0 and a Gm-equivariant map (SpecA,w0) →
(X′〈d〉, x

′
0) with w0 fixed by Gm. If dimX = 0, then we may assume A = k and so in

this case the composition A1 → Spec k
x−→ X〈d〉 gives the desired map. If dimX = 1,

then we may assume that Spec(A) is a smooth and irreducible affine curve with
two orbits—one open and one closed. It follows that Spec(A) is Gm-equivariantly
isomorphic to A1 and the composition A1 → X′〈d〉 → X〈d〉 gives the desired map. �

Proposition 5.32. Let π : X→ Y be a Gm-equivariant morphism of quasi-separated
Deligne–Mumford stacks, of finite type over an arbitrary field k. If π is proper and
quasi-finite (e.g., π is a coarse moduli space), then

(1) X+ → Y+ is proper and
(2) the maps X0

〈d〉 → Y0
〈d〉 ×Y X and X+

〈d〉 → Y+
〈d〉 ×Y X are closed immersions

for all d > 0 and nilimmersions for d sufficiently divisible. In particular,
XGm → YGm ×Y X is a nilimmersion.

Proof. For (1) it is enough to prove that evπ : X+ → Y+ ×Y X is proper. First
observe that X+ and Y+ are quasi-compact: via ev0, they are affine over X and
Y, respectively (Theorem 5.16). Since X and Y are quasi-separated, it follows that
evπ : X+ → Y+ ×Y X is quasi-compact. We may now use the valuative criteria to
verify that evπ is proper. Let

SpecK

��

// X+

evπ

��
SpecR //

99

Y+ ×Y X

(5.4)
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be a diagram of solid arrows where R is a DVR with fraction field K. This corre-
sponds to a Gm-equivariant diagram

A1
R \ 0 //
� _

��

X

π

��
A1
R

//

==

Y

(5.5)

of solid arrows, where 0 ∈ A1
R denotes the unique closed point fixed by Gm. Equiv-

alently, we have a diagram

[(A1
R \ 0)/Gm] //
� _

��

[X/Gm]

π

��
[A1
R/Gm] //

77

[Y/Gm]

(5.6)

of solid arrows. A dotted arrow providing a lift of (5.6) is the same as a Gm-
equivariant dotted arrow providing a lift of (5.5) or a lift in (5.4). Now let U =
[(A1

R \ 0)/Gm] and S = [A1
R/Gm]. By base change, a dotted arrow providing a

lift of (5.6) is the same as a section to the projection S ×[Y/Gm] [X/Gm] → S
extending the induced section over U . Since S is regular and U contains all points
of S of codimension 1, we may apply Lemma 5.33(2) to deduce the claim. (It is
worthwhile to point out that the existence of lifts in (5.6) is equivalent to the map
[X/Gm] → [Y/Gm] being Θ-reductive, as introduced in [Hal14b], and that Lemma
5.33(2) implies that [X/Gm]→ [Y/Gm] is Θ-reductive.)

For (2), Theorem 5.16 implies that X0
〈d〉 → X and Y0

〈d〉 → Y are closed immersions

for all d > 0; thus, X0
〈d〉 → Y0

〈d〉 ×Y X is a closed immersion. For d sufficiently

divisible, it is now easily checked using the quasi-finiteness of π that the morphisms
in question are also surjective. Also, for all d > 0, the map X+

〈d〉 → Y+
〈d〉 ×Y X

is proper by (1) and a monomorphism by Proposition 5.31(3), and thus a closed
immersion. The surjectivity of X+

〈d〉 → Y+
〈d〉 ×Y X for sufficiently divisible d follows

from Proposition 5.31(4). �

Lemma 5.33. Let S be a regular algebraic stack and let U ⊂ S be an open substack
containing all points of codimension 1. Let f : X → S be a quasi-finite morphism
that is relatively Deligne–Mumford.

(1) If f |U : f−1(U) → U is étale, then f : X̃U → S is étale, where X̃U denotes
the normalization of X in f−1(U).

(2) If f : X→ S is proper and f |U has a section, then f : X→ S has a section.

Proof. For (1), as the question is smooth-local on S and étale-local on X, we may
assume that X and S are irreducible schemes. Now the statement follows from
Zariski–Nagata purity [SGA1, Exp. X, Cor. 3.3]. For (2), by Zariski’s Main Theorem
[LMB, Thm. 16.5(ii)], we may factor a section U → X as U ↪→ V→ X where U ↪→ V

is a dense open immersion and V→ X is a finite morphism. Since V→ S is proper,

quasi-finite and an isomorphism over U , it follows that ṼU → S is proper and étale

by (1). As I
ṼU/S

→ ṼU is finite, étale and generically an isomorphism, it is an

isomorphism and we conclude that ṼU → S is representable. Then ṼU → S is
finite, étale and generically an isomorphism, thus an isomorphism. �

Proof of Theorem 5.27. After reparameterizing the action by Gm
d−→ Gm for d

sufficiently divisible, we may assume that X0 = XGm (Proposition 5.24). Theo-

rem 5.16 yields quasi-separated Deligne–Mumford stacks X0 = HomGm(Spec k,X)
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and X+ = HomGm(A1,X), locally of finite type over k, such that the morphism
ev0 : X+ → X0 is affine. Let X0 =

∐
i Fi be the decomposition into connected com-

ponents and set Xi := ev−1
0 (Fi). Since X is separated,

∐
i Xi → X is a monomor-

phism (Proposition 5.31(3)). This establishes the main part of the theorem. Part
(1) follows from Proposition 5.31(4).

We now establish (2) and (3) in stages of increasing generality. If X is an affine
space with a linear Gm-action, then it is easy to see that X+ → X0 is a projection
of linear subspaces. If X = Spec(A) is affine and A =

⊕
dAd denotes the induced

Z-grading, then a direct calculation shows that X+ = V (
∑
d<0Ad) and X0 =

V (
∑
d 6=0Ad) are closed subschemes; see [Dri13, §1.3.4].

To see (2), we may assume that k is algebraically closed. When X = SpecA
is affine, let x ∈ X0(k) be a fixed point defined by a maximal ideal m ⊂ A. The
surjection m → m/m2 admits a Gm-equivariant section which in turn induces a
morphism X → TX,x = Spec(Symm/m2) which is étale at x, and (2) follows from
étale descent using the case above of affine space and Proposition 5.20. In general,
Proposition 5.23 and Sumihiro’s theorem (Theorem 4.1) imply that any point of
X0 has an equivariant affine étale neighborhood and thus Proposition 5.20 reduces
(2) to the case of an affine scheme.

For (3), let X+ and Xi be the coarse moduli spaces of X+ and Xi. For (3a),
the above discussion shows that since X is affine, X+ → X is a closed immersion.
Since X+ → X+ ×X X is a nilimmersion (Proposition 5.32(2)), X+ → X is also a
closed immersion.

For (3b), by Proposition 5.32(2), we may assume that X = X. For any point
x ∈ X+, let x0 be the image of x under ev0 : X+ → X0, and choose a Gm-invariant
affine open neighborhood U ⊂ X of x0. This induces a diagram

U+ �
� //� r

$$

ev−1
1 (U) //
� _

��

U� _

��
X+ ev1 // X.

(5.7)

Since U+ → U is a closed immersion (as U is affine) and X+ → X is separated (it is
a monomorphism), U+ → ev−1

1 (U) is a closed immersion. Since U+ = X+ ×X0 U0

(Proposition 5.20), x ∈ U+ and U+ → X+ is an open immersion. In particular,
U+ ⊂ ev−1

1 (U) is an open and closed subscheme containing x.
For (i), for any x ∈ X+, we observe from Diagram (5.7) that U+ → X+ → X is a

locally closed immersion. Moreover, U×U0 is an open neighborhood of (ev1(x), x0).
Since the restriction of (ev1, ev0) : X+ → X×X0 over U×U0 is the closed immersion
U+ → U × U0, it follows that X+ → X ×X0 is a locally closed immersion.

For (ii), let Z ⊂ X+ be an irreducible component and x ∈ Z. Then Z ∩ U+

is a nonempty open and closed subscheme of the irreducible scheme Z ∩ ev−1
1 (U).

This shows that Z ∩ U+ = Z ∩ ev−1
1 (U) and that Z ∩ ev−1

1 (U) → U is a closed

immersion. It follows that Z ↪→ X+ ev1−−→ X is a locally closed immersion.
For (3c), observe that (2) implies that Xi is smooth and connected, thus irre-

ducible. Since the coarse moduli space X is necessarily normal and thus admits
a Gm-equivariant open affine cover by Sumihiro’s theorem [Sum74, Cor. 2], the
conclusion follows from (3b)(ii).

For (3d), it suffices to show that Xi ↪→ X is a locally closed immersion by
Proposition 5.32(2). This statement is easily reduced to the case of X = P(V ),
using a special case of Proposition 5.32(2). For X = P(V ) a direct calculation shows
that each Xi is of the form P(W ) \ P(W ′) for linear subspaces W ′ ⊂W ⊂ V . �
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Appendix A. Equivariant Artin algebraization

In this appendix, we give an equivariant generalization of Artin’s algebraiza-
tion theorem [Art69b, Thm. 1.6]. We follow the approach of [CJ02] using Artin
approximation and an effective version of the Artin–Rees lemma.

The main results of this appendix (Theorems A.17 and A.18) are formulated in
greater generality than necessary to prove Theorem 1.1. We feel that these results
are of independent interest and will have further applications. In particular, in the
subsequent article [AHR19] we will apply the results of this appendix to prove a
relative version of Theorem 1.1.

A.1. Good moduli space morphisms are of finite type. Let G be a group act-
ing on a noetherian ring A. Goto–Yamagishi [GY83] and Gabber [ILO14, Exp. IV,
Prop. 2.2.3] have proven that A is finitely generated over AG when G is either diag-
onalizable (Goto–Yamagishi) or finite and tame (Gabber). Equivalently, the good
moduli space morphism X = [SpecA/G]→ SpecAG is of finite type. The following
theorem generalizes this result to every noetherian stack with a good moduli space.

Theorem A.1. Let X be a noetherian algebraic stack. If π : X → X is a good
moduli space with affine diagonal, then π is of finite type.

Proof. We may assume that X = SpecA is affine. Let p : U = SpecB → X be an

affine presentation. Then π∗(p∗OU ) = B̃. We need to show that B is a finitely
generated A-algebra. This follows from the following lemma. �

Lemma A.2. If X is a noetherian algebraic stack and π : X→ X is a good moduli
space, then π∗ preserves finitely generated algebras.

Proof. Let A be a finitely generated OX-algebra. Write A = lim−→λ
Fλ as a union of its

finitely generated OX-submodules. Then A is generated as an OX-algebra by Fλ for
sufficiently large λ; that is, we have a surjection Sym(Fλ)→ A. Since π∗ is exact, it
is enough to prove that π∗ Sym(Fλ) is finitely generated. But C := Γ(X,Sym(Fλ)) is
a Z-graded ring which is noetherian by [Alp13, Thm. 4.16(x)] since Spec

X
(Sym(Fλ))

is noetherian and Spec(C) is its good moduli space. It is well-known that C is then
finitely generated over C0 = Γ(X,OX) = A. �

A.2. Artinian stacks and adic morphisms.

Definition A.3. We say that an algebraic stack X is artinian if it is noetherian
and |X| is discrete. We say that a quasi-compact and quasi-separated algebraic
stack X is local if there exists a unique closed point x ∈ |X|.

Let X be a noetherian algebraic stack and let x ∈ |X| be a closed point with
maximal ideal mx ⊂ OX. The nth infinitesimal neighborhood of x is the closed

algebraic stack X
[n]
x ↪→ X defined by mn+1

x . Note that X
[n]
x is artinian and that

X
[0]
x = Gx is the residual gerbe. A local artinian stack X is a local artinian scheme

if and only if X
[0]
x is the spectrum of a field.

Definition A.4. Let X and Y be algebraic stacks, and let x ∈ |X| and y ∈ |Y| be

closed points. If f : (X, x) → (Y, y) is a pointed morphism, then X
[n]
x ⊆ f−1(Y

[n]
y )

and we let f [n] : X
[n]
x → Y

[n]
y denote the induced morphism. We say that f is adic

if f−1(Y
[0]
y ) = X

[0]
x .

Note that f is adic precisely when f∗my → mx is surjective. When f is adic, we

thus have that f−1(Y
[n]
y ) = X

[n]
x for all n ≥ 0. Every closed immersion is adic.
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Proposition A.5. Let X be a quasi-separated algebraic stack and let x ∈ |X| be
a closed point. Then there exists an adic flat presentation; that is, there exists an
adic flat morphism of finite presentation p : (SpecA, v) → (X, x). If the stabilizer
group of x is smooth, then there exists an adic smooth presentation.

Proof. The question is local on X so we can assume that X is quasi-compact. Start
with any smooth presentation q : V = SpecA → X. The fiber Vx = q−1(Gx) =
SpecA/I is smooth over the residue field κ(x) of the residual gerbe. Pick a closed
point v ∈ Vx such that κ(v)/κ(x) is separable. After replacing V with an open
neighborhood of v, we may pick a regular sequence f1, f2, . . . , fn ∈ A/I that
generates mv. Lift this to a sequence f1, f2, . . . , fn ∈ A and let Z ↪→ V be the
closed subscheme defined by this sequence. The sequence is transversely regular
over X in a neighborhood W ⊆ V of v. In particular, U = W ∩Z → V → X is flat.
By construction Ux = Zx = Specκ(v) so (U, v)→ (X,x) is an adic flat presentation.
Moreover, Ux = Specκ(v) → Gx → Specκ(x) is étale so if the stabilizer group is
smooth, then Ux → Gx is smooth and U → X is smooth at v. �

Corollary A.6. Let X be a noetherian algebraic stack. The following statements
are equivalent.

(1) There exists an artinian ring A and a flat presentation p : SpecA → X

which is adic at every point of X.
(2) There exists an artinian ring A and a flat presentation p : SpecA→ X.
(3) X is artinian.

Proof. The implications (1) =⇒ (2) =⇒ (3) are trivial. The implication (3) =⇒ (1)
follows from the proposition. �

Remark A.7. Let p be a smooth morphism p : (U, u) → (X, x). We say that p
is miniversal at u if the induced morphism TU,u → TX,x on tangent spaces is an

isomorphism. Equivalently, Spec ÔU,u → X is a formal miniversal deformation
space. If the stabilizer at x is smooth, then TX,x identifies with the normal space
Nx. Hence, p is miniversal at u if and only if u is a connected component of p−1(Gx),
that is, if and only if p is adic after restricting U to a neighborhood of u. If the
stabilizer at x is not smooth, then there does not exist smooth adic presentations
but there exists smooth miniversal presentations as well as flat adic presentations.

If X is an algebraic stack, I ⊆ OX is a sheaf of ideals and F is a quasi-coherent
sheaf, we set GrI(F) := ⊕n≥0I

nF/In+1F, which is a quasi-coherent sheaf of graded
modules on the closed substack defined by I.

Proposition A.8. Let f : (X, x)→ (Y, y) be a morphism of noetherian local stacks.

(1) If f [1] is a closed immersion, then f is adic and f [n] is a closed immersion
for all n ≥ 0.

(2) If f [1] is a closed immersion and there exists an isomorphism ϕ : Grmx(OX)→
(f [0])∗Grmy (OY ) of graded O

X
[0]
x

-modules, then f [n] is an isomorphism for

all n ≥ 0.

Proof. Pick an adic flat presentation p : SpecA → Y. After pulling back f along
p, we may assume that Y = SpecA is a scheme. If f [0] is a closed immersion, then

X
[0]
x is also a scheme, hence so is X

[n]
x for all n ≥ 0. After replacing f with f [n] for

some n we may thus assume that X = SpecB and Y = SpecA are affine and local
artinian. If in addition f [1] is a closed immersion, then mA → mB/m

2
B is surjective;

hence so is mAB → mB by Nakayama’s Lemma. We conclude that f is adic and
that A→ B is surjective (Nakayama’s Lemma again).

Assume that in addition we have an isomorphism ϕ : GrmA A
∼= GrmB B of

graded k-vector spaces where k = A/mA = B/mB . Then dimk m
n
A/m

n+1
A =
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dimk m
n
B/m

n+1
B . It follows that the surjections mnA/m

n+1
A → mnB/m

n+1
B induced

by f are isomorphisms. It follows that f is an isomorphism. �

Definition A.9. Let X be an algebraic stack. We say that X is a complete local
stack if

(1) X is local with closed point x,
(2) X is excellent with affine stabilizers, and
(3) X is coherently complete along the residual gerbe Gx.

Recall from Definition 2.1 that (3) means that the natural functor

Coh(X)→ lim←−
n

Coh
(
X[n]
x

)
is an equivalence of categories.

Proposition A.10. Let f : (X, x)→ (Y, y) be a morphism of complete local stacks.

(1) f is a closed immersion if and only if f [1] is a closed immersion.
(2) f is an isomorphism if and only if f [1] is a closed immersion and there

exists an isomorphism ϕ : Grmx(OX) → (f [0])∗Grmy (OY ) of graded O
X

[0]
x

-

modules.

Proof. The conditions are clearly necessary. Conversely, if f [1] is a closed im-
mersion, then f is adic and f [n] is a closed immersion for all n ≥ 0 by Propo-

sition A.8 (1). We thus obtain a system of closed immersions f [n] : X
[n]
x ↪→ Y

[n]
y

which is compatible in the sense that f [m] is the pull-back of f [n] for every m ≤ n.
Since Y is coherently complete, we obtain a unique closed substack Z ↪→ Y such

that X
[n]
x = Z ×Y Y

[n]
y for all n. If there exists an isomorphism ϕ as in the second

statement, then f [n] is an isomorphism for all n ≥ 0 by Proposition A.8 (2) and
Z = Y. Finally, since X, Y and Z are complete local stacks, it follows by Tannaka
duality (Theorem 2.7) that we have an isomorphism X → Z over Y and the result
follows. �

A.3. Artin approximation. Artin’s original approximation theorem applies to
the henselization of an algebra of finite type over a field or an excellent Dedekind
domain [Art69a, Thm. 1.12]. This is sufficient for the main body of this article
but for the generality of this appendix we need Artin approximation over arbitrary
excellent schemes. It is well-known that this follows from Popescu’s theorem (gen-
eral Néron desingularization), see e.g. [Pop86, Thm. 1.3], [Spi99, Thm. 11.3] and
[Stacks, Tag 07QY]. We include a proof here for completeness.

Theorem A.11 (Popescu). A regular homomorphism A→ B between noetherian
rings is a filtered colimit of smooth homomorphisms.

Here regular means flat with geometrically regular fibers. See [Pop86, Thm. 1.8]
for the original proof and [Swa98, Spi99] or [Stacks, Tag 07BW] for more recent
proofs.

Theorem A.12 (Artin approximation). Let S = SpecA be the spectrum of a G-

ring (e.g., excellent), let s ∈ S be a point and let Ŝ = Spec Â be the completion
at s. Let F : (Sch/S)op → Sets be a functor locally of finite presentation. Let

ξ ∈ F (Ŝ) and let N ≥ 0 be an integer. Then there exists an étale neighborhood

(S′, s′)→ (S, s) and an element ξ′ ∈ F (S′) such that ξ′ and ξ coincide in F (S
[N ]
s ).

Proof. We may replace A by the localization at the prime ideal p corresponding

to the point s. Since A is a G-ring, the morphism A → Â is regular and hence
a filtered colimit of smooth homomorphisms A → Aλ (Popescu’s theorem). Since

F is locally of finite presentation, we can thus find a factorization A → A1 → Â,

http://stacks.math.columbia.edu/tag/07QY
http://stacks.math.columbia.edu/tag/07BW
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where A→ A1 is smooth, and an element ξ1 ∈ F (A1) lifting ξ. After replacing A1

with a localization (A1)f there is a factorization A→ A[x1, x2, . . . , xn]→ A1 where
the second map is étale [EGA, IV.17.11.4]. Choose a lift ϕ : A[x1, x2, . . . , xn]→ A
of

ϕN : A[x1, x2, . . . , xn]→ A1 → Â→ A/pN+1.

Let A′ = A1⊗A[x1,x2,...,xn]A and let ξ′ ∈ F (A′) be the image of ξ1. By construction

we have an A-algebra homomorphism ϕ′N : A′ → A/pN+1 such that the images of

ξ′ and ξ are equal in F (A/pN+1). Since A → A′ is étale the result follows with
S′ = SpecA′. �

A.4. Formal versality.

Definition A.13. Let W be a noetherian algebraic stack, let w ∈ |W| be a closed

point and let W
[n]
w denote the nth infinitesimal neighborhood of w. Let X be a

category fibered in groupoids and let η : W → X be a morphism. We say that η
is formally versal (resp. formally universal) at w if the following lifting condition
holds. Given a 2-commutative diagram of solid arrows

W
[0]
w
� � ι // Z

f //
� _

g

��

W

η

��
Z′ //

f ′
??

X

where Z and Z′ are local artinian stacks and ι and g are closed immersions, there
exists a morphism (resp. a unique morphism) f ′ and 2-isomorphisms such that the
whole diagram is 2-commutative.

Proposition A.14. Let η : (W, w)→ (X, x) be a morphism of noetherian algebraic
stacks. Assume that w and x are closed points.

(1) If η[n] is étale for every n, then η is formally universal at w.
(2) If η[n] is smooth for every n and the stabilizer Gw is linearly reductive, then

η is formally versal at w.

Proof. We begin with the following observation: if (Z, z) is a local artinian stack
and h : (Z, z)→ (Q, q) is a morphism of algebraic stacks, where q is a closed point,

then there exists an n such that h factors through Q
[n]
q . Now, if we are given

a lifting problem, then the previous observation shows that we may assume that

Z and Z′ factor through some W
[n]
w → X

[n]
x . The first part is now clear from

descent. For the second part, the obstruction to the existence of a lift belongs
to the group Ext1

OZ
(f∗L

W
[n]
w /X

[n]
x
, I), where I is the square zero ideal defining the

closed immersion g. When η[n] is representable, this follows directly from [Ols06,
Thm. 1.5]. In general, this follows from the fundamental exact triangle of the

cotangent complex for Z → W
[n]
w ×X

[n]
x

Z′ → Z′ and two applications of [Ols06,

Thm. 1.1]. But Z is cohomologically affine and L
W

[n]
w /X

[n]
x

is a perfect complex of

Tor-amplitude [0, 1], so the Ext-group vanishes. The result follows. �

A.5. Refined Artin–Rees for algebraic stacks. The results in this section are
a generalization of [CJ02, §3] (also see [Stacks, Tag 07VD]) from rings to algebraic
stacks.

Definition A.15. Let X be a noetherian algebraic stack and let Z ↪→ X be a
closed substack defined by the ideal I ⊆ OX. Let ϕ : E → F be a homomorphism
of coherent sheaves on X. Let c ≥ 0 be an integer. We say that (AR)c holds for ϕ
along Z if

ϕ(E) ∩ InF ⊆ ϕ(In−cE), ∀n ≥ c.

http://stacks.math.columbia.edu/tag/07VD
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When X is a scheme, (AR)c holds for all sufficiently large c by the Artin–Rees
lemma. If π : U → X is a flat presentation, then (AR)c holds for ϕ along Z if and
only if (AR)c holds for π∗ϕ : π∗E → π∗F along π−1(Z). In particular (AR)c holds
for ϕ along Z for all sufficiently large c. If f : E′ � E is a surjective homomorphism,
then (AR)c for ϕ holds if and only if (AR)c for ϕ ◦ f holds.

In the following section, we will only use the case when |Z| is a closed point.

Theorem A.16. Let E2
α−→ E1

β−→ E0 and E′2
α′−→ E′1

β′−→ E′0 be two complexes of
coherent sheaves on a noetherian algebraic stack X. Let Z ↪→ X be a closed substack
defined by the ideal I ⊆ OX. Let c be a positive integer. Assume that

(1) E0,E
′
0,E1,E

′
1 are vector bundles,

(2) the sequences are isomorphic after tensoring with OX/I
c+1,

(3) the first sequence is exact, and
(4) (AR)c holds for α and β along Z.

Then

(a) the second sequence is exact in a neighborhood of Z;
(b) (AR)c holds for β′ along Z; and
(c) given an isomorphism ϕ : E0 → E′0, there exists a unique isomorphism ψ of

GrI(OX)-modules in the diagram

GrI(E0)
Gr(γ) // //

Gr(ϕ)∼=
��

GrI(cokerβ)

ψ∼=
��

GrI(E
′
0)

Gr(γ′) // // GrI(cokerβ′)

where γ : E0 → cokerβ and γ′ : E′0 → cokerβ′ denote the induced maps.

Proof. Note that there exists an isomorphism ψ if and only if ker Gr(γ) = ker Gr(γ′).
All three statements can thus be checked after pulling back to a presentation U → X.
We may also localize and assume that X = U = SpecA where A is a local ring. Then
all vector bundles are free and we may choose isomorphisms Ei ∼= E′i for i = 0, 1
such that β = β′ modulo Ic+1. We can also choose a surjection ε′ : OnU � E′2 and
a lift ε : OnU � E2 modulo Ic+1, so that α ◦ ε = α′ ◦ ε′ modulo Ic+1. Thus, we may
assume that Ei = E′i for i = 0, 1, 2 are free. The result then follows from [CJ02,
Lem. 3.1 and Thm. 3.2] or [Stacks, Tags 07VE and 07VF]. �

A.6. Equivariant algebraization. We now consider the equivariant generaliza-
tion of Artin’s algebraization theorem, see [Art69b, Thm. 1.6] and [CJ02, Thm. 1.5,
Rem. 1.7]. In fact, we give a general algebraization theorem for algebraic stacks.

Theorem A.17. Let S be an excellent scheme and let T be a noetherian algebraic
space over S. Let Z be an algebraic stack of finite presentation over T and let
z ∈ |Z| be a closed point such that Gz → S is of finite type. Let t ∈ T be the
image of z. Let X1, . . . ,Xn be categories fibered in groupoids over S, locally of finite
presentation. Let η : Z → X = X1 ×S · · · ×S Xn be a morphism. Fix an integer
N ≥ 0. Then there exists

(1) an affine scheme S′ of finite type over S and a closed point s′ ∈ S′ mapping
to the same point in S as t ∈ T ;

(2) an algebraic stack W→ S′ of finite type;
(3) a closed point w ∈ |W| over s′;
(4) a morphism ξ : W→ X;

(5) an isomorphism Z ×T T
[N ]
t
∼= W ×S′ S′[N ]

s′ over X mapping z to w; in

particular, there is an isomorphism Z
[N ]
z
∼= W

[N ]
w over X; and

http://stacks.math.columbia.edu/tag/07VE
http://stacks.math.columbia.edu/tag/07VF
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(6) an isomorphism Grmz OZ
∼= Grmw OW of graded algebras over Z

[0]
z
∼= W

[0]
w .

Moreover, if Xi is a quasi-compact algebraic stack and ηi : Z → Xi is affine for
some i, then it can be arranged so that ξi : W→ Xi is affine.

Proof. We may assume that S = SpecA is affine. Let t ∈ T be the image of z.

By replacing T with the completion T̂ = Spec ÔT,t and Z with Z ×T T̂ , we may

assume that T = T̂ = SpecB where B is a complete local ring. By standard limit
methods, we have an affine scheme S0 = SpecB0 and an algebraic stack Z0 → S0

of finite presentation and a commutative diagram

Z //

��

))
Z0

//

��

X

��
T // S0

//

�

S

If Xi is algebraic and quasi-compact and Z → Xi is affine for some i, we may also
arrange so that Z0 → Xi is affine [Ryd15, Thm. C].

Since Gz → S is of finite type, so is Specκ(t) → S. We may thus choose a

factorization T → S1 = AnS0
→ S0, such that T → Ŝ1 = Spec ÔS1,s1 is a closed

immersion; here s1 ∈ S1 denotes the image of t ∈ T . After replacing S1 with an
open neighborhood, we may assume that s1 is a closed point. Let Z1 = Z0 ×S0

S1

and Ẑ1 = Z1×S1 Ŝ1. Consider the functor F : (Sch/S1)op → Sets where F (U → S1)
is the set of isomorphism classes of complexes

E2
α−→ E1

β−→ OZ1×S1U

of finitely presented quasi-coherent OZ1×S1U -modules with E1 locally free. By stan-
dard limit arguments, F is locally of finite presentation.

We have an element (α, β) ∈ F (Ŝ1) such that im(β) defines Z ↪→ Ẑ1. Indeed,
choose a resolution

Ô⊕rS1,s1

β̃−−−→ ÔS1,s1 � B.

After pulling back β̃ to Ẑ1, we obtain a resolution

ker(β)
α

↪−−→ O⊕r
Ẑ1

β−−→ O
Ẑ1
� OZ.

After increasing N , we may assume that (AR)N holds for α and β at z.
Artin approximation (Theorem A.12) gives an étale neighborhood (S′, s′) →

(S1, s1) and an element (α′, β′) ∈ F (S′) such that (α, β) = (α′, β′) in F (S
[N ]
1,s1

). We

let W ↪→ Z1 ×S1 S
′ be the closed substack defined by im(β′). Then Z ×T T [N ]

t

and W ×S′ S′[N ]
s′ are equal as closed substacks of Z1 ×S1

S
[n]
1,s1

and (1)–(5) follows.

Finally (6) follows from Theorem A.16. �

Theorem A.18. Let S, T , Z, η, N , W and ξ be as in Theorem A.17. If η1 : Z→ X1

is formally versal, then there are compatible isomorphisms ϕn : Z
[n]
z
∼→ W

[n]
w over

X1 for all n ≥ 0. For n ≤ N , the isomorphism ϕn is also compatible with η and ξ.

Proof. We can assume that N ≥ 1. By Theorem A.17, we have an isomorphism

ϕN : Z
[N ]
z → W

[N ]
w over X. By formal versality and induction on n ≥ N , we can

extend ψN = ϕ−1
N to compatible morphisms ψn : W

[n]
w → Z over X1. Indeed, formal
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versality allows us to find a dotted arrow such the diagram

W
[n]
w

ψn //

��

Z

η

��
W

[n+1]
w

ξ1|
W

[n+1]
w

//

ψn+1

88

X1

is 2-commutative. By Proposition A.8 (2), ψn induces an isomorphism ϕn : Z
[n]
z →

W
[n]
w . �

We now formulate the theorem above in a manner which is transparently an equi-
variant analogue of Artin algebraization [Art69b, Thm. 1.6]. It is this formulation
that is directly applied to prove Theorem 1.1.

Corollary A.19. Let H be a linearly reductive affine group scheme over an alge-
braically closed field k. Let X be a noetherian algebraic stack of finite type over k

with affine stabilizers. Let Ĥ = [SpecC/H] be a noetherian algebraic stack over k.

Suppose that CH is a complete local k-algebra. Let η : Ĥ → X be a morphism that

is formally versal at a closed point z ∈ |Ĥ|. Let N ≥ 0. Then there exists

(1) an algebraic stack W = [SpecA/H] of finite type over k;
(2) a closed point w ∈ |W|;
(3) a morphism f : W→ X;

(4) a morphism ϕ : (Ĥ, z)→ (W, w);
(5) a 2-isomorphism τ : η ⇒ f ◦ ϕ; and

(6) a 2-isomorphism νN : α[N ] ⇒ β[N ] ◦ ϕ[N ] where α : Ĥ → BH and β : W →
BH denote the structure morphisms.

such that for all n, the induced morphism ϕ[n] : Ĥ
[n]
z → W

[n]
w is an isomorphism.

In particular, ϕ induces an isomorphism ϕ̂ : Ĥ → Ŵ where Ŵ is the coherent

completion of W at w (i.e., Ŵ = W ×W Spec ÔW,w0
where W = SpecAH and

w0 ∈W is the image of w under W→W ).

Proof. By Theorem A.1, the good moduli space Ĥ→ SpecCH is of finite type. If we

apply Theorem A.18 with S = Spec k, T = SpecCH , Z = Ĥ, X1 = X and X2 = BH,

then we immediately obtain (1)–(3) together with isomorphisms ϕn : Ĥ
[n]
z →W

[n]
w ,

a compatible system of 2-isomorphisms {τn : η[n] ⇒ f [n] ◦ ϕ[n]}n≥0 for all n, and a

2-isomorphism νN as in (6). Since Ĥ and Ŵ are coherently complete (Theorem 1.3),

the isomorphisms ϕn yield an isomorphism ϕ̂ : Ĥ → Ŵ and an induced morphism

ϕ : Ĥ→W by Tannaka duality (Corollary 2.8). Likewise, the system {τn} induces
a 2-isomorphism τ : η ⇒ f ◦ ϕ by Tannaka duality (full faithfulness in Corollary
2.8). �

Remark A.20. If X is merely a category fibered in groupoids over k that is locally
of finite presentation (analogously to the situation in [Art69b, Thm. 1.6]), then
Corollary A.19 and its proof remain valid except that instead of the 2-isomorphism
τ we only have the system {τn}.
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A LUNA ÉTALE SLICE THEOREM FOR ALGEBRAIC STACKS 45

[AK16] J. Alper and A. Kresch, Equivariant versal deformations of semistable curves, Michigan

Math. J. 65 (2016), no. 2, 227–250.

[Alp10] J. Alper, On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214
(2010), no. 9, 1576–1591.

[Alp13] J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013),
no. 6, 2349–2402.

[Alp14] J. Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr.

Geom. 1 (2014), no. 4, 489–531.
[AOV08] D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive characteristic, Ann.

Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.

[Art69a] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes
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