Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Stacky blow-ups, étalification and compactification of stacks

David Rydh

Department of Mathematics Royal Institute of Technlogy

Sep 17, 2010 / Barcelona

KTH Mathematics

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Why do we need compactifications?

• Cohomology of compact spaces is nice (finite dimensional).

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Why do we need compactifications?

- Cohomology of compact spaces is nice (finite dimensional).
- GAGA theorems (comparisons with analytic geometry) only apply in compact setting.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why do we need compactifications?

- Cohomology of compact spaces is nice (finite dimensional).
- GAGA theorems (comparisons with analytic geometry) only apply in compact setting.
- Several constructions for non-compact spaces is done via suitable compactifications — H^{*}_c(X), trace formulae, mixed hodge structures, Grothendieck duality, ...

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Why do we need compactifications?

- Cohomology of compact spaces is nice (finite dimensional).
- GAGA theorems (comparisons with analytic geometry) only apply in compact setting.
- Several constructions for non-compact spaces is done via suitable compactifications — H^{*}_c(X), trace formulae, mixed hodge structures, Grothendieck duality, ...

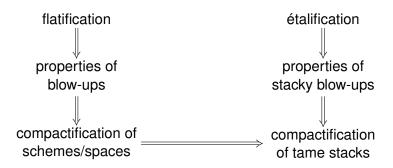
Usually, one wants $X \subseteq \overline{X}$ where \overline{X} is smooth and $\overline{X} \setminus X$ is snc. This is accomplished by first choosing **any** compactification $X \subseteq \widetilde{X}$ and then taking a resolution of singularities $\overline{X} \to \widetilde{X}$.

Outline

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry



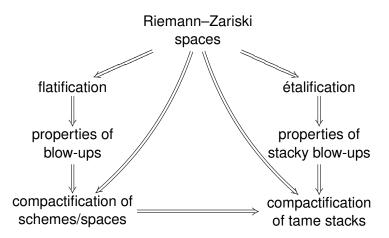
きょう きょう きょう きょう きょう

Outline

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry



◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ ◇ ◇ ◇

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Contents

1 Compactification of varieties and stacks

- 2 Flatification and blow-ups
- 3 Étalification and stacky blow-ups
- A Relation with toric geometry

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Outline

 Compactification of varieties and stacks Varieties Algebraic spaces Tame Deligne–Mumford stacks

2 Flatification and blow-ups

3 Étalification and stacky blow-ups

A Relation with toric geometry

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Compactification of varieties

Convention: All schemes and stacks are quasi-compact and quasi-separated (e.g., noetherian).

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Compactification of varieties

Convention: All schemes and stacks are quasi-compact and quasi-separated (e.g., noetherian).

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete (=compact, proper) variety \overline{X}/k .

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Compactification of varieties

Convention: All schemes and stacks are quasi-compact and quasi-separated (e.g., noetherian).

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete (=compact, proper) variety \overline{X}/k .

There is also a generalization for schemes:

Theorem (Nagata '63, Deligne, Lütkebohmert '93, Conrad '07)

Let $f: X \to Y$ be separated and of finite type. Then $f = \overline{f} \circ j$ where $j: X \to \overline{X}$ is an open embedding and $\overline{f}: \overline{X} \to Y$ is proper.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Proof of Nagata's compactification theorem

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete variety \overline{X}/k .

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Proof of Nagata's compactification theorem

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete variety \overline{X}/k .

Sketch of proof.

1 Choose an open covering $X = \bigcup_i U_i$ such that each U_i has a compactification $U_i \subset \overline{U_i}$ (e.g., choose U_i affine).

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of Nagata's compactification theorem

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete variety \overline{X}/k .

Sketch of proof.

- **1** Choose an open covering $X = \bigcup_i U_i$ such that each U_i has a compactification $U_i \subset \overline{U_i}$ (e.g., choose U_i affine).
- 2 Use blow-ups to modify the $\overline{U_i}$'s such that they glue to a proper variety $\overline{X} = \bigcup_i \overline{U_i}$.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of Nagata's compactification theorem

Theorem (Nagata '62)

Every separated variety X/k admits an open embedding into a complete variety \overline{X}/k .

Sketch of proof.

- **1** Choose an open covering $X = \bigcup_i U_i$ such that each U_i has a compactification $U_i \subset \overline{U_i}$ (e.g., choose U_i affine).
- 2 Use blow-ups to modify the $\overline{U_i}$'s such that they glue to a proper variety $\overline{X} = \bigcup_i \overline{U_i}$.

Lurking in the background:

- Riemann–Zariski space of valuations of K(X).
- Raynaud–Gruson's flatification theorem.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult '74)

Every separated **algebraic space** X/k of finite type admits an open embedding into a proper algebraic space \overline{X}/k .

Étalification and stacky blow-ups

Toric geometry

Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult '74)

Every separated **algebraic space** X/k of finite type admits an open embedding into a proper algebraic space \overline{X}/k .

Sketch of proof.

For X normal, use that X = Z/G where Z is a scheme and G is a finite group acting (not necessarily freely) on Z.

Étalification and stacky blow-ups

Toric geometry

Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult '74)

Every separated **algebraic space** X/k of finite type admits an open embedding into a proper algebraic space \overline{X}/k .

Sketch of proof.

For *X* **normal**, use that X = Z/G where *Z* is a scheme and *G* is a finite group acting (not necessarily freely) on *Z*. For general *X*, use **push-outs** to pass from a compactification of the normalization \widetilde{X} to a compactification of *X*.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Compactification of Deligne–Mumford stacks

Theorem (R.)

Every separated tame DM-stack \mathscr{X}/k of finite type admits an open embedding into a proper tame DM-stack $\overline{\mathscr{X}}/k$.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Compactification of Deligne–Mumford stacks

Theorem (R.)

Every separated tame DM-stack \mathscr{X}/k of finite type admits an open embedding into a proper tame DM-stack $\overline{\mathscr{X}}/k$.

Theorem (R.)

Let $f: \mathscr{X} \to \mathscr{Y}$ be a morphism of DM-stacks. Then

f is finite type, separated and strictly tame \iff f = (proper and tame) \circ (open embedding)

Tameness

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Definition

A DM-stack \mathscr{X} is **tame** if $\forall x \in |\mathscr{X}|$, char $k(x) \nmid |\operatorname{stab}(x)|$.

Tameness

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Definition

A DM-stack \mathscr{X} is **tame** if $\forall x \in |\mathscr{X}|$, char $k(x) \nmid |\operatorname{stab}(x)|$.

Definition

 $f: \mathscr{X} \to \mathscr{Y}$ is strictly tame if $\forall y_{\xi} \in |\mathscr{Y}|, y_0 \in \overline{\{y_{\xi}\}}, x \in f^{-1}(y_{\xi})$

char $k(y_0) \nmid |\operatorname{stab}(x)|$.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Two difficulties

 We do not know how to compactify a given stack Zariski-locally, we need to work étale-locally.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Two difficulties

- We do not know how to compactify a given stack Zariski-locally, we need to work étale-locally.
- 2 Given local compactifications, we must modify the stacky structure in order to glue. Blow-ups are not enough.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Two difficulties

- We do not know how to compactify a given stack Zariski-locally, we need to work étale-locally.
- 2 Given local compactifications, we must modify the stacky structure in order to glue. Blow-ups are not enough.
- Remedy for **1** étale devissage (arXiv:1005.2171). Remedy for **2** — stacky blow-ups.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Main lemma

Lemma

Let

be a cartesian diagram of DM-stacks such that

- $f: \mathscr{X} \to \mathscr{Y}$ is separated, of finite type and strictly tame.
- $g: \mathscr{Y}' \to \mathscr{Y}$ is representable, étale and surjective.

Then f is tamely compactifiable if and only if f' is so.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Main lemma

Lemma

Let

be a cartesian diagram of DM-stacks such that

- $f: \mathscr{X} \to \mathscr{Y}$ is separated, of finite type and strictly tame.
- $g: \mathscr{Y}' \to \mathscr{Y}$ is representable, étale and surjective.

Then f is tamely compactifiable if and only if f' is so.

Proof.

Use stacky blow-ups and étale devissage. Required properties of stacky blow-ups follow from étalification.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of compactification theorem for tame stacks

Theorem (R.)

Let \mathscr{Y} be a DM-stack and let $f: \mathscr{X} \to \mathscr{Y}$ be separated, of finite type and strictly tame. Then f has a tame compactification.

Sketch of proof.

Use Main Lemma and Riemann–Zariski spaces.

Skip details

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of compactification theorem for tame stacks

Theorem (R.)

Let \mathscr{Y} be a DM-stack and let $f: \mathscr{X} \to \mathscr{Y}$ be separated, of finite type and strictly tame. Then f has a tame compactification.

Sketch of proof.

1 Can assume that $\mathscr{Y} = Y$ is affine (Main Lemma). Choose a compactification $\overline{\mathscr{X}_{cms}} \to Y$ of the coarse moduli space.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of compactification theorem for tame stacks

Theorem (R.)

Let \mathscr{Y} be a DM-stack and let $f: \mathscr{X} \to \mathscr{Y}$ be separated, of finite type and strictly tame. Then f has a tame compactification.

Sketch of proof.

1 Can assume that $\mathscr{Y} = Y$ is affine (Main Lemma). Choose a compactification $\overline{\mathscr{X}_{cms}} \to Y$ of the coarse moduli space. Enough to compactify $\mathscr{X} \to \overline{\mathscr{X}_{cms}}$. Can assume that $Y = \overline{\mathscr{X}_{cms}}$ is affine (Main Lemma).

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of compactification theorem for tame stacks

Theorem (R.)

Let \mathscr{Y} be a DM-stack and let $f: \mathscr{X} \to \mathscr{Y}$ be separated, of finite type and strictly tame. Then f has a tame compactification.

Sketch of proof.

- 1 Can assume that $\mathscr{Y} = Y$ is affine (Main Lemma). Choose a compactification $\overline{\mathscr{X}_{cms}} \to Y$ of the coarse moduli space. Enough to compactify $\mathscr{X} \to \overline{\mathscr{X}_{cms}}$. Can assume that $Y = \overline{\mathscr{X}_{cms}}$ is affine (Main Lemma).
- 2 Find a (stacky) X-admissible blow-up Y → Y and an étale covering U → Y such that X × V U → Y has a compactification (this is relatively easy and uses Riemann–Zariski spaces).

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Proof of compactification theorem for tame stacks

Theorem (R.)

Let \mathscr{Y} be a DM-stack and let $f: \mathscr{X} \to \mathscr{Y}$ be separated, of finite type and strictly tame. Then f has a tame compactification.

Sketch of proof.

- 1 Can assume that $\mathscr{Y} = Y$ is affine (Main Lemma). Choose a compactification $\overline{\mathscr{X}_{cms}} \to Y$ of the coarse moduli space. Enough to compactify $\mathscr{X} \to \overline{\mathscr{X}_{cms}}$. Can assume that $Y = \overline{\mathscr{X}_{cms}}$ is affine (Main Lemma).
- 2 Find a (stacky) X-admissible blow-up Y→ Y and an étale covering U→ Y such that X×Y U→ Y has a compactification (this is relatively easy and uses Riemann–Zariski spaces).
- 3 Conclude by Main Lemma.

Outline

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Compactification of varieties and stacks

- Platification and blow-ups
 Blow-ups
 Flatification via blow-ups (Raynaud–Gruson)
- 3 Étalification and stacky blow-ups
- 4 Relation with toric geometry

Blow-ups

Flatification and blow-ups ●○○ Étalification and stacky blow-ups

Toric geometry

Let $p: X \to Y$ be a morphism between schemes (or stacks).

Definition

 We say that *p* is a modification if *p* is proper and birational. If *p*⁻¹(*U*) → *U* is an isomorphism, then we say that *p* is *U*-admissible.

Blow-ups

Flatification and blow-ups ●○○

Étalification and stacky blow-ups

Toric geometry

Let $p: X \to Y$ be a morphism between schemes (or stacks).

Definition

- We say that *p* is a modification if *p* is proper and birational. If *p*⁻¹(*U*) → *U* is an isomorphism, then we say that *p* is *U*-admissible.
- We say that p is a **blow-up** if there exists a (finite type) ideal $\mathcal{I} \subseteq \mathcal{O}_Y$ such that $X = \operatorname{Bl}_{\mathcal{I}} Y = \operatorname{Proj}_Y \left(\bigoplus_{k \ge 0} \mathcal{I}^k \right)$.

Blow-ups

Flatification and blow-ups ●○○

Étalification and stacky blow-ups

Toric geometry

Let $p: X \to Y$ be a morphism between schemes (or stacks).

Definition

- We say that *p* is a modification if *p* is proper and birational. If *p*⁻¹(*U*) → *U* is an isomorphism, then we say that *p* is *U*-admissible.
- We say that p is a **blow-up** if there exists a (finite type) ideal $\mathcal{I} \subseteq \mathcal{O}_Y$ such that $X = \operatorname{Bl}_{\mathcal{I}} Y = \operatorname{Proj}_Y \left(\bigoplus_{k \ge 0} \mathcal{I}^k\right)$.
- If in addition U ⊆ Y is an open subscheme such that
 I|_U = O_U (so that p⁻¹(U) → U is an isomorphism) then
 we say that p is U-admissible.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Flatification

Theorem (Raynaud–Gruson '71)

Let $f: X \to Y$ be a finite type morphism of schemes such that $f|_U$ is flat for some open $U \subseteq Y$. Then $\exists U$ -admissible blow-up $\widetilde{Y} \to Y$ such that the strict transform $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ is flat.

Flatification

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Theorem (Raynaud–Gruson '71)

Let $f: X \to Y$ be a finite type morphism of schemes such that $f|_U$ is flat for some open $U \subseteq Y$. Then $\exists U$ -admissible blow-up $\widetilde{Y} \to Y$ such that the strict transform $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ is flat.

Flatification

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Theorem (Raynaud–Gruson '71)

Let $f: X \to Y$ be a finite type morphism of schemes such that $f|_U$ is flat for some open $U \subseteq Y$. Then $\exists U$ -admissible blow-up $\widetilde{Y} \to Y$ such that the strict transform $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ is flat.

$$\widetilde{Y} = \operatorname{Bl}_{Z}(Y) \longrightarrow \widetilde{Y} \qquad (Z \cap U = \emptyset)$$

Flatification

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Theorem (Raynaud–Gruson '71)

Let $f: X \to Y$ be a finite type morphism of schemes such that $f|_U$ is flat for some open $U \subseteq Y$. Then $\exists U$ -admissible blow-up $\widetilde{Y} \to Y$ such that the strict transform $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ is flat.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Flatification

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Theorem (Raynaud–Gruson '71)

Let $f: X \to Y$ be a finite type morphism of schemes such that $f|_U$ is flat for some open $U \subseteq Y$. Then $\exists U$ -admissible blow-up $\widetilde{Y} \to Y$ such that the strict transform $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ is flat.

$$\begin{split} \widetilde{X} &= \mathrm{Bl}_{f^{-1}(Z)}(X) \longrightarrow X \\ & & & \downarrow f \\ \widetilde{Y} &= \mathrm{Bl}_{Z}(Y) \longrightarrow Y \end{split} \qquad (Z \cap U = \emptyset)$$

Remark: \widetilde{X} is the closure of $f^{-1}(U)$ in $X \times_Y \widetilde{Y}$.

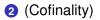
Flatification and blow-ups

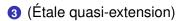
Étalification and stacky blow-ups

Toric geometry

Properties of blow-ups

(Open extension)



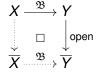


Flatification and blow-ups ○○● Étalification and stacky blow-ups

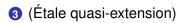
Toric geometry

Properties of blow-ups

1 (Open extension) For every diagram of solid arrows there exists a blow-up $\overline{X} \to \overline{Y}$ such that $\overline{X}|_Y \cong X$. [trivial]



(Cofinality)

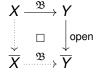


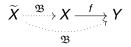
Flatification and blow-ups ○○● Étalification and stacky blow-ups

Toric geometry

Properties of blow-ups

- 1 (Open extension) For every diagram of solid arrows there exists a blow-up $\overline{X} \to \overline{Y}$ such that $\overline{X}|_Y \cong X$. [trivial]
- (Cofinality) Every modification
 f: X → Y is dominated by a blowup. [flatification]
- (Étale quasi-extension)



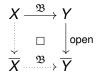


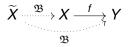
Flatification and blow-ups ○○● Étalification and stacky blow-ups

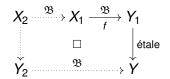
Toric geometry

Properties of blow-ups

- 1 (Open extension) For every diagram of solid arrows there exists a blow-up $\overline{X} \to \overline{Y}$ such that $\overline{X}|_Y \cong X$. [trivial]
- (Cofinality) Every modification
 f: X → Y is dominated by a blowup. [flatification]
- 3 (Étale quasi-extension) For every diagram of solid arrows there exists blow-ups $X_2 \rightarrow X_1$ and $Y_2 \rightarrow Y$ as indicated. [étale devissage]







Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Outline

Compactification of varieties and stacks

Platification and blow-ups

Étalification and stacky blow-ups
 Root stacks
 Stacky blow-ups

Tame étalification via stacky blow-ups

A Relation with toric geometry

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Root stacks

Definition

Let $D \hookrightarrow X$ be a Cartier divisor and $r \ge 1$ an integer. The **root** stack $X_{D,r}$ is an X-stack roughly defined as

$$\operatorname{Hom}(T, X_{D,r}) = \{f \colon T \to X, E \in \operatorname{Div}(T) \mid f^*D = rE\}$$

(for precise definition, replace divisor with line bundle + section)

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Root stacks

Definition

Let $D \hookrightarrow X$ be a Cartier divisor and $r \ge 1$ an integer. The **root** stack $X_{D,r}$ is an X-stack roughly defined as

$$\operatorname{Hom}(T, X_{D,r}) = \{f \colon T \to X, E \in \operatorname{Div}(T) \mid f^*D = rE\}$$

(for precise definition, replace divisor with line bundle + section)

Facts

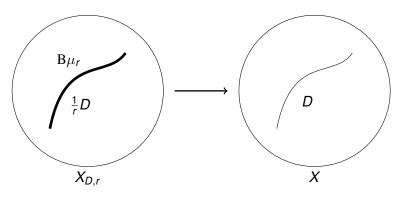
X_{D,r} is a tame Artin stack and Deligne–Mumford if p ∤ r.
 π: X_{D,r} → X is a flat (X \ D)-admissible modification.
 (X_{D,r})_{cms} = X.
 π⁻¹(D)_{red} → D_{red} is a μ_r-gerbe.
 If D = rE then (X_{D,r})^{norm} = X^{norm}.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Root stacks (picture)



Locally a ramified μ_r -cover:

 $X = \operatorname{Spec}(A), \quad D = \{z = 0\}, \quad X_{D,r} = \left[\operatorname{Spec}(A[w]/w^r - z)/\mu_r\right]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Stacky blow-ups

Definition

Let X be a stack, let $Z \hookrightarrow X$ be a closed substack and $r \ge 1$ an integer. We let $\operatorname{Bl}_{Z,r} X = (\operatorname{Bl}_Z X)_{E,r}$ where $E \hookrightarrow \operatorname{Bl}_Z X$ is the exceptional divisor.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Stacky blow-ups

Definition

Let X be a stack, let $Z \hookrightarrow X$ be a closed substack and $r \ge 1$ an integer. We let $\operatorname{Bl}_{Z,r} X = (\operatorname{Bl}_Z X)_{E,r}$ where $E \hookrightarrow \operatorname{Bl}_Z X$ is the exceptional divisor.

Definition

Let $p: X \to Y$ be a morphism between stacks. We say that p is a **stacky blow-up** if there exists a (finitely presented) closed substack $Z \hookrightarrow X$ and an integer $r \ge 1$ such that $X = \text{Bl}_{Z,r}Y$. If $Z \cap U = \emptyset$ for some U then p is U-admissible.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Stacky blow-ups

Definition

Let X be a stack, let $Z \hookrightarrow X$ be a closed substack and $r \ge 1$ an integer. We let $\operatorname{Bl}_{Z,r} X = (\operatorname{Bl}_Z X)_{E,r}$ where $E \hookrightarrow \operatorname{Bl}_Z X$ is the exceptional divisor.

Definition

Let $p: X \to Y$ be a morphism between stacks. We say that p is a **stacky blow-up** if there exists a (finitely presented) closed substack $Z \hookrightarrow X$ and an integer $r \ge 1$ such that $X = \text{Bl}_{Z,r}Y$. If $Z \cap U = \emptyset$ for some U then p is U-admissible.

Caution: A sequence of blow-ups is a blow-up (Raynaud–Gruson) but a sequence of stacky blow-ups is not a stacky blow-up.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Tame étalification

Theorem (R.)

Let $f: X \to Y$ be a finite type morphism of stacks such that $f|_U$ is étale for some open $U \subseteq Y$ and f is tamely ramified. Then \exists a commutative diagram

where $\widetilde{X} \to X$ and $\widetilde{Y} \to Y$ are sequences of stacky blow-ups and \widetilde{f} is étale.

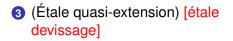
Flatification and blow-ups

Étalification and stacky blow-ups

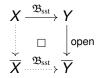
Toric geometry

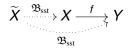
Properties of stacky blow-ups

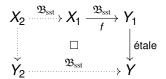
- (Open extension) [trivial]
- (Cofinality) Every tame stacky modification f: X → Y is dominated by a sequence of stacky blow-ups. [tame étalification]



 $(\mathfrak{B}_{sst}$ denotes a sequence of stacky blow-ups.)







Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Outline

Compactification of varieties and stacks

- 2 Flatification and blow-ups
- 3 Étalification and stacky blow-ups
- Relation with toric geometry Toric stacks Weak factorization

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry ●○○○○

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

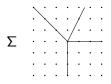
 (日)

 (日)

 (日)

Toric stacks

Let $N = \mathbb{Z}^d$ and let $\Sigma \subseteq N_{\mathbb{Q}}$ be a rational simplicial fan.



To Σ we associate the toric variety X_{Σ} .

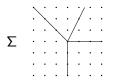
Flatification and blow-ups

Étalification and stacky blow-ups

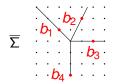
Toric geometry ●○○○○

Toric stacks

Let $N = \mathbb{Z}^d$ and let $\Sigma \subseteq N_{\mathbb{Q}}$ be a rational simplicial fan.



To Σ we associate the toric variety X_{Σ} . Let $\rho_1, \rho_2, \ldots, \rho_n$ be the rays in Σ and choose generators $b_i \in \rho_i \cap N$ of ρ_i .



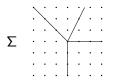
Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry ●○○○○

Toric stacks

Let $N = \mathbb{Z}^d$ and let $\Sigma \subseteq N_{\mathbb{Q}}$ be a rational simplicial fan.



To Σ we associate the toric variety X_{Σ} . Let $\rho_1, \rho_2, \ldots, \rho_n$ be the rays in Σ and choose generators $b_i \in \rho_i \cap N$ of ρ_i .



To the stacky fan $\overline{\Sigma} = (\Sigma, \mathbf{b})$ we associate a toric stack $\mathscr{X}_{\overline{\Sigma}}$. Toric stacks are always **regular** and tame.

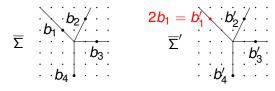
Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry ○●○○○

Toric stacks and root stacks

Let D_i be the toric divisor corresponding to the ray ρ_i . Taking the r^{th} root stack of D_i results in the toric stack with stacky fan $\overline{\Sigma}' = {\Sigma', \mathbf{b}'}$ where $\Sigma' = \Sigma$ and $b'_j = b_j$ for $j \neq i$ and $b'_i = rb_i$:



2^d root stack of D₁

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Star subdivisions

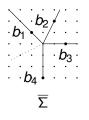
Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Star subdivisions



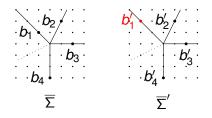
 $\mathscr{X}_{\overline{\nabla}}$

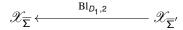
Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Star subdivisions



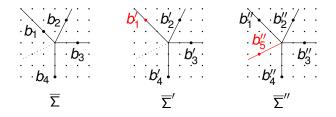


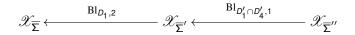
Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Star subdivisions





Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry

Weak factorization of toric stacks

In the language of toric stacks and stacky blow-ups we have:

Theorem (Włodarczyk '98)

- A proper birational map X_∑ --→ X_∑' between toric stacks factors as a sequence of stacky blow-ups and stacky blow-downs with smooth equivariant centers.
- 2 A proper birational map X_∑ --→ X_{∑'} between regular toric varieties factors as a sequence of blow-ups and blow-downs with smooth equivariant centers.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry ○○○○●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Weak factorization

Theorem (Abramovich–Karu–Matsuki–Włodarczyk '02, W '03)

A proper birational map $X \rightarrow Y$ between regular varieties over a field of characteristic zero, factors as a sequence of blow-ups and blow-downs with smooth centers.

Flatification and blow-ups

Étalification and stacky blow-ups

Toric geometry ○○○○●

Weak factorization

Theorem (Abramovich–Karu–Matsuki–Włodarczyk '02, W '03)

A proper birational map $X \rightarrow Y$ between regular varieties over a field of characteristic zero, factors as a sequence of blow-ups and blow-downs with smooth centers.

Conjecture (R.)

A proper birational map $\mathscr{X} \dashrightarrow \mathscr{Y}$ between regular DM-stacks over a field of characteristic zero, factors as a sequence of stacky blow-ups and stacky blow-downs with smooth centers.

End of talk

The end

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:

- 1 X is quasi-projective.
- **2** \exists open embedding $X \subseteq \overline{X}$ with \overline{X} projective.

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

3 \exists embedding $X \hookrightarrow \mathbb{P}_k^n$.

Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:

- 1 X is quasi-projective.
- **2** \exists open embedding $X \subseteq \overline{X}$ with \overline{X} projective.
- **3** \exists embedding $X \hookrightarrow \mathbb{P}_k^n$.

Definition (char. 0)

Let \mathscr{X}/k be a separated DM-stack of finite type over a field k of characteristic zero. The stack \mathscr{X} is **(quasi-)projective** if:

- **1** \mathscr{X} is a **global quotient stack**, i.e., $\mathscr{X} = [U/GL_n]$ for some algebraic space *U*.
- **2** The coarse moduli space \mathscr{X}_{cms} is (quasi-)projective.

Quasi-projective varieties and stacks (cont.)

Theorem (Kresch '09)

Let \mathscr{X}/k be a DM-stack of characteristic zero. The following are equivalent:

- **1** \mathscr{X} is quasi-projective.
- **2** \exists an open embedding $\mathscr{X} \subseteq \overline{\mathscr{X}}$ into a projective stack.
- 3 ∃ an embedding X → P where P is a smooth projective DM-stack.

Moreover, every smooth DM-stack with (quasi-)projective cms is (quasi-)projective.