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Abstract. Let X be a quasi-compact and quasi-separated scheme. There are
two fundamental and pervasive facts about the unbounded derived category

of X: (1) Dqc(X) is compactly generated by perfect complexes and (2) if X

is noetherian or has affine diagonal, then the functor ΨX : D(QCoh(X)) →
Dqc(X) is an equivalence. Our main results are that for algebraic stacks in

positive characteristic, the assertions (1) and (2) are typically false.

1. Introduction

Fix a field k and an algebraic group G over k. Ben-Zvi posed the following
question [BZ09]: if k has positive characteristic, then is the unbounded derived
category of representations of G compactly generated?

The second author recently answered Ben-Zvi’s question negatively in the case
of Ga [Nee14, Rem. 4.2]. We establish a much stronger version of this result: in
the unbounded derived category of representations of Ga in positive characteristic,
there are no compact objects besides 0 (Proposition 3.1).

We say that G is poor if k has positive characteristic and G = G ⊗k k has a

subgroup isomorphic to Ga, or, equivalently, if G
0

red is not semi-abelian (Lemma
4.2). Examples of poor groups are Ga and GLn. The results of this article imply
that in positive characteristic, the derived category of representations of G is not
compactly generated ifG is poor. Conversely, whenG is not poor, the first and third
author show that its derived category of representations is compactly generated
[HR15, Thm. A]. Ben-Zvi’s question is thus completely resolved.

A somewhat subtle point that we have suppressed so far is that there are two
potential ways to look at the unbounded derived category of representations of G.
First, there is D(Rep(G)); second, there is Dqc(BG), the unbounded derived cate-
gory of lisse-étale OBG-modules with quasi-coherent cohomology. There is a natu-
ral functor D(Rep(G)) → Dqc(BG) and if G is affine, then this functor induces an
equivalence on bounded below derived categories.

In the present article, we will show that in positive characteristic if G is affine
and poor, then this functor is not full. We also prove that if G is poor, then neither
D(Rep(G)) nor Dqc(BG) is compactly generated.

The results above are actually special cases of some general results for unbounded
derived categories of quasi-coherent sheaves on algebraic stacks. We say that an
algebraic stack is poorly stabilized (see §4) if it has a point with poor stabilizer
group. Our first main result is the following.

Theorem 1.1. Let X be an algebraic stack that is quasi-compact, quasi-separated
and poorly stabilized.
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(1) The triangulated category Dqc(X) is not compactly generated.
(2) Assume in addition that X has affine diagonal or is noetherian. If X is of

global type, then D(QCoh(X)) is not compactly generated.

An algebraic stack X is of global type if there exists a quasi-compact, étale,
representable, and surjective morphism [U/GLn] → X, where U is a quasi-affine
scheme. More colloquially, X is of global type if it has affine stabilizers and étale-
locally has the resolution property [Tot04, Gro13]. By Sumihiro’s Theorem and
its recent generalization due to Brion [Sum74, Bri15], many quotient stacks are of
global type [HR14b, Prop. 9.1], as are stacks admitting good moduli spaces and,
more generally, those with linearly reductive stabilizers at closed points [AHR15].

We wish to point out that Theorem 1.1 is counter to the prevailing wisdom.
Indeed, let X be a quasi-compact and quasi-separated algebraic stack. If X is
a scheme, then it is well-known that Dqc(X) is compactly generated by perfect
complexes [BB03, Thm. 3.1.1(b)]. More generally, recent work of Krishna [Kri09,
Lem. 4.8], Ben-Zvi–Francis–Nadler [BZFN10, §3.3], Toën [Toë12, Cor. 5.2], and the
first and third authors [HR14b], has shown that the unbounded derived category
Dqc(X) is compactly generated by perfect complexes if X is a Deligne–Mumford
stack or is of equicharacteristic zero and of s-global type.

Also recall that if X is a scheme that is either quasi-compact with affine diagonal
or noetherian, then the functor ΨX : D(QCoh(X)) → Dqc(X) is an equivalence of
triangulated categories—see [BN93, Cor. 5.5] for the separated case (the argument
adapts trivially to the case of affine diagonal) and [Stacks, Tags 08H1 & 09TN] in
the setting of algebraic spaces. Our second main result is a partial extension of this
to algebraic stacks.

Theorem 1.2. Let X be an algebraic stack that is quasi-compact with affine diag-
onal or noetherian and affine-pointed. If Dqc(X) is compactly generated, then the
functor ΨX : D(QCoh(X))→ Dqc(X) is an equivalence of categories.

An algebraic stack X is affine-pointed if every morphism Spec k → X, where k
is a field, is affine. If X has quasi-affine or quasi-finite diagonal, then X is affine-
pointed [HR14a, Lem. 4.5].

In particular, ΨX is an equivalence for every Deligne–Mumford stack with affine
diagonal, every noetherian Deligne–Mumford stack, and every stack in characteris-
tic zero with affine diagonal that étale-locally has the resolution property [HR14b].
This is a vast extension of work of Lieblich [Lie04, Prop. 2.2.4.6] and Krishna [Kri09,
Cor. 3.7]. Lieblich gives a sketch of the proof of the equivalence of ΨX when X
is an Artin stack with affine diagonal, the resolution property, and a good moduli
space which is a scheme. Krishna treats the special case when X is a Deligne–
Mumford stack that is separated, of finite type over a field of characteristic 0, has
the resolution property and whose coarse moduli space is a scheme.

It is natural to ask whether ΨX is always an equivalence of categories. On the
positive side, we prove that the restricted functor Ψ+

X : D+(QCoh(X))→ D+
qc(X) is

an equivalence of triangulated categories when either X is quasi-compact with affine
diagonal or noetherian and affine-pointed (Theorem C.1, also see [Lur04, Thm. 3.8]
and [SGA6, Prop. II.3.5]). On the negative side, we have the following result.

Theorem 1.3. Let X be an algebraic stack that is quasi-compact with affine di-
agonal or noetherian and affine-pointed. If X is poorly stabilized, then the functor
ΨX : D(QCoh(X))→ Dqc(X) is not full.

We were unable to determine whether the functor ΨX in Theorem 1.3 is faithful
or not. For stacks with non-affine stabilizer groups the situation is even worse: if
X = BE, where E is an elliptic curve over C, then the functor Ψb

X : Db(Coh(X))→
DbCoh(X) is neither essentially surjective nor full.

http://stacks.math.columbia.edu/tag/08H1
http://stacks.math.columbia.edu/tag/09TN
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Note that when X has affine diagonal or is noetherian and affine-pointed, the
first claim in Theorem 1.1 is a trivial consequence of Theorems 1.2 and 1.3.

Left-completeness. In the course of proving Theorem 1.3, we will prove that
the triangulated category D(QCoh(X)) is not left-complete whenever X is poorly
stabilized with affine diagonal. This generalizes an example of Neeman [Nee11] and
amplifies some observations of Drinfeld–Gaitsgory [DG13, Rem. 1.2.10].

In Appendix B, we will prove that Dqc(X) is left-complete for all algebraic stacks
X. An analogous assertion in the context of derived algebraic geometry has been
addressed by Drinfeld–Gaitsgory [DG13, Lem. 1.2.8]. In the Stacks Project [Stacks,
Tag 08IY] a similar result has been proved, albeit in a different context.

As remarked to us by Bhatt [Bha12] and a reviewer, if X is quasi-compact with
affine diagonal or noetherian and affine-pointed, then Dqc(X) can be identified with
the left-completion of D(QCoh(X)) (in the sense of [Lur16, §1.2.1])—see Remark
C.4.

Well generation. In Appendix A we show that if A is a Grothendieck abelian
category and M ⊆ A is a weak Serre subcategory that is closed under coprod-
ucts and is Grothendieck abelian, then DM(A) is a well generated triangulated
category—a result we expect to be of independent interest. We prove this using
the Gabriel–Popescu Theorem.

Since the inclusion QCoh(X) ⊆ Mod(X) has these properties, this establishes
that the triangulated category Dqc(X) is well generated. This result is applied
extensively in the article. It is used in the construction of adjoint functors (e.g.,
the derived quasi-coherator) and infinite products.

As remarked by a reviewer, the well generation of DM(A) also follows from some
general results in the theory of presentable ∞-categories (Remark A.4). We also
wish to point out that while [KS06, Prop. 14.2.4] is quite general, it does not apply
in our situation. Indeed, they require that the embedding M ⊆ A is closed under
A-subquotients (i.e., M is a Serre subcategory of A), which is not the case for
QCoh(X) ⊆ Mod(X).

Acknowledgements. We wish to thank Bhargav Bhatt and Jacob Lurie for answer-
ing some questions. We are also indebted to the reviewer for a number of useful
comments and suggestions.

2. Preliminaries

Let φ : X → Y be a quasi-compact and quasi-separated morphism of alge-
braic stacks. Then the restriction of the functor (φlis-ét)∗ : Mod(X) → Mod(Y )
to QCoh(X) factors through QCoh(Y ) [Ols07, Lem. 6.5(i)], giving rise to a func-
tor (φQCoh)∗ : QCoh(X) → QCoh(Y ). Since the categories Mod(X) and QCoh(X)
are Grothendieck abelian [Stacks, Tag 0781], the unbounded derived functors of
(φlis-ét)∗ and (φQCoh)∗ exist [Stacks, Tags 079P & 070K], and we denote these as
R(φlis-ét)∗ and R(φQCoh)∗, respectively. By [Ols07, Lem. 6.20], the restriction of
R(φlis-ét)∗ to D+

qc(X) factors uniquely through D+
qc(Y ). If, in addition, φ is con-

centrated (e.g., representable), then the restriction of R(φlis-ét)∗ to Dqc(X) fac-
tors through Dqc(Y ) (see [Hal14, Lem. 2.1] for the representable case and [HR14b,
Thm. 2.6(2)] in general).

http://stacks.math.columbia.edu/tag/08IY
http://stacks.math.columbia.edu/tag/0781
http://stacks.math.columbia.edu/tag/079P
http://stacks.math.columbia.edu/tag/070K
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For an algebraic stack W let ΨW : D(QCoh(W )) → Dqc(W ) denote the natural
functor. The universal properties of right-derived functors provide a diagram:

D(QCoh(X))
R(φQCoh)∗ //

ΨX

��

D(QCoh(Y ))

ΨY

��
Dqc(X)

R(φlis-ét)∗ // Dqc(Y ),

together with a natural transformation of functors:

(2.1) εφ : ΨY ◦ R(φQCoh)∗ ⇒ R(φlis-ét)∗ ◦ΨX .

The following result, for schemes, is well-known [TT90, B.8]; for algebraic spaces,
see [Stacks, Tags 09TH & 08GX].

Proposition 2.1. Let φ : X → Y be a morphism of algebraic stacks. Suppose
that both X and Y are quasi-compact with affine diagonal or noetherian and affine-
pointed. If M ∈ D+(QCoh(X)), then the morphism induced by (2.1):

εφ(M) : ΨY ◦ R(φQCoh)∗(M)→ R(φlis-ét)∗ ◦ΨX(M)

is an isomorphism. In particular, since Ψ+
Y : D+(QCoh(Y ))→ D+

qc(Y ) is an equiv-
alence (Theorem C.1), it follows that there is a natural isomorphism for each
M ∈ D+(QCoh(X)):

R(φQCoh)∗(M)→ (Ψ+
Y )−1 ◦ R(φlis-ét)∗ ◦Ψ+

X(M).

Proof. The functors (φQCoh)∗ and (φlis-ét)∗ are left-exact, thus the functors R(φQCoh)∗
and R(φlis-ét)∗ are bounded below. Since M is assumed to belong to the bounded
below derived category, we may employ standard “way-out” arguments to reduce
proving the isomorphism above in the case when M ' N [0], where N ∈ QCoh(X).
The isomorphism, in this case, reduces to proving that if N ∈ QCoh(X), then the
natural morphism Ri(φQCoh)∗N → Ri(φlis-ét)∗N is an isomorphism for all integers
i ≥ 0, where Ri(φQCoh)∗ (resp. Ri(φlis-ét)∗) denotes the ith right-derived functor of
(φQCoh)∗ (resp. (φlis-ét)∗). A standard δ-functor argument shows that it is sufficient
to prove that Ri(φlis-ét)∗I = 0 for every i > 0 and injective I of QCoh(X). But X
and Y are assumed to be either quasi-compact with affine diagonal or noetherian
and affine-pointed, so this vanishing claim follows from Lemma C.3(2). �

We briefly recall the following definitions from [HR14b, §2]. Let φ : X → Y be a
quasi-compact and quasi-separated morphism of algebraic stacks. Then φ has finite
cohomological dimension if there exists an integer n > 0 such that Rm(φlis-ét)∗M =
0 for all m ≥ n and M ∈ QCoh(X). If for every morphism of algebraic stacks
Z → Y , where Z is quasi-compact and quasi-separated, the morphism X×Y Z → Z
is finite cohomological dimension, then we say that φ is concentrated.

If Y is quasi-compact with quasi-affine diagonal, then finite cohomological dimen-
sion is equivalent to concentrated [HR14b, Lem. 2.5(5)]. Also, if φ is representable,
then it is concentrated [HR14b, Lem. 2.5(3)].

Concentrated morphisms are the natural ones to consider for unbounded derived
categories of quasi-coherent sheaves. Indeed, if φ is concentrated, then R(φlis-ét)∗
sends Dqc(X) to Dqc(Y ), is compatible with flat base change and preserves small
coproducts [HR14b, Thm 2.6]. In the next corollary, we see that this is also often
the case for R(φQCoh)∗.

Corollary 2.2. Let φ : X → Y be a concentrated morphism of algebraic stacks. If
X and Y are quasi-compact with affine diagonal or noetherian and affine-pointed,

http://stacks.math.columbia.edu/tag/09TH
http://stacks.math.columbia.edu/tag/08GX
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then there exists an integer r ≥ 0 such that for all M ∈ D(QCoh(X)) and integers
n the natural map:

τ≥nR(φQCoh)∗M → τ≥nR(φQCoh)∗τ
≥n−rM

is a quasi-isomorphism. It follows that

(1) R(φQCoh)∗ preserves small coproducts;
(2) for all M ∈ D(QCoh(X)) the natural morphism induced by (2.1):

εφ(M) : ΨY ◦ R(φQCoh)∗M → R(φlis-ét)∗ ◦ΨX(M)

is an isomorphism;
(3) the formation of R(φQCoh)∗ is compatible with flat base change on Y ; and
(4) if a left adjoint Lφ∗QCoh to R(φQCoh)∗ exists (see Lemma 4.3, e.g., φ is flat),

then Lφ∗QCoh sends compacts to compacts.

Proof. The claims (1)–(3) are all simple consequences of the main claim, Propo-
sition 2.1 and [HR14b, Thm 2.6]. Since φ is a concentrated morphism and Y
is quasi-compact and quasi-separated, there exists an integer r ≥ 0 such that if
N ∈ QCoh(X), then Ri(φlis-ét)∗N = 0 for all i > r. By Proposition 2.1 it follows
that Ri(φQCoh)∗N = 0 for all i > r too. The claim now follows from [Stacks, Tag
07K7]. Finally, (4) follows from (1) and [HR14b, Ex. 3.8]. �

Corollary 2.3. Let X be an algebraic stack that is quasi-compact with affine diago-
nal or noetherian and affine-pointed. If C is a compact object of either D(QCoh(X))
or Dqc(X), then C is perfect. Moreover if X is noetherian, then C is quasi-
isomorphic to a bounded complex of coherent sheaves on X.

Proof. Let C be a compact object of Dqc(X). By [HR14b, Lem. 4.4(1)], C is a
perfect complex and in particular belongs to Dbqc(X) ⊆ D+

qc(X). By Theorem C.1,

it follows that C ' ΨX(C̃) for some C̃ ∈ D(QCoh(X)). If X is noetherian, C̃ even
belongs to DbCoh(X)(QCoh(X)). Combining [LMB, Prop. 15.4] with [SGA6, II.2.2],

we deduce that C belongs to the image of D(Coh(X))→ Dqc(X).
Now let C be a compact object of D(QCoh(X)). Let p : U → X be a smooth

surjection from an affine scheme U . By Corollary 2.2(4), Lp∗QCohC ∈ D(QCoh(U))
is compact. Since U = SpecA is affine, it follows that QCoh(U) ∼= Mod(A) and
so Lp∗QCohC is a perfect complex [Stacks, Tag 07LT]. If X is noetherian, then C ∈
DbCoh(X)(QCoh(X)). Arguing as before, we deduce that C belongs to the image of

D(Coh(X))→ D(QCoh(X)). �

In the following Lemma we will give a sufficient condition for compactness of a
perfect object in D(QCoh(X)). We do not know if this condition is necessary. The
analogous condition in Dqc(X) is necessary [HR14b, Lem. 4.5].

Lemma 2.4. Let X be an algebraic stack that is quasi-compact with affine diag-
onal or noetherian and affine-pointed. Let P ∈ D(QCoh(X)) be a perfect complex.
Consider the following conditions

(1) P is a compact object of D(QCoh(X)).
(2) There exists an integer r ≥ 0 such that HomOX (P,N [i]) = 0 for all N ∈

QCoh(X) and i > r.
(3) There exists an integer r ≥ 0 such that the natural map

τ≥jRHomD(QCoh(X))(P,M)→ τ≥jRHomD(QCoh(X))(P, τ
≥j−rM)

is a quasi-isomorphism for all M ∈ D(QCoh(X)) and integers j.

Then (2) and (3) are equivalent and imply (1).

http://stacks.math.columbia.edu/tag/07K7
http://stacks.math.columbia.edu/tag/07LT
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Proof. Condition (2) is a special case of (3): let M = N [i] and j = 0.
Conversely, assume that condition (2) holds and let M ∈ D(QCoh(X)). Since the

category QCoh(X) is Grothendieck abelian, there is a quasi-isomorphism M → I•

in D(QCoh(X)), where I• is K-injective and Ij is injective for every integer j [Ser03].
Let p ≥ r + 1 be an integer with the property that P ∈ D≥−p+1(QCoh(X)).

Then the natural morphism of chain complexes:

(2.2) τ≥j Hom•K(QCoh(X))(P, I
•)→ τ≥j Hom•K(QCoh(X))(P, σ

≥j−pI•),

where σ is the brutal truncation, is a quasi-isomorphism. For every integer j there
is also a morphism sj : σ≥jI• → τ≥jI•. If C•j is the mapping cone of sj , then

C•j ' d(Ij−1)[−(j − 1)]. Thus, by condition (2), it follows that for every integer j

τ≥j+rRHomD(QCoh(X))(P,C
•
j ) ' 0.

Since there is also a distinguished triangle in D(QCoh(X)) for every integer j:

RHom(P, σ≥j−pI•) // RHom(P, τ≥j−pI•) // RHom(P,C•j−p),

it follows that for every integer j there is a quasi-isomorphism:

(2.3) τ≥jRHom(P, σ≥j−pI•) ' τ≥jRHom(P, τ≥j−pM).

For every integer j, we also have a distinguished triangle

Hj−r−1(M)[−(j − r − 1)] // τ≥j−r−1M // τ≥j−rM.

As before, it follows that τ≥jRHom(P, τ≥j−r−1M) ' τ≥jRHom(P, τ≥j−rM) and
thus by induction a quasi-isomorphism:

(2.4) τ≥jRHom(P, τ≥j−pM) ' τ≥jRHom(P, τ≥j−rM).

Combining the quasi-isomorphisms (2.2)–(2.4) gives (3).
For (3) implies (1): this follows from Theorem C.1 and [HR14b, Lem. 1.2(3)]. �

We now relate compact generation in D(QCoh(X)) with compact generation in
Dqc(X).

Lemma 2.5. Let X be an algebraic stack that is quasi-compact with affine diagonal
or noetherian and affine-pointed.

(1) If P ∈ D(QCoh(X)) is a perfect complex such that Ψ(P ) is compact in
Dqc(X), then P is compact in D(QCoh(X)).

(2) If X has finite cohomological dimension, then every perfect complex is com-
pact in both D(QCoh(X)) and Dqc(X).

(3) If a set of objects {Pi} of D(QCoh(X)) has the property that {Ψ(Pi)} com-
pactly generates Dqc(X), then {Pi} compactly generates D(QCoh(X)).

Proof. For (1), by [HR14b, Lem. 4.5], since Ψ(P ) is compact, there exists an integer
r such that if i > r and N ∈ QCoh(X), then HomOX (Ψ(P ), N [i]) = 0. The functor
Ψ+ is an equivalence (Theorem C.1), so HomOX (P,N [i]) = 0 for all i > r and
N ∈ QCoh(X). It follows that P is compact by Lemma 2.4.

Statement (2) is a direct consequence of (1) and [HR14b, Lem. 4.4(3)].
For (3), let M ∈ D(QCoh(X)). If P is perfect and Ψ(P ) is compact, then

RHom(P,M) = RHom(Ψ(P ),Ψ(M)). Indeed, there exists an integer r such that
for all integers j

τ≥jRHom(P,M) ' τ≥jRHom(P, τ≥j−rM)

' τ≥jRHom(Ψ(P ), τ≥j−rΨ(M)) ' τ≥jRHom(Ψ(P ),Ψ(M)),

by Lemma 2.4 and [HR14b, Lem. 4.5] since Ψ+ is an equivalence of triangulated
categories (Theorem C.1) and Ψ is t-exact. Thus, if HomD(QCoh(X))(Pi[l],M) = 0
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for all i and integers l, then HomOX (Ψ(Pi)[l],Ψ(M)) = 0 for all i and l. It follows
that Ψ(M) = 0 and, since Ψ is conservative, that M = 0. �

The following lemma, while technical, gives an explicit description of an adjunc-
tion that is useful in the article.

Lemma 2.6. Let X be an algebraic stack and let M ∈ D(QCoh(X)).

(1) The functor ΨX : D(QCoh(X))→ Dqc(X) admits a right adjoint ΦX : Dqc(X)→
D(QCoh(X)).

(2) If X is a quasi-compact with affine diagonal or noetherian and affine-
pointed, then there exists a compatible quasi-isomorphism:

ΦXΨX(M) ' holim
n

τ≥−nM.

Proof. We suppress the subscript X from Ψ and Φ throughout. Since Ψ preserves
small coproducts and D(QCoh(X)) is well generated [Nee01a, Thm. 0.2], Ψ admits
a right adjoint Φ: Dqc(X)→ D(QCoh(X)) [Nee01b, Prop. 1.20]. This proves (1).

To prove (2), by left-completeness of Dqc(X) (Theorem B.1),

ΦΨ(M)→ Φ(holim
n

τ≥−nΨ(M))

is a quasi-isomorphism. Since Φ is a right adjoint, it preserves homotopy limits.
Also, Ψ is t-exact. Hence, there is a quasi-isomorphism

Φ(holim
n

τ≥−nΨ(M)) ' holim
n

ΦΨ(τ≥−nM).

By Theorem C.1, however, τ≥−nM ' ΦΨ(τ≥−nM). This proves the claim. �

Remark 2.7. From Lemma 2.6(2) it is immediate that when X is quasi-compact
with affine diagonal or is noetherian and affine-pointed, the left-completeness of
D(QCoh(X)) is equivalent to ΨX being fully faithful.

We now prove Theorem 1.2 using an argument similar to [BIK11, Lem. 4.5].

Proof of Theorem 1.2. By Lemma 2.5(3), both D(QCoh(X)) and Dqc(X) are com-
pactly generated and Ψ takes a set of compact generators to a set of compact gen-
erators. In particular, the right adjoint Φ: Dqc(X) → D(QCoh(X)) of Ψ preserves
small coproducts [Nee96, Thm. 5.1].

Consider the unit ηM : M → ΦΨ(M)) and the counit εM : ΨΦ(M) → M of the
adjunction. Since Ψ+ is an equivalence, we have that ηP and εP are isomorphisms
for every compact object P . Since Ψ and Φ preserve small coproducts and Dqc(X)
and D(QCoh(X)) are compactly generated, it follows that η and ε are equivalences.
We conclude that Ψ is an equivalence. �

3. The case of BkGa in positive characteristic

Throughout this section we let k denote a field of characteristic p > 0. Let BkGa
be the algebraic stack classifying Ga-torsors over k. We remind ourselves that the
category of quasi-coherent sheaves on BkGa is the category of Ga-modules, which
is equivalent to the category of locally small modules over a certain ring R. In fact
R is the ring

R =
k[x1, x2, x3, . . .]

(xp1, x
p
2, x

p
3, . . .)

and a module is locally small if every element is annihilated by all but finitely many
xi. Let us write D(Rls) for the derived category of the category of locally small
R-modules, and observe that D(Rls) ∼= D(QCoh(BkGa)).

Proposition 3.1. The only compact objects, in either D(QCoh(BkGa)) or Dqc(BkGa),
are the zero objects.



8 J. HALL, A. NEEMAN, AND D. RYDH

Proof. The algebraic stack BkGa is noetherian with affine diagonal and so, by
Corollary 2.3, every compact object is the image of a bounded complex of coherent
sheaves. Let C be a compact object; we need to show that C vanishes.

Our compact object C is the image of a finite complex of finitely generated mod-
ules in D(Rls). In particular, there exists an integer n > 1 such that xi annihilates C
for all i ≥ n. Let us put this slightly differently: consider the ring homomorphisms

S
α→ T

β→ R
γ→ T where

S = k[xn]/(xpn), T =
k[x1, x2, . . . , xn−1, xn]

(xp1, x
p
2, . . . , x

p
n−1, x

p
n)

where the maps S
α→ T

β→ R are the natural inclusions, and where γ : R → T is
defined by

γ(xi) =

{
xi if i ≤ n
0 if i > n.

Note that γβ = id. Restriction of scalars gives induced maps of derived categories,

which we write as D(T )
γ∗−→ D(Rls)

β∗−→ D(T )
α∗−−→ D(S), and β∗γ∗ = id. Our

complex C, which is a bounded complex annihilated by xi for all i ≥ n, is of the
form γ∗B where B ∈ Db(T ) is a bounded complex of finite T -modules. And the
fact that xn annihilates C translates to saying that α∗B is a complex of modules
annihilated by xn, that is a complex of k-vector spaces. We wish to show that
C = 0 or, equivalently, that α∗B is acyclic. We will show that if C is non-zero,
then this gives rise to a contradiction.

Thus, assume that the cohomology of α∗B is non-trivial: in D(S) the complex
α∗B is isomorphic to a non-zero sum of suspensions k[`] of k. Then there are infin-
itely many integers m and non-zero maps in D(S) of the form α∗B → k[m]. Indeed,
ExtmS (k, k) 6= 0 for all m ≥ 0. But α∗ has a right adjoint α× = RHomS(T,−), and
we deduce infinitely many non-zero maps in D(T ) of the form B → α×k[m] =
HomS(T, k)[m]. Since D(T ) is left-complete, these combine to a map in D(T )

Ψ: B →
∏
m

HomS(T, k)[m] ∼=
∐
m

HomS(T, k)[m]

for which the composites

B
Ψ−→
∐
m

HomS(T, k)[m]
πm−−→ HomS(T, k)[m]

are non-zero. Applying γ∗, which preserves coproducts, we deduce maps

γ∗B
γ∗Ψ−−→

∐
m

γ∗HomS(T, k)[m]
γ∗πm−−−→ γ∗HomS(T, k)[m]

whose composites cannot vanish in D(Rls), since β∗ takes them to non-zero maps.
The equivalence D(Rls) ∼= D(QCoh(BkGa)) gives us that the composites in D(QCoh(BkGa))
do not vanish. Furthermore, the composites lie in D+(QCoh(BkGa)) ⊆ D(QCoh(BkGa)),
and on D+(QCoh(BkGa)) the map to Dqc(BkGa) is fully faithful [Lur04, Thm. 3.8].
Hence the images of the composites are non-zero in Dqc(BkGa) as well. But this
contradicts the compactness of C = γ∗B. �

4. The general case

In this section we extend the results of the previous section and show that the
presence of Ga in the stabilizer groups of an algebraic stack X is an obstruction
to compact generation in positive characteristic. The existence of finite unipo-
tent subgroups such as Z/pZ and αααp is an obstruction to the compactness of the
structure sheaf OX but does not rule out compact generation [HR15]. The only
connected groups in characteristic p without unipotent subgroups are the groups



DERIVED CATEGORIES OF ALGEBRAIC STACKS 9

of multiplicative type. The following well-known lemma characterizes the groups
without Ga’s.

Lemma 4.1. Let G be a group scheme of finite type over an algebraically closed
field k. Then the following are equivalent:

(1) G0
red is semiabelian, that is, a torus or the extension of an abelian variety

by a torus;
(2) there is no subgroup Ga ↪→ G.

Proof. By Chevalley’s Theorem [Con02, Thm. 1.1] there is an extension 1→ H →
G0

red → A→ 1 where H is smooth, affine and connected and A is an abelian variety.
A subgroup Ga ↪→ G would have to be contained in H which implies that H is not
a torus. Conversely, recall that H(k) is generated by its semi-simple and unipotent
elements by the Jordan Decomposition Theorem [Bor91, Thm. 4.4]. If H is not a
torus, then there exist non-trivial unipotent elements in H(k). But any non-trivial
unipotent element of H(k) lies in a subgroup Ga ↪→ G. The result follows. �

If k is of positive characteristic, then we say that G is poor if G0
red is not semi-

abelian. We say that an algebraic stack X is poorly stabilized if there exists a
geometric point x of X whose residue field κ(x) is of characteristic p > 0 and
stabilizer group scheme Gx is poor. In particular, the algebraic stacks BkGa and
BkGLn for n > 1 are poorly stabilized in positive characteristic. The following
characterization of poorly stabilized algebraic stacks will be useful.

Lemma 4.2. Let X be a quasi-separated algebraic stack.

(1) The stack X is poorly stabilized if and only if there exists a field k of char-
acteristic p > 0 and a representable morphism φ : BkGa → X.

(2) If X has affine stabilizers, then every representable morphism φ : BkGa →
X is quasi-affine.

(3) Let X ′ → X be a quasi-finite, representable and surjective morphism of
algebraic stacks. If X is poorly stabilized, then so too is X ′.

Proof. We first prove (1). Let k be an algebraically closed field and let x : Spec k →
X be a geometric point with stabilizer group scheme G. This induces a repre-
sentable morphism BG → X. If X is poorly stabilized, then there exists a point
x such that G0

red is not semiabelian. By the previous lemma, there is a subgroup
Ga ↪→ G and hence a representable morphism BGa → BG.

Conversely, given a representable morphism φ : BkGa → X, there is an induced
representable morphism ψ : BkGa → BkG. The morphism ψ is induced by some
subgroup Ga ↪→ G (unique up to conjugation) so X is poorly stabilized.

We now treat (2). The structure morphism ιx : Gx ↪→ X of the residual gerbe
Gx at x is quasi-affine [Ryd11, Thm. B.2] and φ = ιx ◦ ρ ◦ψ where ρ : BkG→ Gx is
affine. If X has affine stabilizers, then G is affine and it follows that the quotient
G/Ga is quasi-affine since Ga is unipotent [Ros61, Thm. 3]. We conclude that the
morphism ψ : BkGa → BkG, as well as φ, is quasi-affine.

For (3), using (1) we obtain a morphism φ : BkGa → X, where k is a field of
characteristic p > 0. Let W = X ′×XBkGa. The resulting projection W → BkGa is
quasi-finite, representable and surjective. In particular, W 6= ∅. Let w : Spec l→W
be a point, where l is an algebraically closed field of characteristic p > 0; then the
stabilizer Gw of w is a subgroup scheme of (Ga)l of finite index. But (Ga)l is
connected, so Gw = (Ga)l. It follows from (1) that X ′ is also poorly stabilized. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2, there exists a field of characteristic p > 0
and a quasi-compact, quasi-separated and representable morphism φ : BkGa → X.



10 J. HALL, A. NEEMAN, AND D. RYDH

If Dqc(X) is compactly generated, then there is a compact object M ∈ Dqc(X)
and a non-zero map M → R(φlis-ét)∗OBkGa . Indeed, R(φlis-ét)∗OBkGa ∈ Dqc(X)
and is non-zero. By adjunction, there is a non-zero map Lφ∗M → OBkGa . But
the functor Lφ∗ sends compact objects of Dqc(X) to compact objects of Dqc(BkGa)
[HR14b, Ex. 3.8 & Thm. 2.6(3)]. By Proposition 3.1, it follows that Lφ∗M ' 0 and
we have a contradiction. Hence Dqc(X) is not compactly generated.

Now assume that X is of global type, is noetherian or has affine diagonal, and
D(QCoh(X)) is compactly generated. It follows that there is a compact object
M ∈ D(QCoh(X)) and a non-zero map M → R(φQCoh)∗OBkGa . By assumption,
there is an étale covering p : X ′ → X such that X ′ has affine diagonal and the
resolution property. By Lemma 4.2(3), we may assume that φ factors through a
map φ′ : BkGa → X ′. Since X is of global type, if it is noetherian, then it is
affine-pointed. It follows immediately from Proposition 2.1 that

R(φQCoh)∗OBkGa ' R(pQCoh)∗R(φ′QCoh)∗OBkGa .

Since p is flat, Lemma 4.3 implies that a left adjoint Lp∗QCoh to R(pQCoh)∗ ex-
ists. Moreover, p is concentrated, so Lp∗QCoh takes compacts to compacts (Corol-
lary 2.2(4)). Also, X ′ has affine diagonal and the resolution property, so Lemma
4.3 implies that a left adjoint L(φ′QCoh)∗ to R(φ′QCoh)∗ exists and we also see that

Lφ′∗QCoh takes compacts to compacts. Adjunction produces a non-zero morphism

Lφ′
∗
QCohLp

∗
QCohM → OBkGa from a compact object of D(QCoh(BkGa)). This con-

tradicts Proposition 3.1. �

To prove Theorem 1.1(2), we required the following Lemma.

Lemma 4.3. Let p : X ′ → X be a morphism of algebraic stacks. A left adjoint to
R(pQCoh)∗ : D(QCoh(X ′))→ D(QCoh(X)) exists if

(1) p is flat; or
(2) both X ′ and X are quasi-compact with affine diagonal and either:

(a) X has the resolution property; or
(b) QCoh(X) has enough flats; or
(c) K(QCoh(X)), the homotopy category of unbounded complexes in QCoh(X),

has enough K-flats.

Proof. By deriving the adjunction between p∗ and p∗, it is sufficient to prove that
Lp∗QCoh exists, that is, p∗ admits a left derived functor, under one of the four ad-
ditional conditions. If p is flat, then p∗ is exact and this is clear. If X has the
resolution property, then QCoh(X) obviously has enough flats (i.e., every quasi-
coherent sheaf is the quotient of a flat quasi-coherent sheaf). Also, if QCoh(X) has
enough flats, then K(QCoh(X)) has enough K-flats [Spa88, Thm. 3.4]. Hence, it is
sufficient to prove the existence of Lp∗QCoh when K(QCoh(X)) has enough K-flats. It
is sufficient to prove: if M ∈ K(QCoh(X)) is K-flat and acyclic, then p∗M is acyclic.
Now the acyclicity of p∗M is local on X ′, so we may assume that X ′ is an affine
scheme. Since X has affine diagonal, it follows that p is now affine. In particular,
it is sufficient to prove that p∗p

∗M is acyclic. But (p∗OX′) ⊗OX M ∼= p∗p
∗M and

M is K-flat, so p∗p
∗M is acyclic. �

Remark 4.4. The proof of Theorem 1.1(2) can be varied to prove the following
assertion: if X is a poorly stabilized algebraic stack that is quasi-compact with
affine diagonal or noetherian and affine-pointed, then there exists a closed substack
i : Z ↪→ X such that Z is poorly stabilized and D(QCoh(Z)) is not compactly
generated. The only obstruction to taking i to be the identity morphism in this
level of generality is that we do not know when a left adjoint to R(iQCoh)∗ exists.
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Proof of Theorem 1.3. By Lemma 4.2, there exists a field of characteristic p > 0 and
a quasi-affine morphism φ : BkGa → X. By Corollary 2.2, there exists an integer
n ≥ 1 such that if N ∈ QCoh(BkGa), then R(φQCoh)∗N ∈ D[0,n−1](QCoh(X)). By
[Nee11, Thm. 1.1], there exists M ∈ QCoh(BkGa) such that the natural map in
D(QCoh(BkGa)): ⊕

i≥0

M [in]→
∏
i≥0

M [in]

is not a quasi-isomorphism—note that while [Nee11, Thm. 1.1] only proves the
above assertion in the case where n = 1, a simple argument by induction on n gives
the claim above. Lemma 4.5 now implies that the natural map:⊕

i≥0

R(φQCoh)∗M [in]→
∏
i≥0

R(φQCoh)∗M [in]

is not a quasi-isomorphism. Since R(φQCoh)∗M ∈ D[0,n−1](QCoh(X)), it follows
that D(QCoh(X)) is not left-complete. By Remark 2.7, we have established that
ΨX is not fully faithful. To prove that ΨX is not full, we will have to argue further.

Let L = R(φQCoh)∗M , S = ⊕i≥0L[in], and P =
∏
i≥0 L[in]. Also, ΦXΨX(S) ' P

(Lemma 2.6(2)). If ΨX is full, then there exists a map P → S such that the induced
map P → S → ΦXΨX(S) ' P is the identity morphism. That is, P is a direct
summand of S. Since

∏
i≥0M [in] is not bounded above [Nee11, Rem. 1.2] and φ

is quasi-affine, it follows that P is not bounded above. But S is bounded above, so
P cannot be a direct summand of S; hence, we have a contradiction and ΨX is not
full. �

In the proof we used the following lemma in the special case where X and Y have
affine diagonals or are noetherian and affine-pointed. Then it is a direct consequence
of [HR14b, Cor. 2.8] and Corollary 2.2.

Lemma 4.5. If φ : X → Y is a quasi-affine morphism of algebraic stacks, then
R(φQCoh)∗ : D(QCoh(X))→ D(QCoh(Y )) is conservative.

Proof. Since φ is quasi-affine, there is a factorization of φ as X
j−→ X

φ−→ Y , where
j is a quasi-compact open immersion and φ is affine. Let I ∈ K(QCoh(X)) be a
K-injective complex. Since j∗ : QCoh(X) → QCoh(X) has an exact left adjoint j∗,
it follows immediately that j∗I is K-injective in K(QCoh(X)). In particular since
φ is affine, it follows that R(φQCoh)∗ ' R(φQCoh)∗ ◦ R(jQCoh)∗. Hence to prove the
conservativity of R(φQCoh)∗, we may assume that either φ is a quasi-compact open
immersion or affine. The affine case is trivial. And when φ is a quasi-compact open
immersion, we simply observe that φ∗φ∗I ' I. �

Appendix A. DM(A) is well generated

We begin with a general lemma.

Lemma A.1. Let T be a well generated triangulated category and let S ⊆ T be a
localizing subcategory. The category S is well generated if and only if there is a set
of generators in S. That is: S is well generated if and only if there is a set of objects
S ⊆ S such that any nonzero object y ∈ S admits a nonzero map s→ y, with s ∈ S.

Proof. If S is well generated then it has a set of generators S satisfying a bunch
of properties, one of which is that S detects nonzero objects—see the definitions
in [Nee01b, pp. 273-274]. What needs proof is the reverse implication.

Suppose therefore that S contains a set of objects S as in the Lemma, that is
every nonzero object y ∈ S admits a nonzero map s → y with s ∈ S. By [Nee01b,
Prop. 8.4.2] the set S is contained in Tα for some regular cardinal α. If L = Loc(S)
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is the localizing subcategory generated by S then [Nee01b, Thm. 4.4.9] informs us
that L is well generated. Since S ⊆ S and S is localizing it follows that L ⊆ S.

We know that L is well generated; to finish the proof it suffices to show that the
inclusion L ⊆ S is an equality. In any case the inclusion is a coproduct-preserving
functor from the well generated category L and must have a right adjoint. For
every object y ∈ S, [Nee01b, Prop. 9.1.8] tells us that there is a triangle in S

x // y // z // Σx

with x ∈ L and z ∈ L⊥. Since z ∈ L⊥ ⊆ S⊥ we have that the morphisms s → z,
with s ∈ S, all vanish. By the hypothesis of the Lemma it follows that z = 0, and
hence y ∼= x belongs to L. �

Remark A.2. We specialize Lemma A.1 to the situation where T = D(A) is the
derived category of a Grothendieck abelian category A; by [Nee01a, Thm. 0.2]
we know that T is well generated, and Lemma A.1 informs us that a localizing
subcategory of D(A) is well generated if and only if it has a set of generators.

Let A be an abelian category and fix a fully faithful subcategory C ⊆ A. Fol-
lowing [Stacks, Tag 02MO] we say that

(1) C is a Serre subcategory if it is non-empty and if C1 → A→ C2 is an exact
sequence in A with C1, C2 ∈ C, then A ∈ C;

(2) C is a weak Serre subcategory if it is non-empty and if

C1
// C2

// A // C3
// C4,

is an exact sequence in A, where the Ci ∈ C and A ∈ A, then A ∈ C.

Clearly, Serre subcategories are weak Serre subcategories. Also, weak Serre sub-
categories are automatically abelian and the inclusion C ⊆ A is exact [Stacks, Tags
02MP & 0754]. Moreover, the subcategory DC(A) of D(A), consisting of complexes
in A with cohomology in C, is triangulated [Stacks, Tag 06UQ].

The main result of this appendix is

Theorem A.3. Let A be a Grothendieck abelian category and let M ⊆ A be a
weak Serre subcategory closed under coproducts. If M is Grothendieck abelian, then
DM(A) is well generated.

The example we have in mind is where X is an algebraic stack, A is the category
of lisse-étale sheaves of OX -modules, and M is the subcategory of quasi-coherent
sheaves.

Remark A.4. Note that in the ∞-category of ∞-categories, we have the following
homotopy cartesian diagram:

DM(A) //

∏
nHn(−)

��

D(A)

∏
nHn(−)

��∏
n∈Z

N(M) // ∏
n∈Z

N(A),

where D(A) denotes the derived∞-category of A [Lur16, Defn. 1.3.5.8] and DM(A)
denotes the ∞-subcategory with homology in M. This is immediate because the
replete full subcategory M ⊆ A gives rise to a categorical fibration N(M) ⊆ N(A)
of ∞-categories. In particular, DM(A) is a presentable and stable ∞-category
(combine [Lur09, Prop. 5.5.3.12] with [Lur16, Prop. 1.3.5.21]). Since the homotopy
category of DM(A) is DM(A), the derived category we are interested in is well-
generated [Lur16, Cor. 1.4.4.2].

http://stacks.math.columbia.edu/tag/02MO
http://stacks.math.columbia.edu/tag/02MP
http://stacks.math.columbia.edu/tag/0754
http://stacks.math.columbia.edu/tag/06UQ
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If λ is a cardinal and B is a cocomplete category, then we let Bλ denote the
subcategory of λ-presentable objects. If B is locally presentable, then Bλ is always
a set.

It is clear that DM(A) is a localizing subcategory of the well generated trian-
gulated category D(A); Remark A.2 tells us that to prove Theorem A.3 it suffices
to exhibit a set S of generators for DM(A). The idea is simple enough: we will

find a cardinal λ such that S = D−
Mλ(Aλ) ⊆ DM(A), which is obviously essentially

small, suffices. Thus, the problem becomes to better understand the category of
λ-presentable objects in A. The results below are easy to extract from [Nee14], but
for the reader’s convenience we give a self-contained treatment.

Remark A.5. Let A be a Grothendieck abelian category. By the Gabriel–Popescu
theorem, there exists a ring R and a pair of adjoint additive functors

F : Mod(R) //
A :Goo

such that F is exact and FG ' id. Let µ be an infinite cardinal ≥ to the cardinality
of R.

Lemma A.6. With notation as in Remark A.5, let λ > µ be a regular cardinal.
Then the λ-presentable objects of A are precisely the objects of A isomorphic to
some FN , where N is an R-module of cardinality < λ.

Proof. Let us first prove that, if N is an R-module of cardinality < λ, then FN is
λ-presentable. Suppose {xi, i ∈ I} is a λ-filtered system in A, and suppose that in
the category A we are given a map φ : FN −→ colimxi. We need to show that φ
factors through some xi. In the category of R-modules, there is a natural map

colimGxi
ρ // G

[
colimxi

]
.

Since F respects colimits and FG ' id, the map Fρ is an isomorphism. As F is
exact it must annihilate the kernel and cokernel of ρ. Form the pullback square

P
φ //

��

N

θ
��

colimGxi
ρ // G

[
colimxi

]
.

The image of φ is a submodule of N , hence has cardinality < λ. If we lift every
element of Image(φ) arbitrarily to an element of P , the lifts generate a submodule
M ⊆ P of cardinality < λ. The kernel (respectively cokernel) of the map M → N is
a submodule of Kernel(ρ) (respectively Coker(ρ)), and hence both are annihilated
by F . Summarizing: we have produced a morphism M → N of R-modules, with
M of cardinality < λ and FM → FN an isomorphism in A, and such that the
composite M → N −→ G

[
colimxi

]
factors through colimGxi. But {Gxi, i ∈ I}

is a λ-filtered system in Mod(R) and M is of cardinality < λ, and hence the map
factors as M → Gxi for some i ∈ I.

It remains to prove the converse: suppose a ∈ A is a λ-presentable object. Then
Ga is an R-module, hence it is the λ-filtered colimit of all its submodules Ni of
cardinality < λ. But then the identity map a→ a is a map from the λ-presentable
object a to the λ-filtered colimit of the FNi, and therefore factors through some
FNi. Thus a is a direct summand of an object FNi where the cardinality of Ni is
< λ. On the other hand the map Ni → Ga is injective, hence so is FNi → FGa = a.
Thus a ∼= FNi. �

Lemma A.7. Let A be a Grothendieck abelian category. There is an infinite car-
dinal ν with the following properties: if λ ≥ ν is a regular cardinal, then
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(1) Aλ is a Serre subcategory of A;
(2) every object of A is a λ-filtered colimit of subobjects belonging to Aλ;
(3) an object belongs to Aλ if and only if it is the quotient of a coproduct of

< λ objects of Aν ; and
(4) any pair of morphisms x → y ← n in A, where x → y is epi and n ∈ Aλ,

may be completed to a commutative square

m // //

��

n

��
x // // y

with m ∈ Aλ and m → n epi. Moreover, if n → y is mono, then m → x
can be chosen to be mono.

Proof. Let ν = µ+ 1 be the successor of the infinite cardinal µ of Remark A.5. By
Lemma A.6 the objects of Aλ are precisely the ones isomorphic to FM where M
is of cardinality < λ.

For (1), it is readily verified that a subobject (resp. a quotient) of FM can be
expressed as FN where N is a submodule (resp. a quotient) of M . This shows that
Aλ is closed under taking subobjects and quotients; we will later see that it is also
closed under extensions.

For (2), if a is an object of A thenGa is the λ-filtered colimit of all the submodules
Mi ⊆ Ga of cardinality < λ, and a ∼= FGa is the λ-filtered colimit of FMi ∈ Aλ.

For (3), observe that any coproduct of < λ objects in Aλ belongs to Aλ, and if
M is a module of cardinality < λ then M is a quotient of the free module on all its
elements, which is a coproduct of < λ copies of R. Thus FM is the quotient of a
coproduct of < λ copies of FR ∈ Aν .

For (4), let x→ y ← n be a pair of morphisms in A, with x→ y epi and n ∈ Aλ.
Let m̃ be the pullback of n → y along x → y. It is sufficient to find a subobject
m of m̃ belonging to Aλ such that m → m̃ → n is epi. By (2), we may express
m̃ = colimmi as a λ-filtered colimit of subobjects belonging Aλ. If ni ⊆ n is the
image of mi in n, then (1) implies that ni ∈ Aλ. Since n ∈ Aλ, there is an i such
that ni = n. Taking m = mi does the job. By construction, if n→ y is mono, then
m→ x is mono.

Finally, to show that Aλ is closed under extensions, we note that if 0 → k →
x → n → 0 is an exact sequence with k, n ∈ Aλ, then (4) implies that there is a
subobject m of x such that m ∈ Aλ and m → n is epi. It follows that k ⊕m → x
is epi and consequently, x ∈ Aλ, as required. �

Proof of Theorem A.3. Because M and A are both Grothendieck abelian categories
we may choose regular cardinals ν for M and ν′ for A as in Lemma A.7. The
category Mν is an essentially small subcategory of A, hence must be contained in
Aβ for some regular cardinal β. Let λ be a regular cardinal > max(β, ν, ν′). By
construction Mν ⊆ Aλ, and by Lemma A.7 every object in Mλ is the quotient of
a coproduct of < λ objects in Mν . Hence Mλ ⊆ Aλ. But since every object in
M ∩ Aλ is λ-presentable in A it must be λ-presentable in the smaller M, and we
conclude that M ∩Aλ = Mλ.

We have now made our choice of λ and we let B = Aλ. By Remark A.2 it
suffices to show that, given any non-zero object Z ∈ DM(A), there is an object

N ∈ D−B∩M(B) and a non-zero map N → Z. If Z is the chain complex

· · · // Zi−1 ∂ // Zi
∂ // Zi+1 // · · · ,
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we let Y i ⊆ Zi be the cycles, in other words the kernel of ∂ : Zi → Zi+1, and
Xi ⊆ Y i be the boundaries, that is the image of ∂ : Zi−1 → Zi. We are assuming
that Z ∈ DM(A) is non-zero, meaning its cohomology is not all zero; without loss
of generality we may assume H0(Z) 6= 0. Thus Y 0/X0 is a non-zero object of M.

By Lemma A.7, applied to B ∩M = Mλ ⊆ M, the object Y 0/X0 ∈ M is a
λ-filtered colimit of its subobjects belonging to B ∩M; since Y 0/X0 6= 0 we may
choose a subobject M ⊆ Y 0/X0, with M ∈ B ∩M and M 6= 0. By Lemma A.7,
applied to the pair of maps Y 0 → Y 0/X0 ← M in A, we may complete to a
commutative square

N0 φ // //

��

M

��
Y 0 // // Y 0/X0

with N0 ∈ B. Since Y 0 is the kernel of Z0 → Z1 this gives us a commutative
square

N0 //

��

0

��
Z0 // Z1

such that the image of the map N0 → Y 0/X0 = H0(Z) is non-zero and belongs to
B ∩M.

We propose to inductively extend this to the left. We will define a commutative
diagram

N i //

��

N i+1 //

��

· · · // N−1

��

// N0 //

��

0 //

��

· · ·

· · · // Zi−1 // Zi // Zi+1 // · · · // Z−1 // Z0 // Z1 // · · ·
where

(1) The subobjects N j ⊆ Zj belong to B.
(2) For j > i the cohomology of N j−1 → N j → N j+1 belongs to B ∩M.
(3) Let Ki be the kernel of the map N i → N i+1. Then the image of the natural

map Ki → Hi(Z) belongs to B ∩M.

Since we have constructed N0 we only need to prove the inductive step. Let us
therefore suppose we have constructed the diagram as far as i; we need to extend
it to i− 1. We first form the pullback square

Li //

��

Ki

��
Xi // Y i

Since Xi → Y i and Ki → Y i are monomorphisms so are Li → Ki and Li → Xi.
Since N i belongs to B so do its subobjects Li ⊆ Ki. The cokernel of Li → Ki

is the image of Ki → Y i/Xi = Hi(Z), and belongs to B ∩M by (3). Next we
apply Lemma A.7 to the pair of maps Zi−1/Xi−1 → Xi ← Li in A, completing to
a commutative square

M i // //

��

Li

��
Zi−1/Xi−1 // // Xi
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with M i ∈ B. Form the pullback

M̃ i //

��

M i

��
Y i−1/Xi−1 // Zi−1/Xi−1

Since Y i−1/Xi−1 → Zi−1/Xi−1 is injective so is M̃ i →M i, making M̃ i a subobject

of M i ∈ B. Hence M̃ i belongs to B. But now the map M̃ i → Y i−1/Xi−1 =

Hi−1(Z) is a morphism from the λ-presentable object M̃ i ∈ B = Aλ to the object
Hi−1(Z) ∈ M, which by Lemma A.7 is a λ-filtered colimit of its subobjects in

Mλ = B∩M. Hence the map M̃ i → Y i−1/Xi−1 factors as M̃ i → P i → Y i−1/Xi−1

with P i ∈ B ∩M a subobject of Y i−1/Xi−1. Form the pushout square in B

M̃ i //

��

M i

��
P i // Qi

and let Qi → Zi−1/Xi−1 be the natural map. We have a commutative square

Qi
φ // //

��

Li

��
Zi−1/Xi−1 // // Xi

and the kernel of φ maps isomorphically to the subobject P i ⊆ Hi−1(Z), with
P i ∈ B∩M. Finally apply Lemma A.7 to the pair of maps Zi−1 → Zi−1/Xi−1 ← Qi

to complete to a square

N i−1 // //

��

Qi

��
Zi−1 // // Zi−1/Xi−1

with N i ∈ B. We leave it to the reader to check that the diagram

N i−1 //

��

N i //

��

· · · // N−1

��

// N0 //

��

0 //

��

· · ·

· · · // Zi−2 // Zi−1 // Zi // · · · // Z−1 // Z0 // Z1 // · · ·

satisfies hypotheses (1), (2) and (3) of our induction. �

Appendix B. Dqc(X) is left-complete

Let T be a triangulated category with a t-structure (T≤0,T≥0). If T admits
countable projects, then we say that the t-structure is left-complete if the map

M → holim
n

τ≥−nM

is an isomorphism for every M ∈ T. A thorough discussion of t-structures using
the language of stable ∞-categories is available in [Lur16, §1.2.1].

If A is a Grothendieck abelian category, then the standard t-structure on D(A)
is (D≤0(A),D≥0(A)). If M ⊆ A is a Grothendieck abelian weak Serre subcategory,
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then the standard t-structure on DM(A) is the one induced by restriction from D(A).
If no t-structure on DM(A) is specified, then we will always mean the standard one.

In this section we prove the following Theorem.

Theorem B.1. If X is an algebraic stack, then Dqc(X) is well generated. In
particular, it admits small products. Moreover, Dqc(X) is left-complete.

Proof. The subcategory QCoh(X) ⊆ Mod(Xlis-ét) is weak Serre and the inclusion is
coproduct preserving. Since QCoh(X) and Mod(Xlis-ét) are Grothendieck abelian
categories [Stacks, Tags 07A5 & 0781], it follows that Dqc(X) is well generated
(Theorem A.3). In particular, Dqc(X) admits small products [Nee01b, Cor. 1.18].

It remains to prove that Dqc(X) is left-complete, which we accomplish by ex-
tracting from [Stacks, Tag 08U3] a useful special case (which was communicated to
us by Bhatt [Bha12]). So the inclusion ω : Dqc(X)→ D(X) is exact and coproduct
preserving; thus, the functor ω admits a right adjoint λ [Nee01b, Prop. 1.20]. Be-
cause the functor ω is fully faithful, the adjunction id ⇒ λ ◦ ω is an isomorphism
of functors.

Note that because λ is a right adjoint, it preserves products and so homotopy
limits. In particular, it remains to prove that if K ∈ Dqc(X), then a naturally
induced map:

c : ω(K)→ holim
n

τ≥−nω(K)

is a quasi-isomorphism in D(X) (where we also take the homotopy limit in D(X)).
Indeed, this follows from the observation that τ≥−nω(K) ' ω(τ≥−nK) for all
integers n and K → λ ◦ ω(K) is an isomorphism.

To see that c is a quasi-isomorphism in D(X), it is sufficient to prove that
RHomOX (p!OU , c) is a quasi-isomorphism for every smooth morphism p : U → X,
where U is an affine scheme. Observe that

RHomOX (p!OU , τ
≥−nK) ' RHomOU (OU , τ

≥−np−1K) ' τ≥−nK(U),

with the final quasi-isomorphism because U is affine and K has quasi-coherent coho-
mology [Stacks, Tags 01XB & 0756]. But RHomOX (p!OU ,−) commutes with homo-
topy limits, so it is sufficient to prove that we have the following quasi-isomorphism
of abelian groups:

K(U)→ holim
n

τ≥−nK(U),

which is well-known, because the products in the category of abelian groups are
exact. For details, see for example [Stacks, Tag 07KC]. �

Appendix C. The bounded below derived category

In this section, we prove an analog of [Har66, Cor. II.7.19] for noetherian alge-
braic stacks that are affine-pointed, cf. [Lie04, Rem. 2.2.4.7]. Essentially for free,
we will also establish Lurie’s result [Lur04, Thm. 3.8].

Theorem C.1. Let X be an algebraic stack. If X is either quasi-compact with
affine diagonal or noetherian and affine-pointed, then the natural functor

Ψ+
X : D+(QCoh(X))→ D+

qc(X)

is an equivalence.

The conditions on X are essentially sharp: Ψb
X can fail to be fully faithful if:

(1) X is a non-noetherian quasi-compact and quasi-separated scheme with non-
affine diagonal [SGA6, Exp. II, App. I].

(2) X is noetherian with non-affine stabilizers, e.g., if X is the classifying stack
of an elliptic curve.

http://stacks.math.columbia.edu/tag/07A5
http://stacks.math.columbia.edu/tag/0781
http://stacks.math.columbia.edu/tag/08U3
http://stacks.math.columbia.edu/tag/01XB
http://stacks.math.columbia.edu/tag/0756
http://stacks.math.columbia.edu/tag/07KC
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For noetherian algebraic spaces, a version of Theorem C.1 for the unbounded de-
rived category was proved in [Stacks, Tag 09TN] and we will closely follow this
approach. The following two lemmas do most of the work.

Lemma C.2 (cf. [Stacks, Tag 09TJ]). Let X be a quasi-compact and quasi-separated
algebraic stack and let I be an injective object of QCoh(X).

(1) Then I is a direct summand of p∗J , where p : SpecA → X is smooth and
surjective and J is an injective A-module.

(2) If X is noetherian, then I is a direct summand of a filtered colimit colimi Fi
of quasi-coherent sheaves of the form Fi = γi,∗Gi, where γi : Zi → X is a
morphism from an artinian scheme Zi and Gi ∈ Coh(Zi).

Proof. Let p : U → X be a smooth and surjective morphism, where U = SpecA is
an affine scheme. Let I be an injective object of QCoh(X). Choose an injective
object J of QCoh(U) and an injection p∗I ⊆ J . By adjunction, we have an inclusion
I ⊆ p∗J . Since p∗ is exact, p∗J is injective in QCoh(X) and I is a direct summand
of p∗J . This proves (1). For (2): we may now reduce to the case where X = U .
The result is now well-known (e.g., [Stacks, Tag 09TI]). �

Lemma C.3 (cf. [Stacks, Tag 09TL]). Let X be an algebraic stack and let I be
an injective object of QCoh(X). If X is quasi-compact with affine diagonal (resp.
noetherian and affine-pointed), then

(1) Hq(Ulis-ét, I) = 0 for every q > 0 and smooth morphism u : U → X that is
affine (resp. has affine fibers);

(2) for any morphism f : X → Y of algebraic stacks, where Y has affine diag-
onal (resp. Y is affine-pointed) we have Rq(flis-ét)∗I = 0 for q > 0.

Proof. Let W be an affine (resp. artinian) scheme and let M ∈ QCoh(W ) be injec-
tive (resp. M ∈ Coh(W )). Let w : W → X be a smooth and surjective morphism
(resp. a morphism). By Lemma C.2, it is sufficient to prove the result for I = w∗M .
Since X has affine diagonal (resp. X is affine-pointed), w is affine. In particular,
the natural map (w∗M)[0]→ R(wlis-ét)∗M is a quasi-isomorphism.

We now prove (1). Let uW : WU → W be the pull back of u along w and let
wU : WU → U be the pull back of w along u. In both cases, uW is smooth and
affine and wU is affine; in particular, WU is an affine scheme. Since u is smooth,

RΓ(Ulis-ét, I) ' RΓ(Ulis-ét, u
∗R(wlis-ét)∗M) ' RΓ(Ulis-ét,R((wU )lis-ét)∗(u

∗
WM))

' RΓ((WU )lis-ét,M).

The result now follows from the affine case (e.g., [EGA, III.1.3.1]).
For (2): let v : V → Y be a smooth morphism, where V is an affine scheme. Since

Y has affine diagonal (resp. is affine-pointed), v is affine (resp. has affine fibers). By
(1), Hq((V ×Y X)lis-ét, I) = 0. But Rq(flis-ét)∗I is the sheafification of the presheaf
V 7→ Hq((V ×Y X)lis-ét, I); the result follows. �

Proof of Theorem C.1. We first establish that Ψ+
X is fully faithful: given F , G ∈

D+(QCoh(X)) we wish to prove that the natural map

HomD(QCoh(X))(F,G)→ HomD(X)(F,G)

is an isomorphism. A standard way-out argument shows that it is sufficient to prove
that the natural map

ExtqQCoh(X)(N,M)→ ExtqOX (N,M)

is an isomorphism for every q ∈ Z and M , N ∈ QCoh(X). For q < 0 both sides
vanish and for q = 0 we clearly have an isomorphism. For q > 0, since every M

http://stacks.math.columbia.edu/tag/09TN
http://stacks.math.columbia.edu/tag/09TJ
http://stacks.math.columbia.edu/tag/09TI
http://stacks.math.columbia.edu/tag/09TL
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embeds in a quasi-coherent injective I, a standard δ-functor argument shows that
it is sufficient to prove that if I is an injective object of QCoh(X), then

ExtqOX (N, I) = 0

for all q > 0 and N ∈ QCoh(X). To see this we note that by Lemma C.2(1), I
is a direct summand of (pQCoh)∗J , where p : SpecA→ X is smooth and surjective
and J is an injective A-module. Thus, it suffices to prove the result when I =
(pQCoh)∗J . By Lemma C.3(2), the natural map ((pQCoh)∗J)[0] → R(plis-ét)∗J is a
quasi-isomorphism. Hence, there are natural isomorphisms:

ExtqOX (N, (pQCoh)∗J) ∼= ExtqOX (N,R(plis-ét)∗J) ∼= ExtqOSpecA
(p∗N, J).

We are now reduced to the affine case, which is well-known (e.g., [BN93, Lem. 5.4]).
For the essential surjectivity, we argue as follows: by induction and using the

full faithfulness, one easily sees that Db(QCoh(X)) ' Dbqc(X). Passing to homotopy
colimits, we obtain the claim. �

The following observation was made by Bhatt [Bha12] and a reviewer.

Remark C.4. Let X be an algebraic stack that is either quasi-compact with affine
diagonal or noetherian and affine-pointed. Since Dqc(X) is left-complete, ΨX fac-

tors uniquely through the left-completion functor D(QCoh(X)) → D̂(QCoh(X))

[Lur16, §1.2.1]. But D̂(QCoh(X)) is also the left completion of D+(QCoh(X)) and

Ψ+
X is an equivalence. Hence, D̂(QCoh(X))→ Dqc(X) is an equivalence.
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[SGA6] Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathe-

matics, Vol. 225, Springer-Verlag, Berlin, 1971, Séminaire de Géométrie Algébrique
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