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Why do we need compactifications?

• Cohomology of compact spaces is nice (finite
dimensional).

• GAGA theorems (comparisons with analytic geometry)
only apply in compact setting.

• Several constructions for non-compact spaces is done via
suitable compactifications — H∗

c (X ), trace formulae, mixed
hodge structures, Grothendieck duality, . . .

Usually, one wants X ⊆ X where X is smooth and X \ X is snc.
This is accomplished by first choosing any compactification
X ⊆ X̃ and then taking a resolution of singularities X → X̃ .
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Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).

Theorem (Nagata ’62)

Every separated variety X/k admits an open embedding into a
complete (=compact, proper) variety X/k.

There is also a generalization for schemes:

Theorem (Nagata ’63, Deligne, Lütkebohmert ’93, Conrad ’07)

Let f : X → Y be separated and of finite type. Then f = f ◦ j
where j : X → X is an open embedding and f : X → Y is proper.



Compactification Flatification and blow-ups Étalification and stacky blow-ups Toric geometry

Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).

Theorem (Nagata ’62)

Every separated variety X/k admits an open embedding into a
complete (=compact, proper) variety X/k.

There is also a generalization for schemes:

Theorem (Nagata ’63, Deligne, Lütkebohmert ’93, Conrad ’07)

Let f : X → Y be separated and of finite type. Then f = f ◦ j
where j : X → X is an open embedding and f : X → Y is proper.



Compactification Flatification and blow-ups Étalification and stacky blow-ups Toric geometry

Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).

Theorem (Nagata ’62)

Every separated variety X/k admits an open embedding into a
complete (=compact, proper) variety X/k.

There is also a generalization for schemes:

Theorem (Nagata ’63, Deligne, Lütkebohmert ’93, Conrad ’07)

Let f : X → Y be separated and of finite type. Then f = f ◦ j
where j : X → X is an open embedding and f : X → Y is proper.



Compactification Flatification and blow-ups Étalification and stacky blow-ups Toric geometry

Proof of Nagata’s compactification theorem

Theorem (Nagata ’62)

Every separated variety X/k admits an open embedding into a
complete variety X/k.

Sketch of proof.

1 Choose an open covering X =
⋃

i Ui such that each Ui has
a compactification Ui ⊂ Ui (e.g., choose Ui affine).

2 Use blow-ups to modify the Ui ’s such that they glue to a
proper variety X =

⋃
i Ui .

Lurking in the background:
• Riemann–Zariski space of valuations of K (X ).
• Raynaud–Gruson’s flatification theorem.
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Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult ’74)

Every separated algebraic space X/k of finite type admits an
open embedding into a proper algebraic space X/k.

Skip proof
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Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult ’74)

Every separated algebraic space X/k of finite type admits an
open embedding into a proper algebraic space X/k.

Sketch of proof.

For X normal, use that X = Z/G where Z is a scheme and G
is a finite group acting (not necessarily freely) on Z .

For general X , use push-outs to pass from a compactification
of the normalization X̃ to a compactification of X .
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Compactification of Deligne–Mumford stacks

Theorem (R.)

Every separated tame DM-stack X /k of finite type admits an
open embedding into a proper tame DM-stack X /k.

Theorem (R.)
Let f : X → Y be a morphism of DM-stacks. Then

f is finite type, separated and strictly tame
⇐⇒

f = (proper and tame) ◦ (open embedding)
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Tameness

Definition
A DM-stack X is tame if ∀x ∈ |X |, char k(x) - | stab(x)|.

Definition

f : X → Y is strictly tame if ∀yξ ∈ |Y |, y0 ∈ {yξ}, x ∈ f−1(yξ)

char k(y0) - | stab(x)|.
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Two difficulties

1 We do not know how to compactify a given stack
Zariski-locally, we need to work étale-locally.

2 Given local compactifications, we must modify the stacky
structure in order to glue. Blow-ups are not enough.

Remedy for 1 — étale devissage (arXiv:1005.2171).
Remedy for 2 — stacky blow-ups.
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Main lemma

Lemma
Let

X ′ //

f ′
��

X

f
��

Y ′ g
// Y

�

be a cartesian diagram of DM-stacks such that
• f : X → Y is separated, of finite type and strictly tame.
• g : Y ′ → Y is representable, étale and surjective.

Then f is tamely compactifiable if and only if f ′ is so.

Proof.
Use stacky blow-ups and étale devissage. Required properties
of stacky blow-ups follow from étalification.
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Proof of compactification theorem for tame stacks

Theorem (R.)
Let Y be a DM-stack and let f : X → Y be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.
Use Main Lemma and Riemann–Zariski spaces. Skip details
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Proof of compactification theorem for tame stacks

Theorem (R.)
Let Y be a DM-stack and let f : X → Y be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

1 Can assume that Y = Y is affine (Main Lemma). Choose
a compactification Xcms → Y of the coarse moduli space.

Enough to compactify X → Xcms. Can assume that
Y = Xcms is affine (Main Lemma).

2 Find a (stacky) X -admissible blow-up Ỹ → Y and an étale
covering U → Ỹ such that X ×Y U → Ỹ has a
compactification (this is relatively easy and uses
Riemann–Zariski spaces).

3 Conclude by Main Lemma.
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covering U → Ỹ such that X ×Y U → Ỹ has a
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Blow-ups
Flatification via blow-ups (Raynaud–Gruson)
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Blow-ups

Let p : X → Y be a morphism between schemes (or stacks).

Definition
• We say that p is a modification if p is proper and

birational. If p−1(U) → U is an isomorphism, then we say
that p is U-admissible.

• We say that p is a blow-up if there exists a (finite type)
ideal I ⊆ OY such that X = BlIY = ProjY

(⊕
k≥0 Ik

)
.

• If in addition U ⊆ Y is an open subscheme such that
I|U = OU (so that p−1(U) → U is an isomorphism) then
we say that p is U-admissible.
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Flatification

Theorem (Raynaud–Gruson ’71)
Let f : X → Y be a finite type morphism of schemes such that
f |U is flat for some open U ⊆ Y. Then ∃ U-admissible blow-up
Ỹ → Y such that the strict transform f̃ : X̃ → Ỹ is flat.

X̃ = Blf−1(Z )(X )

X

f
��

Ỹ = BlZ (Y )

Y

(Z ∩ U = ∅)

Remark: X̃ is the closure of f−1(U) in X ×Y Ỹ .
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Properties of blow-ups

1 (Open extension)

For every
diagram of solid arrows there
exists a blow-up X → Y such that
X |Y ∼= X . [trivial]

X B //

��

Y

open
��

X B // Y

�

2 (Cofinality)

Every modification
f : X → Y is dominated by a
blowup. [flatification]

X̃ B //

B

77X f // Y

3 (Étale quasi-extension)

For every
diagram of solid arrows there exists
blow-ups X2 → X1 and Y2 → Y as
indicated. [étale devissage]

X2
B //

��

X1 f
B // Y1

étale
��

Y2
B // Y

�

(B denotes a blow-up. Also U-admissible variants.)
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Root stacks

Definition
Let D ↪→ X be a Cartier divisor and r ≥ 1 an integer. The root
stack XD,r is an X -stack roughly defined as

Hom
(
T , XD,r

)
=

{
f : T → X , E ∈ Div(T ) | f ∗D = rE

}
(for precise definition, replace divisor with line bundle + section)

Facts
1 XD,r is a tame Artin stack and Deligne–Mumford if p - r .
2 π : XD,r → X is a flat (X \ D)-admissible modification.
3

(
XD,r

)
cms = X .

4 π−1(D)red → Dred is a µr -gerbe.
5 If D = rE then

(
XD,r

)norm
= X norm.
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Root stacks (picture)

XD,r

1
r D

Bµr

X

D

Locally a ramified µr -cover:

X = Spec(A), D = {z = 0}, XD,r =
[
Spec(A[w ]/w r − z)/µr

]



Compactification Flatification and blow-ups Étalification and stacky blow-ups Toric geometry

Stacky blow-ups

Definition
Let X be a stack, let Z ↪→ X be a closed substack and r ≥ 1 an
integer. We let BlZ ,r X = (BlZ X )E ,r where E ↪→ BlZ X is the
exceptional divisor.

Definition
Let p : X → Y be a morphism between stacks. We say that p is
a stacky blow-up if there exists a (finitely presented) closed
substack Z ↪→ X and an integer r ≥ 1 such that X = BlZ ,r Y . If
Z ∩ U = ∅ for some U then p is U-admissible.

Caution: A sequence of blow-ups is a blow-up
(Raynaud–Gruson) but a sequence of stacky blow-ups is not a
stacky blow-up.
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Tame étalification

Theorem (R.)

Let f : X → Y be a finite type morphism of stacks such that f |U
is étale for some open U ⊆ Y and f is tamely ramified. Then ∃
a commutative diagram

X̃
Bsst //

ef
��

X

f
��

Ỹ
Bsst // Y

◦

where X̃ → X and Ỹ → Y are sequences of stacky blow-ups
and f̃ is étale.
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Properties of stacky blow-ups

1 (Open extension) [trivial]

X
Bsst //

��

Y

open
��

X
Bsst // Y

�

2 (Cofinality) Every tame stacky
modification f : X → Y is
dominated by a sequence of stacky
blow-ups. [tame étalification]

X̃
Bsst //

Bsst

77X f // Y

3 (Étale quasi-extension) [étale
devissage]

X2
Bsst //

��

X1 f

Bsst // Y1

étale
��

Y2
Bsst // Y

�

(Bsst denotes a sequence of stacky blow-ups.)
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Outline

1 Compactification of varieties and stacks

2 Flatification and blow-ups

3 Étalification and stacky blow-ups

4 Relation with toric geometry
Toric stacks
Weak factorization
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Toric stacks

Let N = Zd and let Σ ⊆ NQ be a rational simplicial fan.

Σ

To Σ we associate the toric variety XΣ.

Let ρ1, ρ2, . . . , ρn be the
rays in Σ and choose generators bi ∈ ρi ∩ N of ρi .

b1
b2

b3

b4

Σ

To the stacky fan Σ = (Σ, b) we associate a toric stack XΣ.
Toric stacks are always regular and tame.
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Toric stacks and root stacks

Let Di be the toric divisor corresponding to the ray ρi . Taking
the r th root stack of Di results in the toric stack with stacky fan
Σ
′
= {Σ′, b′} where Σ′ = Σ and b′j = bj for j 6= i and b′i = rbi :

b1
b2

b3

b4

Σ

2b1 = b′1 b′2

b′3
b′4

Σ
′

2d root stack of D1
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:

b1
b2

b3

b4

Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ

X
Σ
′ X

Σ
′′
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Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ X
Σ
′

BlD1,2
oo

X
Σ
′′
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:

b1
b2

b3

b4

Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ X
Σ
′

BlD1,2
oo X

Σ
′′

BlD′1∩D′4,1
oo
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Weak factorization of toric stacks

In the language of toric stacks and stacky blow-ups we have:

Theorem (Włodarczyk ’98)

1 A proper birational map XΣ 99K X
Σ
′ between toric stacks

factors as a sequence of stacky blow-ups and stacky
blow-downs with smooth equivariant centers.

2 A proper birational map XΣ 99K XΣ′ between regular toric
varieties factors as a sequence of blow-ups and
blow-downs with smooth equivariant centers.
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Weak factorization

Theorem (Abramovich–Karu–Matsuki–Włodarczyk ’02, W ’03)
A proper birational map X 99K Y between regular varieties over
a field of characteristic zero, factors as a sequence of blow-ups
and blow-downs with smooth centers.

Conjecture (R.)
A proper birational map X 99K Y between regular DM-stacks
over a field of characteristic zero, factors as a sequence of
stacky blow-ups and stacky blow-downs with smooth centers.
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End of talk

The end



Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:
1 X is quasi-projective.
2 ∃ open embedding X ⊆ X with X projective.
3 ∃ embedding X ↪→ Pn

k .

Definition (char. 0)

Let X /k be a separated DM-stack of finite type over a field k of
characteristic zero. The stack X is (quasi-)projective if:

1 X is a global quotient stack, i.e., X = [U/GLn] for some
algebraic space U.

2 The coarse moduli space Xcms is (quasi-)projective.
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Quasi-projective varieties and stacks (cont.)

Theorem (Kresch ’09)

Let X /k be a DM-stack of characteristic zero. The following
are equivalent:

1 X is quasi-projective.
2 ∃ an open embedding X ⊆ X into a projective stack.
3 ∃ an embedding X ↪→ P where P is a smooth projective

DM-stack.
Moreover, every smooth DM-stack with (quasi-)projective cms
is (quasi-)projective.
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