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Abstract. This is a mixture of [Kol07, EV07, Kaw07, BM08] (and
perhaps [W lo05]) used for the last two lectures for a mini-course on
resolution of singularities. DRAFT
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1. Statement of main theorem

We work over any field k and consider schemes that are locally of finite
type over the base field. We will occasionally need that k is of characteristic
zero.

1.1. Blow-up sequences. Let X/k be a scheme, locally of finite type over
the base field k. A blow-up sequence of length r on X is a sequence of
blow-ups

Π: Xr
πr−1→ Xr−1

πr−2→ . . .
π1→ X1

π0→ X0 = X

with specified centers Zi ↪→ Xi, so that πi : Xi+1 = BlZiXi → Xi.

Remark (1.1). We allow a center Zi to be a divisor or Zi = ∅ but we consider
two sequences to be equal if they only differ by blow-ups in empty centers.

Note that the composition Π does not determine the individual πi nor
does the πi always determine the centers Zi (a blow-up in a Cartier divisor
is an isomorphism). Nevertheless, we will sometimes refer to the blow-up
sequence as Π and the symbol π∗i will depend on the center and not merely
the morphism πi. In particular, Π∗ = π∗r−1 . . . π

∗
0 depends on the full blow-up

sequence and not merely the morphism Π.

We let Fi+1 = π∗i Zi be the exceptional divisor. The blow-up sequence is
smooth if the centers are smooth.

For the definition of snc divisor and simple normal crossings, see §2.1.
If E ⊆ X is an snc divisor, then we let E0 = E and let Ei+1 = π∗iEi
denote the total transform, namely Ei+1 = BlZi∩EiEi+Fi+1 (here we ignore
multiplicities). If Ei is snc and Zi has simple normal crossings with Ei, then
Ei+1 is snc. We say that the blow-up sequence has simple normal crossings
with E if every center Zi has simple normal crossings with Ei.

If E =
∑

j E
j is an ordered snc divisor, then we let E0 =

∑
j E

j . Given

Ei =
∑

j E
j
i , we define Ei+1 =

∑
j Bl

Zi∩Eji
Eji +Fi+1 where Fi+1 is given the

highest ordering.
Let B be a blow-up sequence on X. We transform blow-up sequences in

the following ways:

(i) Given a smooth morphism p : X ′ → X of k-schemes, we let p∗B
denote the pull-back of B, given by X ′i = Xi ×X X ′ and Z ′i =
Zi ×X X ′ (recall that blow-ups commute with flat base change). If
B is smooth then so is p∗B. If p is surjective, then B is uniquely
determined by p∗B (by fppf descent).

(ii) Given a field extension k′/k, we let Bk′ denote the pull-back of B
along Xk′ → X, considered as a blow-up sequence of schemes over
k′. Then B is uniquely determined by Bk′ and if B is smooth, then
so is Bk′ .

(iii) Given a closed subscheme j : W ↪→ X, we let j∗B or B|W denote
the restriction of B. This sequence has centers Zi∩Wi and schemes
Wi+1 = BlZi∩WiWi. Note that Wi+1 is the strict transform of Wi ↪→
Xi along the blow-up Xi+1 → Xi so that Wi+1 ↪→ Xi+1.

(iv) Conversely, given a closed subscheme j : W ↪→ X, and a blow-up
sequence BW , we let j∗BW denote the push-forward of BW given by
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the same centers Zi and Xi+1 = BlZiXi. Note that j∗j∗BW = BW .
If BW is smooth, so is j∗BW .

Definition (1.2). A blow-up sequence functor is a functor B from triples
(X/k, I, E) where X/k is a scheme, I ⊆ OX is a quasi-coherent ideal sheaf
and E is an snc divisor on X, to blow-up sequences (of unspecified length) on
X. We also consider the variant where the inputs are triples (X, I,

∑n
i=1Ei)

where E =
∑n

i=1Ei is an ordered snc divisor, i.e., E is snc and every Ei is
smooth.

Definition (1.3). We say that B is functorial with respect to

(i) smooth morphisms, if p∗B(X, I, E) = B(X ′, p∗I, p∗E) for every
smooth morphism p : X ′ → X (recall that equality means up to
empty blow-ups);

(ii) change of fields, if B(X/k, I, E)k′ = B(Xk′/k
′, p∗I, p∗E) where p : Xk′ →

X is the induced morphism;
(iii) closed embeddings, if for any closed embedding X ↪→ Y of smooth

k-schemes, any snc divisor E ↪→ Y such that E|X is snc and any
closed subscheme Z ↪→ X with ideal sheaf IX ⊆ OX and IY ⊆ OY ,
we have that j∗B(X, IX , E|X) = B(Y, IY , E).

If B(X, IX , E|X) = j∗B(Y, IY , E) holds in the last paragraph, then we say
that B is weakly functorial with respect to closed embeddings. The difference
is that some centers are allowed to lie outside Y .

1.2. Main theorem.

Theorem (1.4). There is a blow-up sequence functor BP defined on all
triples (X, I, E) where X is a smooth scheme of finite type over a field of
characteristic zero and E is an unordered divisor with normal crossings. It
satisfies the following conditions:

(i) The blow-up sequence Π = BP(X, I, E) : Xr → X has smooth cen-
ters and normal crossings with E.

(ii) The ideal IOXr defines an snc divisor.
(iii) Π is an isomorphism over X \ V (I).
(iv) Π is functorial with respect to smooth morphisms and change of

fields.
(v) Π is weakly functorial with respect to closed embeddings.

By a standard procedure, one deduces

Theorem (1.5). There is a blow-up sequence functor BR defined on all
schemes X of finite type over a field of characteristic zero. Let Π = BR(X) : Xr →
X denote the blow-up sequence. Then:

(i) Xr is smooth.
(ii) Π−1(Sing(X)) is an snc divisor.
(iii) Π is an isomorphism over X \ Sing(X).
(iv) Π is functorial with respect to smooth morphisms and change of

fields.

Note that the blow-up sequence BR(X) that we will construct need not
have smooth centers [Kol07, Ex. 3.106]. It is possible to construct a smooth
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blow-up sequence functor BR′ but then one has to be more careful and use a
presentation of the Hilbert–Samuel function to control singularities [BM08,
§1.3].

Proof of Theorem 1.5. First we construct BR(X) when X = Spec(A) is
affine. We may then embed X ↪→ Y into a smooth affine k-scheme Y such
that dim(Y ) ≥ dim(X) + 2. Consider the blow-up sequence BP(Y, I, ∅)
where I is the ideal sheaf definingX in Y . First assume thatX is irreducible.
As X is not a divisor, eventually the strict transform of X is going to be
blown up. As the centers are smooth, this can only happen when either the
strict transform of X is smooth or X is generically non-reduced. In the first
case we stop the algorithm at this point and in the second case the strict
transform of X becomes empty after performing the blow-up.

If X is not irreducible, the above will happen for every irreducible compo-
nent W of X. If W is generically reduced, then we ignore the blow-up with
center equal to the strict transform W ′ of W (more precisely, we replace the
center Z with Z \W ′ since the center could be disconnected).

Using that BP is functorial with respect to closed embeddings, we may
assume that Y = Ank for some n. To see that BR(X) is independent of
the chosen embedding X ↪→ Y , it is enough to show that two embeddings
X ↪→ An1

k andX ↪→ An2
k give the same blow-up sequence. Using functoriality

with respect to closed embeddings we may assume that n = n1 = n2 and
after further increasing n, there is an automorphism of Ank that interchanges
the two embeddings [Kol07, 3.39]. As BP is functorial with respect to
smooth morphisms, it follows that the two blow-up sequences are equal.

That BR is functorial with change of fields follows from the corresponding
fact for BP. Given a smooth morphism p : X ′ → X and an embedding
X ↪→ Y where Y is an affine smooth k-scheme, we can, locally on X ′,
find a smooth affine morphism Y ′ → Y such that X ′ = X ×Y Y ′ [EGAIV,
Prop. 18.1.1]. That BR is functorial with respect to smooth morphisms thus
follows from the corresponding fact for BP.

The extension of BR to arbitrary schemes is now a completely formal
procedure using functoriality with respect to smooth morphisms (or merely
open coverings) [Kol07, Prop. 3.37]. The same argument shows that BR
extends to algebraic spaces and algebraic stacks. �

1.3. Outline of the proof of the main theorem. There are two main
ideas. The first is to use a very coarse invariant, the order of vanishing (Sec-
tion 3). The order is an upper semi-continuous function ordx(I) : X → N
which is non-zero exactly over the support of V (I). Let m be the maximum
of the order function. The algorithm now proceeds with order reduction.
It starts with the locus where ordx(I) = m and runs until the maximal
order drops. It then continues with the locus of order m− 1 and so on until
the order equals one. This does not mean that V (I) is snc, but it signi-
fies that locally V (I) is contained in a smooth hypersurface H and we may
reduce BP(X, I, E) to BP(H, I|H , E|H) (after a “boundary modification”,
see below). Finally, we conclude by induction on the dimension of X.

To accomplish order reduction, the trick is to (locally) find a hypersurface
of maximal contact H that contains the locus of maximal order and define
the order reduction step as BP(H, I|H , E|H). One uses derivatives to find
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the hypersurface of maximal contact and to show that it is essentially unique.
Before we can pass to H, however, we need to make sure that E|H is an
snc divisor. To accomplish this, we make a “boundary modification” that
transforms E +H into an snc divisor.

One then has to take care of the fact that the order of I|H can be strictly
larger than the order of I (the order depends on the embedding V (I) ↪→ X,
not merely on V (I)). One way to do this is to use marked ideals. I have
chosen to use Rees algebras as this gives, in my opinion, a more streamlined
and elegant approach. The resulting algorithm is not quite identical to
Kollár’s as the boundary modification is done slightly differently. We also
allow E to have self-intersections and the resulting algorithm is functorial
with respect to all closed immersions even though E is not ordered. This
answers [Kol07, 3.71].

The algorithm is described in greater detail in Section 6.

2. Differentials and coordinates for blow-ups

Let X/k be a smooth scheme.

2.1. Regular system of parameters. Assume that X = Spec(A). We say
that x1, x2, . . . , xn ∈ A is a regular system of parameters if dx1, dx2, . . . , dxn
is a basis for Ω1

X/S . If A is a regular local ring, then x1, x2, . . . , xn ∈ A is a

regular system if and only if its image in mx/m
2
x = Ω1

X/S ⊗ κ(x) is a basis.

Locally on X (in the Zariski topology), there exists a regular system of
parameters x1, x2, . . . , xn ∈ A. Moreover, given a smooth closed subscheme
Z ↪→ X, we can locally always find a regular sequence such that Z =
V (x1, . . . , xr).

We say that a closed subscheme E ↪→ X is a divisor with simple normal
crossings (snc) if locally on X there exists a regular system of parameters
x1, x2, . . . , xn such that E = V (xa11 x

a2
2 . . . xann ) for some a1, . . . , an ∈ N.

Then E =
∑

i aiEi where Ei are smooth divisors.
We say that a closed subscheme Z ↪→ X has simple normal crossings

with an snc divisor E if there is a regular system as above where in addition
Z = V (x1, x2, . . . , xr) for some r ≤ n. In particular, Z is smooth and some
of the Ei’s are allowed to contain Z. If E does not contain Z, then E|Z is
an snc divisor.

2.2. Differential operators. There is a general notion of differential oper-
ators OX → OX of order ≤ m and if X/k is smooth, then Diff≤mX/S is locally

free of finite rank. It is the dual of the sheaf of principal parts of length m.
If x1, x2, . . . , xn ∈ A is a regular system of parameters, then Diff≤mX/S is free

with basis

{∂xα : α ∈ Nn, |α| ≤ m}
where (in characteristic zero)1

∂xα =
1

α!
· ∂
|α|

∂xα
=

1

α1!α2! . . . αn!
· ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαnn

1In positive characteristic, the basis is described by ∂xα(xβ) =
(
β
α

)
xβ−α.
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If I ⊆ OX is a quasi-coherent ideal, then we let Dm(I) be the ideal locally
generated by ∂(f) for all ∂ ∈ Diff≤m and f ∈ I. If x1, x2, . . . , xn is a regular
system of parameters, and I = (f1, f2, . . . , fs) then

Dm(I) = (∂xα(fj) : |α| ≤ m).

In particular, I = D0(I) ⊆ D1(I) ⊆ D2(I) ⊆ . . . .

2.3. Blow-ups. Let Z ↪→ X be a smooth subscheme. Consider the blow-up
π : X ′ = BlZX → X with the exceptional divisor E = π−1Z.

Locally, X = Spec(A) and we have a regular system of parameters x1, x2, . . . , xn ∈
A such that Z = V (x1, x2, . . . , xr). Then X ′ is covered by charts X ′i =

D+(xi) = Spec(A′i) ⊆ X ′ where i = 1, 2, . . . , r where A′i = A[xjx
−1
i : j =

1, . . . , r] ⊆ A[x−1
i ]. We let:

yj =

{
xjx
−1
i , if 1 ≤ j ≤ r, j 6= i

xj , if j = i or j > r.

Then y1, y2, . . . , yn is a regular system of parameters of X ′i. The exceptional
divisor E is defined by yi = 0 on X ′i.

With notation as above, let f ∈ A. Then df = f1dx1 + . . . fndxn and on
the chart X ′1 = D+(x1) we have

π∗(f) = f1dy1 +

r∑
j=2

fjd(y1yj) +

n∑
j=r+1

fjdyj

= (f1 + f2y2 + · · ·+ fryr)dy1 +

r∑
j=2

fjy1dyj +

n∑
j=r+1

fjdyj .

Thus

∂y1(π∗f) = π∗∂x1(f) + y2π
∗∂x2(f) + · · ·+ yrπ

∗∂xr(f)

∂yj (π
∗f) = y1π

∗∂xj (f), j = 2, . . . , r

∂yj (π
∗f) = π∗∂xj (f), j = r + 1, . . . , n

or rearranged

π∗∂x1(f) = ∂y1(π∗f)− y2

y1
∂y2(π∗f)− · · · − yr

y1
∂yr(π

∗f)

π∗∂xj (f) =
1

y1
∂yj (π

∗f), j = 2, . . . , r

π∗∂xj (f) = ∂yj (π
∗f), j = r + 1, . . . , n.

We also have the following version:

(2.0.1)

π∗(x1∂x1f) = y1∂y1(π∗f)− y2∂y2(π∗f)− · · · − yr∂yr(π∗f)

π∗(xj∂xjf) = yj∂yj (π
∗f), j = 2, . . . , r

π∗∂xj (f) = ∂yj (π
∗f), j = r + 1, . . . , n.

which shows that logarithmic derivative behave well with respect to blow-
ups. In fact, let F =

∑
F j be an snc divisor on X and Z = F 1∩F 2∩· · ·∩F r.

Give X the log structure (X,F ) and X ′ the log structure (X ′, F̃ + E).

Then π∗Ωlog
X/k → Ωlog

X′/k is an isomorphism which is reflected by the formulas

above.
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3. Order of vanishing and blow-ups

Let X/k be a smooth scheme, let I ⊆ OX be a quasi-coherent ideal sheaf
and let W = V (I) ↪→ X be the corresponding closed subscheme.

Definition (3.1). The order of vanishing of I at x ∈ X is

ordx(W ↪→ X) = ordx(I) := sup
d∈N
{Ix ⊆ md

x}

We make the following easy observations.

• If I = (f1, f2, . . . , fn) then ordx(I) = mini ordx(fi).
• ordx(I) ≥ 1 if and only if x ∈ Supp(V (I)). Otherwise ordx(I) = 0.
• ordx(I) =∞ if and only if Ix = 0 (by Krull’s intersection theorem).
• ordx(W ↪→ X) is not an invariant of W but depends on W and the

embedding of W in X. This is in contrast with the tangent cone
and multiplicity which only depend on W .
• ordx(I) = 1 if and only if, locally (in the Zariski topology) around
x, there is a smooth hypersurface H ↪→ X containing W . Indeed,
any f such that fx ∈ Ix \m2

x defines such a hypersurface.
• If I is locally principal (or equivalently, assume that W is a divisor),

then ordx(W ↪→ X) = multx(W ) and ordx(W ↪→ X) = 1 if and
only if W is regular at x.

If Z ↪→ X is a smooth closed subscheme (possibly disconnected), then we
say that ordZ(W ↪→ X) = m if ordξ(W ↪→ X) = m for all generic points
ξ ∈ Z.

The order of vanishing is tightly connected to differentials and blow-ups.
First we note that, in characteristic zero, ordx(D(I)) = max{ordx(I)−1, 0}.
Thus, if m ≥ 1, then the following are equivalent

(i) ordx(I) = m,
(ii) ordx(D(I)) = m− 1,
(iii) ordx(Dm−1(I)) = 1.

and

ordx(I) = inf
m≥0
{Dm(I)x = OX,x}

The last formula is also valid in positive characteristic. In particular, it
follows that x 7→ ordx(I) is an upper semi-continuous function.

Let Z ↪→ X be a smooth subscheme and let π : X ′ = BlZX → X be the
blow-up in Z with exceptional divisor E = π−1Z. Assume that ordZ(W ↪→
X) ≥ m. Then an easy calculation shows that π−1W contains mE. Indeed,

for every f ∈ I we have that π∗f = ymi f̃ in the chart X ′i = D+(xi).

4. Marked ideals

Instead of taking strict transforms, we will keep track of the exceptional
divisor in a more controlled way. In particular, we will use ideals where we
pretend that their order is smaller than the actual order.

Definition (4.1). A marked function on X is a pair (f,m) ∈ Γ(X,OX)×N.
A marked ideal on X is a pair (I,m) where I ⊆ OX and m ∈ N. The order
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and support of a marked ideal are

ordx(I,m) =
ordx(I)

m
Supp(I,m) = {x ∈ X : ordx(I) ≥ m} = {x ∈ X : ordx(I,m) ≥ 1}.

Note that the support is closed and that Supp(I, 1) = Supp(V (I)). We
define

(I1,m) + (I2,m) = (I1 + I2,m)

(f1,m1) · (f2,m2) = (f1f2,m1 +m2)

(I1,m1) · (I2,m2) = (I1I2,m1 +m2)

Note that

Supp((I1,m) + (I2,m)) = Supp(I1,m) ∩ Supp(I2,m)

Supp((I1,m1) · (I2,m2)) ⊇ Supp(I1,m1) ∩ Supp(I2,m2)

but equality need not hold. This is fixed by introducing:

(I1,m1)� (I2,m2) = (Im2
1 + Im1

2 ,m1 +m2)

for which Supp((I1,m1) � (I2,m2)) = Supp(I1,m1) ∩ Supp(I2,m2). This
notation is misleading as � should be seen as the analogue of I1+I2. We will
see a more elegant solution to these operations using Rees algebras. Marked
ideals are also called Hironaka pairs.

Let X/k be a smooth scheme, let Z ↪→ X be a smooth closed subscheme
and let π : X ′ = BlZX → X be the blow-up. Let (I,m) be a marked ideal
on X such that Z ⊆ Supp(I). Then π−1(V (I)) contains mE so that we can
define the controlled transform

π∗(I,m) = (π−1(I)⊗OX′ O(mE),m)

that subtracts mE from π−1(V (I)). In local coordinates on the chart X ′i =
D+(xi) this means that π∗(f,m) = (y−mi π∗(f),m).

4.1. Derivatives of marked ideals. Derivatives of marked ideals are de-
fined as

D(I,m) = (D(I),m− 1), Dj(I,m) = (Dj(I),m− j)
so that Supp((I,m)) = Supp(D(I,m)) = · · · = Supp(Dm−1(I,m)).

Translating the formulas from the last section, we now get more well-
behaved derivatives with respect to blow-ups:

ym−1
1 π∗(∂x1f,m− 1) = ∂y1(ym1 π

∗(f,m))− ym−1
1 y2∂y2π

∗(f,m)− . . .
− ym−1

1 yr∂yrπ
∗(f,m)

ym−1
1 π∗(∂xjf,m− 1) = ym−1

1 ∂yjπ
∗(f,m), j = 2, . . . , r

ym−1
1 π∗(∂xjf,m− 1) = ym1 ∂yjπ

∗(f,m), j = r + 1, . . . , n

or equivalently:

(4.1.1)

π∗(∂x1f,m− 1) = (m,−1)π∗(f,m) + y1∂y1π
∗(f,m)

− y2∂y2π
∗(f,m)− · · · − yr∂yrπ∗(f,m)

π∗(∂xjf,m− 1) = ∂yjπ
∗(f,m), j = 2, . . . , r

π∗(∂xjf,m− 1) = y1∂yjπ
∗(f,m), j = r + 1, . . . , n.
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In particular, we have the important relation

π∗(I,m) ⊆ π∗D(I,m) ⊆ D(π∗(I,m)).

4.2. Logarithmic derivatives. Let H ↪→ X be a smooth hypersurfaces.
Then there is a notion of logarithmic derivations along H. If x1, x2, . . . , xn
is a regular system of parameters such that H = V (x1), then:

DerX(− logH) =
(
x1∂x1 , ∂x2 , . . . , ∂xn

)
and we define Dn(− logH)(I) as before using DerX(− logH). If I is gener-
ated by f1, . . . , fs then Dm(− logH)(fi) is generated by xα1

1 ∂xαfi for |α| ≤
m.

If Z ↪→ X is a smooth closed subscheme contained in H and π : X ′ =
BlZX → X is the blow-up in Z, then the strict transform H ′ is a smooth
hypersurface. If x1, x2, . . . , xn is a regular system of parameters such that
Z = V (x1, x2, . . . , xr) and H = V (xr), then on the chart D+(xi), i =
1, 2, . . . , r− 1 we have that H ′ = V (yr). On the chart D+(xr) we have that
H ′ = ∅. From the equations (4.1.1) it is immediately clear that we obtain
the relation:

π∗(I,m) ⊆ π∗D(− logH)(I,m) ⊆ D(− logH)(π∗(I,m))

(this also works if we replace H with an snc divisor E containing Z.)
The usefulness of log derivatives comes from the fact that they commute

with restrictions along H

D(− logH)(I)|H = D(I|H)

since in local coordinates x1∂x1(f)|H = 0.

5. Rees Algebras and Rees triples

A Rees algebra generalizes marked ideals by allowing sums of pairs. As
before we assume that X is smooth over a field k (although many results
hold without this).

Definition (5.1). A Rees algebra on X is a finitely generated graded OX -
algebra

I• =
⊕
m≥0

Imtm ⊆ OX [t]

such that I0 = OX . Furthermore, we let

ordxI• = inf
m≥1

ordx(Im,m) = inf
m≥1

ordx(Im)

m
= inf

f∈Im
m≥1

ordx(f)

m

and

Supp(I•) = {x ∈ X : ordxI• ≥ 1}
= {x ∈ X : ∀m, ordxIm ≥ m} = ∩m≥1 Supp(Im,m)
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We will frequently denote an element ftm ∈ Im as (f,m) and we identify
(I,m) with the Rees algebra generated by Itm. Let I• be generated by
(f1,m1), . . . , (fs,ms). Then

ordxI• = min {ordx(f1,m1), . . . , ordx(fs,ms)}

= min

{
ordx(f1)

m1
, . . . ,

ordx(fs)

ms

}
Supp(I•) = Supp(f1,m1) ∩ . . . Supp(fs,ms)

= {x ∈ X : ordx(f1) ≥ m1, . . . , ordx(fs) ≥ ms}.

In particular, ordxI• ∈ Q and Supp(I•) is closed. We also let maxord(I•) =
maxx∈X ordxI•. Note that we may now talk about the Rees algebra (I1,m1)+
(I2,m2) and that

ordx((I1,m1) + (I2,m2)) = min{ordx(I1,m1), ordx(I2,m2)}
Supp((I1,m1) + (I2,m2)) = Supp(I1,m1) ∩ Supp(I2,m2)

and similarly for sums of arbitrary Rees algebras.
If I is a usual ideal, then an element f ∈ I imposes the condition that

V (I) ⊆ V (f), i.e., W = V (I) is contained in the vanishing locus of f . If
I• is a Rees algebra, then similarly (f,m) ∈ I• signifies that Supp(I•) ⊆
V (f,m) = {x ∈ X : ordx(f) ≥ m}, i.e., Supp(I•) is contained in the locus
where f vanishes to at least order m.

5.1. Blow-ups. Controlled transforms of marked ideals immediately extend
to Rees algebras: for any blow-up π : X ′ = BlZX → X with smooth center
Z contained in Supp(I•) we define

π∗I• =
⊕
m≥0

π∗(Im,m)tm.

5.2. Rees triples. A Rees triple R on a smooth scheme X is a triple
(I•, E, F =

∑
j F

j) where

• I• is a Rees algebra,
• E is an unordered normal crossings divisor on X, and
• F is an ordered snc divisor on X,

such that E + F is a normal crossings divisor.
A center Z ↪→ X is R-admissible, if:

• Z is smooth,
• Z ⊆ Supp(I•), and
• Z has normal crossings with E + F .

The transform of R along π : X ′ = BlZX → X is π∗R = (π∗I•, Ẽ,
∑

j F̃
j+F

where F = π−1Z is the exceptional divisor and Ẽ = π−1(E \ Z) is the strict

transform. Note that when Z = F j , then F̃ j = ∅ and F = F j .
Let Π = π0 ◦ · · · ◦ πr−1 : Xr → X be a blow-up sequence. We say that

the sequence is R-admissible if for every 0 ≤ i < r, the center Zi is Ri :=
π∗i−1 . . . π

∗
1π
∗
0R-admissible. We let Π∗R = Rr.
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5.3. Projection from a marked line. Let (A1, 0) be A1 with a marked
point. We let X × (A1, 0) = (X ×A1, X × {0}). These are smooth schemes
together with a smooth divisor. Consider the projection p : X×(A1, 0)→ X.
Given a Rees triple R = (I•, E, F ), we define p∗R = (f−1I•, f−1E, f−1F +
D) where D = X × {0}.

5.4. Exceptional blow-ups. An exceptional blow-up [BM08, Def. 2.5] for
a Rees triple R = (I•, E, F ) is a blow-up in a center Z = F i ∩ F j which
is the intersection of two exceptional divisors. Note that we do not require
that Z ⊆ Supp(I•). The transform of R along σ : X ′ = BlZX → X is

R′ = (σ∗I•, Ẽ, F̃+F ′) where σ∗I• =
⊕

m≥0 ImOX′tm is the total transform.

Remark (5.2). Smooth morphisms, projection from a marked line and ex-
ceptional blow-ups all induce log smooth morphisms (X ′, F ′)→ (X,F ).

5.5. Equivalence of Rees triples.

Definition (5.3). A test sequence for R is a sequence of transformations
Π = π0 ◦ · · · ◦ πr−1 such that πi is either

• smooth,
• the projection from a marked line,
• an Ri-admissible blow-up, or
• an Ri-exceptional blow-up,

where Ri := π∗i−1 . . . π
∗
1π
∗
0R denotes the transform (according to the type).

A weak test sequence for R is a test sequence that only consists of smooth
and admissible blow-ups.

Definition (5.4). We say that two Rees triples R = (I•, E, F ) and R′ =
(I ′•, E′, F ′) are equivalent, written R ∼ R′, if F = F ′ (with the same order-
ing) and R and R′ have the same test sequences. We say that R ⊆ R′ if
E = E′, F = F ′ and I• ⊆ I ′•.

Lemma (5.5). Let R = (I•, E, F ) ∼ R′ = (I ′•, E′, F ′) be two equivalent
Rees triples.

(i) Supp(R) = Supp(R′),
(ii) ordxR = ordxR

′ for all x ∈ Supp(R),
(iii) ordFjR = ordFjR

′ for all exceptional divisors Fj.
(iv) If p : X ′ → X is smooth, then p∗R = p∗R′.
(v) If π : X ′ → X is an R-admissible blow-up, then π∗R ∼ π∗R′.
(vi) (I•, E + F, ∅) ∼ (I ′•, E′ + F ′, ∅).
(vii) If R ⊆ R′ ⊆ R′′, and R ∼ R′′, then R ∼ R′.

Proof. (i) If x ∈ Supp(R) is a closed point, then the sequence BlxX → X is
admissible. Hence also x ∈ Supp(R′). It follows that Supp(R) = Supp(R′).

(ii) and (iii): See appendix.
(iv), (v) and (vi) are obvious.
(vii): Trivially Supp(R) ⊇ Supp(R′) ⊇ Supp(R′′), but as R ∼ R′′, these

are all equal. It follows that test sequences of length 1 for R and R′ are
equal. As the inclusions are preserved under transformations, it follows that
R ∼ R′. �
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If R and R′ are only weakly equivalent, then everything except ordFjR =
ordFjR

′ holds.

5.6. Integral closure of Rees algebras.

Definition (5.6). Let I• be a Rees algebra. We let IC(I•) be the integral
closure of I• in OX [t]. We say that I• is integrally closed if I• = IC(I•).

Lemma (5.7). The OX-algebra IC(I•) is an integrally closed Rees algebra.

Proof. It is well-known that the integral closure of a graded ring is graded [Bou64,
p. 30] (high-tech reason: integral closure commutes with smooth morphisms
and a Z-grading is equivalent to a Gm-action). The non-obvious fact is that
IC(I•) is finitely generated.

The question is local on X so we may assume that X = Spec(A) and that
X is connected with fraction field K. Since X is smooth, X is normal so
that OX [t] ⊆ K(t) is integrally closed. Thus, IC(I•) is the integral closure
of I• in K(t).

Next, we note that I• is an integral domain as I• ⊆ OX [t] ⊆ K[t]. Let L
denote the fraction field of IC(I•). If I• = OX then IC(I•) = I• = OX and
the result is clear. Otherwise, there exists (f,m) ∈ I• with m ≥ 1. After
inverting (f,m) and (f, 1) we have the function tm so K(tm) ⊆ L ⊆ K(t).

Thus K(t)/L is a finite field extension and since SpecX(I•) is of finite type
over Spec(k), the integral closure of I• in K(t) is finitely generated. �

Definition (5.8). We say that two Rees algebras I• and J• are integrally
equivalent, written I• ' J•, if IC(I•) = IC(J•). Given a Rees triple R =
(I•, E, F ) we let IC(R) = (IC(I•), E, F ) and write (I•, E, F ) ' (I ′•, E′, F ′)
if I• ' I ′•, E = E′ and F = F ′.

Lemma (5.9). (i) We have that R ∼ IC(R).
(ii) If Π: Xr → X is a test sequence for R, then Π∗R ⊆ Π∗(IC(R)) ⊆

IC(Π∗R)
(iii) If R ' R′ then R ∼ R′.

Proof. We will prove (i) and (ii) simultaneously: we need (i) to even define
Π∗(IC(R)) in (ii). As integral closure commutes with smooth pull-back,
it is enough to consider a single admissible or exceptional blow-up. Let
(f,m) ∈ IC(I•). Then there exists some positive integer d and a relation:

fd + a1f
d−1 + a2f

d−2 + · · ·+ ad = 0

with ai ∈ Imi. Trivially, Supp(IC(I•)) ⊆ Supp(I•). For the reverse inclu-
sion, pick x ∈ Supp(I•). Then ordx(ai) ≥ mi and from the relation above
it follows that ordx(f) ≥ m. As this holds for any element in IC(I•) it
follows that Supp(I•) = Supp(IC(I•)). Thus, a blow-up is admissible or
exceptional for R if and only if it is so for IC(R).

After an R-admissible or R-exceptional blow-up π : X ′ → X, the relation
is transformed to

π∗(f,m)d+π∗(a1,m)π∗(f,m)d−1+π∗(a2, 2m)π∗(f,m)d−2+· · ·+π∗(ad, dm) = 0

so π∗(f) ∈ IC(π∗I•) and the inclusion in (ii) follows for test sequences of
length 1. After an R-exceptional blow-up,
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It is thus enough to show that π∗R ∼ IC(π∗R) and we conclude by in-
duction on the length of a test sequence.

(iii) is a direct consequence of (i) since R ' IC(R) = IC(R′) ' R. �

Remark (5.10). Let I\• =
⊕

m

(∑
k Im+k

)
tm. That is, if I• is generated

by (f1,m1), . . . , (fn,mn) then I\• is generated by the elements (fi, j) where

1 ≤ j ≤ mi. Clearly I• ∼ I\• as the added elements do not impose any new

conditions. Also it is easy to see that I\• ⊆ IC(I•).
A more natural way is to introduce extended Rees algebras. These are

finitely generated graded OX -algebras I• =
⊕
Imtm ⊆ OX [t, t−1] such that

Im = OX for m ≤ 0. In particular, t−1 ∈ I• so I• = I\•. The idealistic
filtrations of Kawanoue [Kaw07] (of r.f.g. type) are extended Rees algebras
except that the Z-grading is replaced with a Q-grading.

5.7. Derivatives. When it comes to derivatives, it is convenient to add all
derivatives at once:

D(I•) =
⊕
m≥0

∑
k≥0

Dk(Im+k,m+ k)

 tm

This is indeed a Rees algebra: if I• is generated by (f1,m1), . . . , (fs,ms) and
x1, x2, . . . , xn is a regular system of parameters, then D(I•) is generated
by (∂xαfi,mi − |α|) for |α| < mi. If I• = D(I•) then we say that I• is
differentially closed. In particular, D(I•) is differentially closed. Similarly,
given an snc (or even normal crossings) divisor F ↪→ X, we define DF (I•)
and DF -closed Rees algebras. An important case will be F = H for a smooth
(non-exceptional) hypersurface H. Note that D = D∅.

Given a Rees triple R = (I•, E, F ), we let DF (R) = (DF (I•), E, F ).

Lemma (5.11). (i) We have that R ∼ DF (R).
(ii) If Π: X ′ → X is a test sequence for R then Π∗R ⊆ Π∗(DF (R)) ⊆

DF ′(Π
∗R)

(iii) If R ∼ R′ then DF (R) ∼ DF (R′).

Proof. As with integral closure, we will prove (i) and (ii) simultaneously. We
note that Supp(I•) = DF (Supp(I•)) (§4.1). Thus, any R-admissible blow-
up is DF (R)-admissible. After one admissible blow-up the inclusion in (ii)
holds by the corresponding result for marked ideals (§4.1). For exceptional
blow-ups, it is an easy consequence of the transformation rule (2.0.1).

By induction on the length of a test sequence, it follows that Π∗R ∼
DF ′(Π

∗R) and we conclude that Π∗R ∼ Π∗(DF (R)) so that R ∼ DF (R).
(iii) is an immediate consequence of (i). �

Remark (5.12). It can be shown that if I• ' J• then D(I•) ' D(J•). In
fact, the following stronger resultD(IC(I•)) ⊆ IC(D(I•)) = D(IC(D(I•))) =
IC(D(IC(I•))) holds [Kaw07, Prop. 2.2.3.1, Cor. 2.2.3.2, Cor. 2.3.2.7].

We do not need this. In any case, if I• ' J•, then I• ∼ J• and so
D(I•) ∼ D(J•) which is what is important for us.
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5.8. Simple Rees algebras. A Rees algebra I• such that maxord(I•) = 1
is called simple by Encinas and Villamayor [EV07]. We leave the proof of
the following easy lemma as an exercise.

Lemma (5.13). Let I• be such that maxord(I•) ≤ 1. Then ordxD(I•) is
either 0 and 1 for every x ∈ X.

This shows that D-closed simple Rees algebras behave very similarly to
ordinary ideals.

5.9. Fractions. Given a Rees algebra I•. Let 0 < m1 < m2 < · · · < mn ∈
N be the degrees of a minimal set of generators of I•, that is, mi belongs
to the sequence exactly when (In, n) is not in the subalgebra generated

by
∑n−1

m≥0(Im,m). We let ∆(I•) = lcm(m1,m2, . . . ,mn). If Π is a test

sequence for R = (I•, E, F ), then clearly ∆(Π∗I•) | ∆(I•). However, ∆ is
not preserved under equivalence. The importance of ∆ is that ordx(I•) ∈
1
∆N.

Also, I• ' (I∆,∆) so this let us pass between Rees algebras and marked
ideals. In most treatments, including [Kol07, BM08, W lo05], the marked
ideal (I∆,∆) is used instead of the Rees algebra I•. Exceptions are [EV07,
Kaw07] who use Rees algebras.

Given a Rees algebra I• and a positive rational number α ∈ Q we let

Iα• =
⊕
m≥0

(Idαme,m)

We do not necessarily have that Iαβ• = (Iα• )β but at least Iαβ• ' (Iα• )β.
Indeed, it is not difficult to see that Iα• ' J α• if I• ' J• and

(I∆,∆)p/q ' (Ip∆, q∆)

Note that ordx(Iα• ) = αordxI•.

5.10. Monomial decompositions. Let R = (I•, E, F =
∑r

j=1 F
j) be a

Rees triple. Let βj = ordFjI•. Recall that the βj ’s are invariants of I• up to
equivalence. The monomial part of R, denoted MF (I•), is the Rees algebra∏r
j=1(O(−F j), 1)βj . Explicitly:

MF (I•)m = O(−
∑
j

dmβjeF j)

The non-monomial part ofR, denotedNF (I•), is the Rees algebra I•/MF (I•).
Explicitly:

NF (I•)m = Im(
∑
j

dmβjeF j)

If I• ∼ J•, then MF (I•) ∼MF (J•) and NF (I•) ∼ NF (J•).
For any sequence of test transformation Π: X ′ → X for R = (I•, E, F ),

we have that Π∗(MF (I•)) = MF ′Π
∗(I•).

6. Outline of the algorithm

The main theorem will be a consequence of the following refinement:
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Definition (6.1). A basic object I is a quadruple (X, I•, E, F =
∑

j F
j)

where X is a smooth scheme of finite type over a field of characteristic
zero and R = (I•, E, F ) is a Rees triple, that is, E is an unordered normal
crossings divisor and F is an ordered snc divisor such that E+F is a normal
crossings divisor.

Theorem (6.2). There is a blow-up sequence functor BQ defined on all
basic objects I = (X, I•, E, F =

∑
j F

j). It satisfies the following conditions:

(i) The blow-up sequence Π = BQ(X, I•, E, F ) : Xr → X is I-admissible.
(ii) BQ(X, I•, E, F ) = BQ(X,J•, E, F ) if I ∼F J .
(iii) Supp(Π∗I•) = ∅.
(iv) Π is an isomorphism over X \ Supp(I•).
(v) Π is functorial with respect to smooth morphisms and change of

fields.
(vi) Π is functorial with respect to closed embeddings if E = F = ∅.

The main theorem is obtained by taking BP(X, I, E) = BQ(X, (I, 1), E, ∅).
The algorithm giving Theorem 6.2 consists of the following steps:

(i) If dim(X) = 0, then V (I) is smooth and we are done after the single
blow-up with center Supp(I•). By induction we may thus assume
that BQ is constructed for triples (X, I•, E) with dim(X) < n. Pick
a triple (X, I•, E) with dim(X) = n.

(ii) If Supp(I•) = ∅ we are done.
(iii) If I• is a simple Rees algebra (this means that maxord I• = 1), then

we replace I• with D(I•). After doing this, there is, using that
we are in characteristic zero, a smooth hypersurface of maximal
contact H ∈ I1 (locally in the Zariski topology). We first perform
a boundary modification that makes E +H a snc divisor. Then we
proceed by the blow-up sequence BQ(H, I•|H , E|H). W lodarczyk’s
trick proves that this blow-up sequence does not depend on the
chosen H.

(iv) If I• is not a simple Rees algebra, i.e., maxord(I•) > 1, then I• ∼
Ig · IE where IE is an exceptional Rees algebra. We then proceed
by induction on the weak order ω = maxordx∈Supp(I•) Ig• . The weak
order is a rational positive number but has bounded denominator.

(v) If the weak order is zero, then I• is exceptional and we can re-
solve the Rees algebra by blowing up various intersections of the
exceptional divisors. Here it is crucial that the Ei’s are ordered.

(vi) If the weak order is positive, then we let J• = I• + (Ig)1/ω. Then
J• is a simple Rees algebra and we can eliminate J• by step (iii).
After this elimination, the weak order drops and we are done.

7. Restriction to smooth hypersurfaces (maximal contact)

In general, the support of a marked ideal or a Rees algebra does not
commute with restrictions. This is however the case if the Rees algebra is
differentially closed (or the marked ideal is D-balanced in Kollár’s notation):
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Lemma (7.1). Let H ↪→ X be a smooth subvariety and let I• be a Rees
algebra. Then Supp(I•) ∩ H ⊆ Supp(I•|H). If I• is differentially closed,
then equality holds.

Proof. It is easily verified that if x ∈ H, then ordx(I) ≤ ordx(I|H). This
gives the inclusion. If I• is differentially closed, then we have that Supp(I•) =
Supp(I1). As Supp(I•|H) ⊆ Supp(I1|H) = Supp(I1) ∩ H the equality fol-
lows. �

Proposition (7.2). Let I• be a Rees algebra and let H ↪→ X be a smooth
hypersurface such that Supp(I•) ⊆ H, e.g., IH ⊆ I1. If D(− logH)(I•) =
D(I•) then

(i) Supp(I•) = Supp(I•|H)
(ii) If π : BlZX → X is a blow-up in a smooth center Z ↪→ X such

that Z ⊆ Supp(I•) and H ′ denotes the strict transform of H, then
D(− logH ′)(π∗I•) = D(π∗I•).

Proof. Recall that Supp(I•) = Supp(D(I•)) = Supp(D(I•)|H) and that
D(− logH)(I•)|H = D(I•|H). Thus (i) follows.

Clearly D(− logH ′)(π∗I•) ⊆ D(π∗I•). To see the reverse inclusion,
choose local coordinates such that Z = V (x1, x2, . . . , xr) and H = V (xr).
It is enough to look at the charts D+(xi) with i = 1, 2, . . . , r − 1 since
D = DH on the last chart. We have that D(Im,m) = D(− logH)(Im,m) +
(∂xrIm,m − 1) and by assumption (∂xrIm,m − 1) ∈ D(− logH)(Im,m).
Similarly, we have that

Dπ∗(Im,m) = D(− logH ′)π∗(Im,m) + ∂yrπ
∗(Im,m)

= D(− logH ′)π∗(Im,m) + π∗(∂xrIm,m− 1)

⊆ D(− logH ′)π∗(Im,m) + π∗D(− logH)(Im,m)

⊆ D(− logH ′)π∗(Im,m)

where we have used equations (4.1.1) when passing between the first and
second row. �

Remark (7.3). The proof above is much shorter than Kollár [Kol07, Thm. 3.88]
as he does not use an inductive assumption.

Corollary (7.4). Let I• be a simple D-closed Rees algebra (or merely DE-
closed). Let H ↪→ X be a smooth hypersurface such that IH ⊆ I1. Then
pushing forward from H to X gives an equivalence between blow-up sequences
for (H, I•|H) and blow-up sequences for (X, I•).

If in addition E ↪→ X is an snc divisor such that H + E is snc, then
pushing forward from H to X gives an equivalence between blow-up sequences
for (H, I•|H , E|H) and blow-up sequences for (X, I•, E).

Proof. Note that trivially D(− logH)(I•) = D(I•) = I•. Thus, by the
previous proposition, Supp(I•|H) = Supp(I•) so we have an equivalence for
blow-up sequences of length 1.

Let π : X ′ → X be a blow-up with smooth center Z contained in Supp(I•).
Let I ′• = π∗I• and let H ′ be the strict transform of H. Then π∗H = H ′+E
is snc and if locally H = V (xr) so that (xr, 1) ∈ I1, then H ′ = V (yr) and
(yr, 1) = π∗(xr, 1) ∈ I ′1. In particular, Supp(I ′•) ⊆ H ′.
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By the previous proposition we have that D(− logH)(π∗I•) = D(π∗I•)
and Supp(π∗I•) = Supp(π∗I•|H). We may thus conclude by induction.

If we are given an snc divisor E such that E + H is snc, then a smooth
center Z ↪→ H has simple normal crossings with E if and only if it has
simple normal crossings with E + H. If this happens, then E′ + H ′ is snc
where E′ denotes the total transform of E. �

8. Uniqueness of maximal contact

Proposition (8.1) (W lodarczyk). xxx

9. The algorithm

The algorithm consists of three different steps:

(i) The maximal contact case where the hypersurface of maximal con-
tact is transversal to E. (Here we replace I• with a D-closed ideal.)

(ii) The maximal contact case where the hypersurface of maximal con-
tact is not necessary transversal to E+F . Then we make a bound-
ary modification.

(iii) The general case which goes by induction on the weak order ωF .
The trivial case ωF = ∞, is taken care by a single blow-up. To
reduce ωF , one resolves a certain companion Rees algebra which is
in the maximal contact case. Finally when ωF = 0, we are in the
monomial case.

REMARK: Below is an attempt to make things better that didn’t work
out. One has to be more clever to get functoriality with respect to smooth
morphisms when E + F 6= ∅.

Definition (9.1). Let E ↪→ X be a normal crossings divisor. Let XE,s =
{x ∈ X : ordx(E) = s}. This gives a stratification X =

⊔n
s=1XE,s of X

into locally closed smooth subvarieties. Define s(x) such that x ∈ XE,s(x).
Let I• be a Rees algebra on X. We let

σI•,E(x) = dimk(x)(I1)x/(IXE,s(x) + m2
x).

It can be seen that σI•,E is a lower semi-continuous function. The integer
m = σI•,E is the maximum number of smooth hypersurfaces H1, H2, . . . ,Hm

containing V (I1), locally around x, such that H1 ∩ H2 ∩ · · · ∩ Hm is a
smooth subvariety of codimension m meeting E transversely at x. Such
Hi’s are hypersurface of maximal contact and H1 ∩H2 ∩ · · · ∩Hm acts as a
codimension m subvariety of maximal contact.

Theorem (9.2). Let m ≤ n be integers. Assume that BQ has been con-
structed for all triples (X, I•, E, F ) such that dim(X) ≤ n − m. There is
a blow-up sequence functor BQm defined on all basic objects (X, I•, E, F =∑

j F
j) such that

• dim(X) ≤ n,
• maxord(I•) ≤ 1, and
• σI•,F (x) ≥ m for all x ∈ Supp(I•).

The blow-up functor BQm has the same properties as BQ in Theorem (6.2).
In particular, it commutes with closed immersions.
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Proof. If m = 0, then we let BQ0 = BQ.
Case E = ∅: Since m ≥ 1, there exists f ∈ (I1)x such that Hx = V (f) is

a smooth hypersurface meeting H transversally. We may thus find an open
neighborhood x ∈ Ux and lift f to a section of (I1)(Ux) such that Hx = V (f)
is a smooth hypersurface meeting F transversally. Choose Hx ⊆ Ux for every
x ∈ X and let X ′ =

∐
Ux for some finite open subcovering. For any other

choice of open covering and local hypersurfaces, there is a common refined
covering X ′′ with f1, f2 ∈ Γ(X ′′, I1).

It is thus enough to construct BQm for basic objects (X, I•, ∅, F =
∑

j F
j)

as in the theorem under the additional assumption that there exists a global
section f ∈ Γ(I1) such that H = V (f) is a smooth hypersurface meeting F
transversally. However, our construction of BQm is not allowed to depend
on the choice of f .

Note that, since F andH meet transversally, F |H is snc. We let BQm(X, I•, ∅, F ) =
BQm−1(H,DF (I•)|H , ∅, F |H). This blow-up sequence is independent of the
choice of H by Section 8.

By construction, BQm commutes with smooth morphisms. Indeed, DF

commutes with smooth pull-back and H ↪→ X is pulled back to a hypersur-
face of maximal contact defined by an element f ∈ I1.

If I ∼F J , then DF (I•) ∼F DF (J•) but it need not be possible to find
one H that works for both I and J (in particular, it could happen that
I1 6= J1). However, we have that I ∼F I + J ∼F J , so we can assume
that I ⊆ J . Then we may choose H from I and it also works for J . Then
I•|H ∼F J•|H .

Case E 6= ∅: In this case, the hypersurface of maximal contact H con-
structed in the previous case need not meet E + F transversally. We will
therefore first do a “boundary” blow-up sequence to make Supp(I•) disjoint
from E. There will be new exceptional divisors added to F in the process
but these will all be transverse to H.

Note that maxord(IE) ≤ n, i.e., E has at most n-fold intersections. We
begin with resolving I• along n-fold intersections. This means looking at the
Rees algebra I•+(IE , n) since Supp(I•+(IE , n)) = Supp(I•)∩Supp(IE , n).
Now take the blow-up sequence

Πn = BQm(X, I• + (IE , n), ∅, F ) : X(n) → X,

let F (n) ⊆ X(n) denote the exceptional divisor, let E(n) = Π∗nE be the strict

transform and let I(n)
• = Π∗nI• be the transform. Then ∅ = Supp(Π∗n(I• +

(IE , n))) = Supp(I(n)
• )∩Supp(Π∗n(IE , n)). This means that maxord

x∈Supp(I(n)• )
I(n)
E <

n, i.e., Supp(I(n)
• ) does not meet n-fold intersections of E(n).

Also, for any local hypersurface H = V (f) given by f ∈ I1 with ordx(f) =
1 we have that Supp(I•) ⊆ H and this holds after any number of admissible
blow-ups (where we transform H as the strict transforms). This means

that H(n) := Π∗nH = V (f (n)) where (f1, 1) = Π∗n(f, 1) ⊆ I(n)
1 and H(n) is

transverse to F (n). Thus, we have the blow-up sequence:

Πn−1 = BQ1(X(n), I(n)
• + (IE , n− 1), F (n)) : X(n−1) → X.
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We let F (n−1) ⊆ X(n−1) denote the exceptional divisor, which, by definition,
includes Π∗n−1F

(n). Again, we let E(n−1) = Π∗n−1E
(n) be the strict transform

and let I(n−1)
• = Π∗n−1I

(n)
• be the transform. We proceed in this way and

obtain a blow-up sequence Π = Πn ◦Πn−1 ◦Πn−2 ◦ · · · ◦Π0 : X(0) → X. We
let BQ(X, I•, E) = Π. The only thing we have to verify is that all centers
have simple normal crossings with the strict transforms of E. This follows
by the construction since in the sequence Πk, all centers are contained in

k-fold intersections of E and Supp(I(k+1)
• ) does not meet E in any k+1-fold

intersection. �

Corollary (9.3). Assume that BQ has been constructed for all triples (X, I•, E, F )
such that dim(X) < n. There is a blow-up sequence functor BQMC defined
on all basic objects (X, I•, E, F =

∑
j F

j) such that

• dim(X) ≤ n, and
• maxord(I•) ≤ 1.

The blow-up functor BQMC has the same properties as BQ in Theorem (6.2).
In particular, it commutes with closed embeddings when E = F = ∅.

Proof. Take BQMC(X, I•, E, F ) = BQ1(X,D(I•), E + F, ∅)). Note that if
(I•, E, F ) ∼ (I ′•, E′, F ), then (I•, E + F, ∅) ∼ (I ′•, E′ + F, ∅) and thus also
(D(I•), E + F, ∅) ∼ (D(I ′•), E′ + F, ∅). �

Remark (9.4). Kollár has a slightly different algorithm which requires that
E =

∑
j E

j is snc and ordered. In our terminology, the blow-up sequence

for (X, I•, E, ∅) would start with the blow-up sequences

BQ1(Ei, D(I•)|Ei ,
∑
j 6=i

Ej |Ei, ∅)

for i = 1, 2, . . . , r and then finally

BQ1(X,D(I•), ∅, F )

where F is the exceptional divisors given by the blow-ups along the Ei’s.

Proof of Theorem (6.2). If X = ∅, then there is nothing to prove. Fix
an integer n and assume that BQ has been constructed for all quadruples
(X, I•, E, F ) such that dim(X) ≤ n.

Trivial case ω = ∞: Let Z = {x ∈ X : ordxI• = ∞}. Then Z is
the disjoint union of the connected components of X that are contained in
Supp(I•). We begin by blowing up Z. This replaces X and Z with X \ Z
and ∅.

Companion case ω > 0: Let ∆ = ∆(I•) ∈ Z≥1 be the lcm of the degrees
of local generators of I•. Next, let ω = ωI•,F = maxordx∈Supp(I•)NF (I•).
This is be maximal weak order of I• with respect to F . Recall that ω ∈ 1

∆N
and that this remains valid after transformations (§5.9).

If ω > 0, then let Jω = I• + NF (I•)1/ω. We then perform the blow-
up sequence BQMC(X,Jω, E + F, ∅). Since I• ⊆ Jω, the sequence is I•-
admissible. After replacing (X, Iω, E, F ) with the transform along this se-

quence, we have that Supp(I•)∩Supp(NF (I•)1/ω) = ∅, so maxordNF (I•) <
ω. We repeat until ω = 0.
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Monomial case ω = 0: If ω = 0, then NF (I•) = OX [t] is the trivial
Rees algebra and I• = MF (I•) is monomial.

MONOMIAL CASE
Functoriality and invariance under equivalence: Let us verify that

the algorithm does not depend on the F -similarity class of I•. If I• ∼F
I ′•, then ωI,N = ωI′,N and NF (I•) ∼F NF (I ′•) so that Jω ∼F J ′ω [insert
reference]. For the monomial case, we note that ordFiI• = ordFiI ′•.

To see that the algorithm is functorial with respect to closed embeddings
when E = F = ∅, assume that we have a smooth subvariety X0 ↪→ X,
X0 6= X such that V (I•) ⊆ X0. Then maxord I• = 1 and ω = 1. The
algorithm will thus be equal to BQMC(X,Jω, ∅, ∅) which is functorial with
respect to closed embeddings. �

Appendix A. Order of equivalent Rees triples

Theorem (A.1). Let R = (I•, E, F ) and R′ = (J•, E′, F ) be weakly equiv-
alent Rees triples. Let x ∈ Supp(I•) = Supp(J•). Then ordxI• = ordxJ•.
Proof. 2

By passing to an open neighborhood we can assume that Z = x is smooth
and has simple normal crossings with E+F . LetX1 = X×A1, E1 = X×{0},
Γ1 = π−1

1 (Z) and Z1 = E1 ∩ Γ1 = Z × {0}. Let (I•)(1) = π∗1I•. Having
constructed (Xi,Γi, Zi), we let

(i) πi+1 : Xi+1 = BlZiXi → Xi,
(ii) Γi+1 ↪→ Xi+1 be the strict transform of Γi,
(iii) Ei+1 = π−1

i+1(Zi) be the exceptional divisor,
(iv) Zi+1 = Ei+1 ∩ Γi+1, and

(v) (I•)(i+1) = π∗i+1(I•)(i).

Let µ = ordZI•. Then, locally, there exists (f0, d) ∈ I• such that ordZ(f0) =
dµ. Let π∗i (f, d) = (fi, d). Pick local coordinates (at any point of Zi) such
that Di = (x1), Γi = (x2, x3, . . . , xr) and Zi = (x1, x2, . . . , xr). We will prove

by induction that fi = x
di(µ−1)
1 gi(x2, . . . , xn) where ordZ(gi) = dµ. This is

clear for i = 1 as f1 = f0 only depends on x2, x3, . . . , xn. Now, assume that

fi = x
di(µ−1)
1 gi(x2, . . . , xn). Then it is only the chart D+(x1) that contains

Γi+1. On this chart we have that Di+1 = (y1), Γi+1 = (y2, y3, . . . , yr) and

fi+1 = y−d1 fi(y1, y1y2, y1y3, . . . , y1yr, yr+1, . . . , yn)

= y
−d+di(µ−1)
1 gi(y1y2, y1y3, . . . , y1yr, yr+1, . . . , yn)

= y
−d+di(µ−1)+dµ
1 gi(y2, y3, . . . , yn)

= y
d(i+1)(µ−1)
1 gi

Thus gi+1 = gi has order dµ at Zi and the order along Di is as claimed.

We have thus shown that ordDi(I
(i)
• ) = i(µ − 1). In particular, we have

that Di ⊆ Supp(I(i)
• ) if and only if i(µ− 1) ≥ 1.

If i(µ− 1) ≥ 1, then the blow-up at the divisor Di is admissible. This is
a trivial blow-up in the sense that Xi, Zi, Γi and Di are left unchanged but

I(i)
• is modified. If we let p denote the blow-up in Di, then ordDi(p

∗I(i)
• ) =

2Clash with E in the proof.
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i(µ− 1)− 1. Similarly, if i(µ− 1) ≥ q, then we may blow-up q times along

Di and obtains ordDi(p
∗)qI(i)

• = i(µ− 1)− q. This sequence of blow-ups is
admissible if and only if i(µ− 1)− q ≥ 0 or equivalently, precisely when

µ ≥ 1 +
q

i
.

By assumption, ordxI•, ordxJ• ≥ 1. Thus, if ordx(I•) > ordx(J•), then
there exists a sequence of blow-ups that is only admissible for I• but not for
J• and vice versa. �

Theorem (A.2). Let R = (I•, E, F ) and R′ = (J•, E′, F ) be equivalent
Rees triples. Then

• ordxI• = ordxJ• for all x ∈ Supp(I•) = Supp(J•).
• ordF jI• = ordHJ• for every irreducible component F j of F .

Proof. 3 (i) follows from the previous theorem.
For (ii), we will proceed as in (i) with Z = F j . The difference is that

ordF jI• < 1 is possible and then the blow-ups are not admissible. However,
Ei and Γi are exceptional divisors so Di = Ei ∩ Γi is an exceptional center
and we can use exceptional blow-ups.

Let µ = ordHI•. We obtain ordDi(I
(i)
• ) = iµ. As before, if iµ ≥ q, we

may then do an admissible blow-up q times along Di and obtain a blow-up
sequence which is a test sequence if and only if iµ ≥ q, or equivalently, if
and only if µ ≥ q

i . Thus, ordHI• = ordHJ•. �
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