

Local structure of algebraic stacks and applications

David Rydh

Aug 6, 2020 (MIT, CORONA-GS)

KTH, Stockholm

- 1. Stacks
- 2. Statement of main theorem
- 3. Interlude: Good moduli spaces
- 4. Proof of main theorem
- 5. Applications

Stacks

Algebraic stacks

We view affine schemes *X* as representable functors *X*: $(AffSch)^{op} \rightarrow (Set)$ where X(T) = Hom(T, X).

- An algebraic space is an étale sheaf X: (AffSch)^{op} → (Set) together with an étale/smooth/flat atlas ∐ Spec(A_i) → X.
- An algebraic stack is an étale stack X : (AffSch)^{op} → (Grpd) together with a smooth/flat atlas ∐ Spec(A_i) → X.

Features:

- "Underlying" topological space $|\mathscr{X}|$.
- A point x: Spec $k \to \mathscr{X}$ has stabilizer $G_x = \operatorname{Aut}(x) = \operatorname{stab}(x)$, a group scheme over k.
- X is Deligne–Mumford if Aut(x) is finite and smooth for all x.
 (equivalently, exists an étale atlas)

- 1. $\mathfrak{U}_{g,n} = \{ \text{singular curves } C \text{ of genus } g \text{ with } n \text{ marked pts} \}$
- 2. $\mathfrak{M}_{g,n} = \{ \text{nodal curves } C \text{ of genus } g \text{ with } n \text{ marked pts} \}$
- DM 3. Stable curves: $\overline{\mathcal{M}}_{g,n} = \{C \in \mathfrak{M}_{g,n} \mid \operatorname{Aut}(C) \text{ finite}\}$
- DM 4. Stable maps: $\overline{\mathcal{M}}_{g,n}(X) = \{C \in \mathfrak{M}_{g,n}, f : C \to X \mid \operatorname{Aut}(f) \text{ finite}\}$
 - 5. Stack of vector bundles/sheaves/complexes on a scheme X.
 - 6. Stack of logarithmic structures $\mathscr{L}og(T)$.

Stacks of stable curves/maps are Deligne–Mumford. Other stacks have affine stabilizers (except curves with smooth genus 1 comp.).

Slogan: General stacks (or equivalently groupoids) are flexible and needed for general moduli problems.

Examples: quotient stacks

- Group G acting on scheme X gives quotient stack X = [X/G] with atlas p: X → [X/G]. Well-behaved even if action not free.
- *G*-equivariant geometry on $X \iff$ geometry on $\mathscr{X} = [X/G]$:
 - $-|\mathscr{X}|$ is space of *G*-orbits
 - $-\operatorname{Aut}(p(x))=G_x, x\in X$
 - $-\ \Gamma(\mathcal{X},F)=\Gamma(X,p^*F)^G$
 - $H^{i}(\mathcal{X}, F) = H^{i}_{G}(X, p^{*}F)$

Slogan: Quotient stacks (or equivalently group actions) are much easier to understand and have several tools in equivariant geometry.

Question

When is a general stack "locally" a quotient stack?

(Keel–Mori '97) A separated Deligne–Mumford stack \mathscr{X} has a **coarse moduli space** $\pi : \mathscr{X} \to \mathbf{X}$ where **X** is an algebraic space such that

- 1. $|\mathscr{X}| = |\mathbf{X}|$ (π is a universal homeomorphism)
- 2. $O_{\mathbf{X}} = \pi_* O_{\mathscr{X}}$

Example

If G finite and $\mathscr{X} = [\operatorname{Spec} A/G]$, then $\mathbf{X} = [\operatorname{Spec} A^G]$.

Orbifold description

If \mathscr{X} has a coarse moduli space **X**, then $\forall x \in |\mathscr{X}|$ there exists:

- *U* affine with action of $G_x = \operatorname{stab}(x)$
- $u \in U$ fix-point
- *f* étale, *f*(*u*) = *x*
- $stab(u) \rightarrow stab(x)$ isomorphism

Statement of main theorem

[AHR1]	A Luna étale slice theorem for algebraic stacks, 2015
[AHR2]	The étale local structure of algebraic stacks, 2019
[AHHR3]	Artin algebraization for pairs with applications to the local structure of stacks and Ferrand pushouts, 2020 (exp)

Main Theorem (AHR1 '15)

 \mathscr{X} algebraic stack of finite type over field $k = \overline{k}, x \in \mathscr{X}(k)$. Assume

- 1. G_x is linearly reductive (e.g., GL_n in char 0 or a torus in char p),
- 2. G_y is affine for all $y \in |\mathscr{X}|$.

Then there exists $f: [U/G_x] \to \mathscr{X}$ where

- U affine with action of G_x , $u \in U$ fix-point
- f étale, f(u) = x and $stab(u) \rightarrow stab(x)$ isomorphism

Remark:

Conditions 1+2 are necessary. Counter-examples: $\mathscr{X} = BG = [\mathbb{A}^1/G]$ where $G \to \mathbb{A}^1$ degeneration: (1) from \mathbb{G}_m to \mathbb{G}_a , (2) from E to \mathbb{G}_m .

Examples and known cases

- (Sumihiro'74) If a torus *T* acts on a normal scheme *X*, then every point has an affine equivariant open neighborhood *U*. This gives an open immersion $[U/T] \rightarrow [X/T]$ (but $T \neq G_x$).
- (Luna'73) X = [X/G] where X affine and G linearly reductive: then Theorem holds with U → X locally closed.
- (Sumihiro+Luna) $\mathscr{X} = [X/G]$ where X normal scheme, G smooth affine, G_x linearly reductive.
- (Olsson'03) $\mathscr{X} = \mathscr{L}og$.
- (Alper–Kresch'14) $\mathscr{X} = \mathfrak{M}_{g,n}$.
- Let *C* nodal cubic with action of $G = \mathbb{G}_m$. Then Sumihiro fails. Local structure: $[U/\mathbb{G}_m] \xrightarrow{f} [C/\mathbb{G}_m], \quad U = \operatorname{Spec} k[x,y]/(xy)$

$$\left[-\frac{1}{\omega_{m}}\right] = \left[\frac{1}{\omega_{m}}\right] \xrightarrow{\text{étale}} \left[\frac{1}{\omega_{m}}\right]$$

Refinements

- $f: [U/G_x] \to \mathscr{X}$ representable if $\Delta_{\mathscr{X}}$ separated, and $f: [U/G_x] \to \mathscr{X}$ affine if $\Delta_{\mathscr{X}}$ affine.
- If \mathscr{X} is smooth, then exists

$$[\mathbb{A}^n/G_x] \xleftarrow{g} [U/G_x] \xrightarrow{f} \mathscr{X}$$

where *f* and *g* are étale and g(u) = 0.

• If G_x not linearly reductive but $H \subset G_x$ linearly reductive:

$$f\colon [U/H] \longrightarrow \mathscr{X}$$

syntomic/smooth/étale if G_x/H is arbitrary/smooth/étale.

• Version for derived stacks and quasi-smooth morphisms. (AHHR3)

Not over a field, including mixed characteristic (AHR2). Sample theorem: given an algebraic stack *X*, *x* ∈ |*X*| with linearly reductive stabilizer, there exists étale maps

$$\begin{bmatrix} U/G \end{bmatrix} \xrightarrow{h} \begin{bmatrix} V/GL_n \end{bmatrix} \xrightarrow{f} \mathscr{X}$$
$$\underset{U}{\longmapsto} \qquad V \qquad \longmapsto \qquad X$$

where U, V affine and stab $(u) \subseteq$ stab(v) = stab(x). Here $G \rightarrow$ Spec (\mathbb{Z}) is either diagonalizable or split reductive.

• Locally around substack instead of point (AHHR3), also needed for syntomic case on previous slide.

Interlude: Good moduli spaces

Local structure of stacks with good moduli spaces

• In the local structure of a DM-stack $\mathscr{X},$ we had

$$\begin{bmatrix} U/G_X \end{bmatrix} \xrightarrow{f} \mathscr{X} \qquad \begin{bmatrix} U/G_X \end{bmatrix} \xrightarrow{f} \mathscr{X}$$

$$\downarrow \qquad \text{and} \qquad \downarrow \qquad \Box \quad \pi \downarrow \quad \text{if } \mathscr{X} \text{ has a coarse space } \mathbf{X}.$$

$$U/G_X \qquad \qquad U/G_X \longrightarrow \mathbf{X}$$

Similarly, in the main theorem, we have

$$\begin{bmatrix} U/G_x \end{bmatrix} \xrightarrow{f} \mathscr{X} \qquad \begin{bmatrix} U/G_x \end{bmatrix} \xrightarrow{f} \mathscr{X}$$

$$\downarrow \qquad \text{and} \qquad \downarrow \qquad \Box \quad \pi \qquad \downarrow \quad \text{if } \mathscr{X} \text{ has a good moduli space } \mathbf{X}$$

$$U \| G_x \qquad \qquad U \| G_x \longrightarrow \mathbf{X}$$

Definition (Alper '08)

A good moduli space to \mathscr{X} is a morphism $\pi : \mathscr{X} \to \mathbf{X}$ to an algebraic space \mathbf{X} such that

1. π_* : QCoh($\mathcal{O}_{\mathscr{X}}$) \rightarrow QCoh(\mathcal{O}_X) is exact, (π is cohomol. affine)

2. $O_{\mathbf{X}} = \pi_* O_{\mathscr{X}}$

Consequences:

- π is initial among maps to algebraic spaces
- π is universally closed and π_* preserves coherence
- Every fiber of *π* has a unique closed point and it has linearly reductive stabilizer

Examples of good moduli spaces

- (GIT) Let X be a scheme with an action of G linearly reductive and a G-linearized ample line bundle L. Then X = [X^{ss}/G] has good moduli space X = X ∥G.
- If $X = \operatorname{Spec} A$ affine, $L = O_X$, then $X /\!\!/ G = \operatorname{Spec} A^G$.
- If X is projective, then $X/\!\!/G = \operatorname{Proj}\left(\bigoplus_{n\geq 0} \Gamma(X, L^n)^G\right)$.
- $[\mathbb{A}^2/\mathbb{G}_m]$ with weights 1, 1 and invariant ring $k[x,y]_0 = k$
- $[\mathbb{A}^2/\mathbb{G}_m]$ with weights 1, -1 and invariant ring $k[x,y]_0 = k[xy]$

Proof of main theorem

Overview

Theorem (Artin '69, '74)

A stack \mathscr{X} : (AffSch)^{op} \rightarrow (Grpd) is algebraic if and only if ...

is proven as follows:

- Let $x \in \mathscr{X}(k)$ be a point.
- Construct formal atlas (Spec A, u) $\rightarrow (\mathscr{X}, x)$.
- Find atlas (Spec B, w) $\rightarrow (\mathscr{X}, x)$ such that $A = \widehat{B}_w$.

The proof of the main theorem is similar but $\operatorname{Spec} A$ and $\operatorname{Spec} B$ are replaced with linearly fundamental stacks.

Definition

A stack \mathscr{X} is **linearly fundamental** if it has an affine good moduli space and the resolution property, e.g., $\mathscr{X} = [\operatorname{Spec} A/G]$ where *G* is linearly reductive and embeddable in GL_N .

Outline of proof

 $x \in |\mathscr{X}|$ closed point with ideal *I*. Infinitesimal neighborhoods:

$$BG_{X} = \mathscr{X}_{X}^{[0]} \hookrightarrow \mathscr{X}_{X}^{[1]} \hookrightarrow \ldots \hookrightarrow \mathscr{X}$$

Tangent stack: $\mathscr{T}_x := [\mathcal{T}_x/\mathcal{G}_x]$ smooth over *k*, where $\mathcal{T}_x = \mathbb{V}(I/I^2)$.

Step 1 (Deformation theory) Lift $i_0: \mathscr{X}_x^{[0]} \hookrightarrow \mathscr{T}_x$ to closed immersions $i_n: \mathscr{X}_x^{[n]} \hookrightarrow \mathscr{T}_x$. (*)

Step 2 (Completions) Completions $\widehat{\mathscr{T}}_x$ and $\widehat{\mathscr{T}}_x \hookrightarrow \widehat{\mathscr{T}}_x$ exist. (*)

Step 3 (Tannaka duality) Lift $\mathscr{X}_{\chi}^{[n]} \hookrightarrow \mathscr{X}$ to $\widehat{\imath}: \widehat{\mathscr{X}_{\chi}} \to \mathscr{X}$. (†)

Step 4 (Equivariant Artin algebraization) $\exists \mathscr{W} \to \mathscr{X}$ finite type such that $\widehat{\mathscr{W}}_{w} \simeq \widehat{\mathscr{X}}_{x}$.

- * = uses linear reductivity
- † = uses affine stabilizers

Obstruction to lifting $\mathscr{X}^{[n-1]}_{x}\to \mathscr{T}$ to $\mathscr{X}^{[n]}_{x}\to \mathscr{T}$ lies in

$$Ext^{1}_{\mathscr{X}_{x}^{[0]}}(L_{\mathscr{T}}, I^{n}/I^{n+1}) = H^{1}(\mathscr{X}_{x}^{[0]}, L_{\mathscr{T}}^{\vee} \otimes I^{n}/I^{n+1})$$

This obstruction group vanishes because

- \mathscr{T} is smooth $\implies L_{\mathscr{T}}$ perfect of Tor-amplitude [0, 1].
- $\mathscr{X}_{x}^{[0]} = BG_{x}$ is cohomologically affine: $\Gamma(\mathscr{X}_{x}^{[0]}, -)$ is exact.

Let \mathscr{X} noetherian stack and \mathscr{X}_0 a closed substack.

Definition

We say that $(\mathscr{X}, \mathscr{X}_0)$ is **complete** if $\operatorname{Coh}(\mathscr{X}) \to \varprojlim_n \operatorname{Coh}(\mathscr{X}_n)$ is an equivalence of categories. $(\mathscr{X}_n \text{ is the } n \text{th inf. neighborhood of } \mathscr{X}_0.)$

Examples

- If $S = \text{Spec}(\lim_{n \to \infty} A/I^n)$, and $S_0 = V(I)$, then (S, S_0) is complete.
- If $p: X \to S$ is proper, $X_0 = p^{-1}(S_0)$, then (X, X_0) is complete.

Theorem (AHR1+AHR2)

Let $\pi: \mathscr{X} \to \mathbf{X}$ be a good moduli space, $\mathscr{X}_0 \subset \mathscr{X}$ a closed substack and $\mathbf{X}_0 = \pi(\mathscr{X}_0)$. Then if \mathscr{X}_0 is linearly fundamental $(\mathscr{X}, \mathscr{X}_0)$ complete $\iff (\mathbf{X}, \mathbf{X}_0)$ complete

In particular, $\widehat{\mathscr{X}} := \mathscr{X} \times_{\mathbf{X}} \widehat{\mathbf{X}}$ is complete along \mathscr{X}_0 .

Building upon the methods using the tangent stack, we also establish:

Theorem (AHR2)

Let $\mathscr{X}_0 \hookrightarrow \mathscr{X}_1 \hookrightarrow \mathscr{X}_2 \hookrightarrow \ldots$ be an adic system of noetherian stacks. If \mathscr{X}_0 is linearly fundamental, then there exists a linearly fundamental complete stack $(\widehat{\mathscr{X}}, \mathscr{X}_0)$ such that \mathscr{X}_n is the nth infinitesimal neighborhood of \mathscr{X}_0 .

A subtle problem in the proof is that the sequence of good moduli spaces $X_0 \hookrightarrow X_1 \hookrightarrow \ldots$ is not adic and a priori the completion of this sequence is not even noetherian. (It is noetherian by Godement'56.)

Theorem (Lurie '04, Brandenburg–Chirvasitu '12, Hall–R '14) Let T, \mathscr{X} be noetherian algebraic stacks. The map of groupoids $\operatorname{Map}(T, \mathscr{X}) \longrightarrow \operatorname{Hom}_{r\otimes}(\operatorname{Coh}(\mathscr{X}), \operatorname{Coh}(T))$ $f \longmapsto f^*$

is an equivalence if \mathscr{X} has affine stabilizers and T is excellent.

($r \otimes$ = right-exact tensor functors. Derived analogues by Lurie, Bhatt '14 and Bhatt-Halpern-Leistner '15.)

In proof of main theorem:

$$\operatorname{Map}(\widehat{\mathscr{X}_{x}}, \mathscr{X}) \stackrel{\mathsf{TD}}{=} \operatorname{Hom}_{r \otimes}(\operatorname{Coh}(\mathscr{X}), \operatorname{Coh}(\widehat{\mathscr{X}_{x}}))$$

$$\stackrel{\mathsf{C}}{=} \varprojlim_{n} \operatorname{Hom}_{r \otimes}(\operatorname{Coh}(\mathscr{X}), \operatorname{Coh}(\mathscr{X}_{x}^{[n]})) \stackrel{\mathsf{TD}}{=} \varprojlim_{n} \operatorname{Map}(\mathscr{X}_{x}^{[n]}, \mathscr{X})$$
In particular: $\widehat{\mathscr{X}_{x}} = \varinjlim_{n} \mathscr{X}_{x}^{[n]}.$

Question (Algebraization)

Given $\overline{A} = \operatorname{Spec} k[[x_1, \ldots, x_n]]/I$, when is $\overline{A} = \widehat{A}$ for a finite type *k*-algebra A?

Yes, when \overline{A} regular. No, in general.

Theorem (Artin '69)

Yes, when there exist a formally smooth $\operatorname{Spec} \overline{A} \to \mathscr{X}$ where \mathscr{X} is a stack of finite type over an excellent base scheme *S*. Then also have smooth $\operatorname{Spec} A \to \mathscr{X}$. (\mathscr{X} need not be algebraic)

Theorem (AHR1, AHHR3)

Given $(\mathcal{W}, \mathcal{W}_0)$ linearly fundamental and complete and formally smooth $\overline{\mathcal{W}} \to \mathcal{X}$. Then $\exists \mathcal{W} \to \mathcal{X}$ formally smooth with $\overline{\mathcal{W}} = \widehat{\mathcal{W}}$.

Applications

Equivariant geometry

- 1. Sumihiro and Luna for [X/G] with general X (AHR1)
- 2. Białynicki-Birula for Deligne–Mumford stacks (Oprea'06, AHR1)
- 3. Toric stacks: fans vs intrinsic (Geraschenko-Satriano'11)

Good moduli spaces

- 4. Kirwan desingularization of good moduli spaces (Edidin-R'17)
- 5. Existence of good moduli space (Alper-Halpern-Leistner-Heinloth'18)
- 6. Good moduli space vs adequate moduli spaces (AHR2)
- 7. Resolution by vector bundles (AHR2)
- 8. Étale-local embeddability of linearly reductive group schemes (AHR2)

Moduli problems

- 9. Algebraicity of Hom-stacks etc (AHR1)
- 10. Generalized DT-invariants (Toda'16, Kiem-Li-Savvas'17)
- 11. Miniversal deformation spaces for singular curves (AHR1)

General results for stacks

- 12. Compact generation of derived categories (AHR1)
- 13. Existence of henselizations and completions (AHR1-AHHR3)
- 14. Existence of henselizations along affine closed subschemes (AHHR3)
- 15. Existence of Ferrand pushouts (AHHR3)
- 16. K-theory of stacks (Hoyois-Krishna'17)

Theorem (Oprea '06, Drinfeld '13, AHR1)

Let \mathscr{X} be a proper Deligne–Mumford stack with a \mathbb{G}_m -action. Suppose that \mathscr{X} is smooth and the coarse moduli space is a scheme. Then

- The fixed locus X^{Cm} = ∐_i 𝔅_i is a disjoint union of smooth closed substacks.
- There exists locally closed G_m-equivariant substacks X_i → X and affine fibrations X_i → F_i.
- 3. $\coprod_i |\mathscr{X}_i| \to |\mathscr{X}|$ is a bijection of sets.

Apply main theorem to $[\mathscr{X}/\mathbb{G}_m]$ and reduce to a \mathbb{G}_m -representation. Then \mathscr{F}_i and \mathscr{X}_i become linear subspaces.

A4. Kirwan desingularization of good moduli spaces

Theorem (Kirwan '85, Reichstein '89, Edidin–R '17)

Let \mathscr{X} be a noetherian stack with good moduli space $\pi : \mathscr{X} \to \mathbf{X}$. If π is generically a coarse moduli space, then there exists a canonical sequence of quasi-projective maps (saturated blow-ups)

$$\mathscr{X}_n \to \mathscr{X}_{n-1} \to \cdots \to \mathscr{X}_1 \to \mathscr{X}_0 = \mathscr{X}$$

such that each \mathscr{X}_i has a good moduli space \mathbf{X}_i and the $\mathbf{X}_{i+1} \to \mathbf{X}_i$ are blow-ups. The final moduli space $\mathscr{X}_n \to \mathbf{X}_n$ is a coarse moduli space. If \mathscr{X} is smooth, then so is the \mathscr{X}_i and $\mathbf{X}_n \to \mathbf{X}$ is a partial resolution of singularities.

Can be combined with functorial resolution of finite tame quotient singularities (Gabber'05, Bergh'14, Buonerba'15) to obtain a full resolution of **X**, even in positive characteristic.

A5. Existence of good moduli spaces

Theorem (Alper-Halpern-Leistner-Heinloth '18)

Let \mathscr{X} be an algebraic stack with affine diagonal. Then \mathscr{X} admits a separated good moduli space (resp. a gms) if and only if

- 1. \mathscr{X} is Θ -reductive,
- 2. \mathscr{X} is S-complete (resp. has "unpunctured inertia"), and
- 3. \mathscr{X} has lin. red. stabilizers at closed point (auto. in char. zero).

 Θ -reductivity and S-completeness are lifting criteria for

- $\Theta_R = [\mathbb{A}^1/\mathbb{G}_m] \times \operatorname{Spec} R$
- $ST_R = [Spec(R[s,t]/(st \pi))/\mathbb{G}_m]$

where *R* is a discrete valuation ring.

Corollary (Alper-Halpern-Leistner-Heinloth '18)

Let *X* be a projective scheme over a field of characteristic 0. Let σ be a stability condition (Bridgeland, Gieseker, Joyce–Song, ...) on $D^{b}(Coh(X))$. Fix a vector $\gamma \in H^{*}(X)$. Then the moduli stack of σ -semistable objects with Chern character γ has a proper good moduli space.

They also give a semi-stable reduction theorem for stacks with θ -stratifications.

Adequate moduli spaces (Alper'10) are the analogue of GIT-quotients in positive characteristic, allowing for geometrically reductive stabilizers. In particular, in the GIT setting $[X^{ss}/G] \rightarrow X /\!\!/ G$ is an adequate moduli space.

The following intuitive result is very non-obvious from the definitions.

Theorem (AHR2)

Let \mathscr{X} be a noetherian stack with adequate moduli space $\pi: \mathscr{X} \to \mathbf{X}$ of finite type. Then π is a good moduli space if and only if every closed point has linearly reductive stabilizer.

Theorem (AHR1, AHR2)

Let $\pi: \mathscr{X} \to X$ be a good moduli space. Then there exists an étale surjective morphism $X' \to X$ such that $\mathscr{X}' = \mathscr{X} \times_X X'$ has the resolution property.

Previously not even known when $\mathbf{X} = \operatorname{Spec} k$.

Corollary

Let $G \to S$ be a flat affine linearly reductive group scheme. Then there exists an étale surjective morphism $S' \to S$ such that $G \times_S S'$ is a closed subgroup of $GL_N \times S'$.

Theorem (Hall-R '14)

Let \mathscr{X} be a qcqs stack. Let $f: \mathscr{W} \to \mathscr{X}$ be a quasi-finite faithfully flat representable and separated morphism $\mathscr{W} \to \mathscr{X}$ such that

- 1. \mathcal{W} has the resolution property, ($\mathcal{W} = [q\text{-affine}/GL_N]$)
- 2. *W* has finite cohomological dimension (*).

Then $D_{qc}(\mathscr{X})$ is compactly generated.

(*) Char 0: always. Char *p*: no additive subgroups (\mathbb{G}_a , $\mathbb{Z}/p\mathbb{Z}$, $\boldsymbol{\alpha}_p$) of stabilizers.

Corollary (AHR1, AHHR3)

Let $\mathscr X$ be a qcqs algebraic stack with affine diagonal. $D_{qc}(\mathscr X)$ is compactly generated

- (char p) if and only if $(G_x)^0_{red}$ torus for all closed points $x \in |\mathscr{X}|$.
- (char 0) if G_x reductive for all closed points $x \in |\mathcal{X}|$.

Let \mathscr{X} be an algebraic stack with affine stabilizers. If $x \in |\mathscr{X}|$ has linearly reductive stabilizer, then \mathscr{X}_x^{\frown} and \mathscr{X}_x^h exist. Also similar results along closed substacks, in particular:

Theorem (AHHR3)

Let X be an algebraic space and $X_0 \hookrightarrow X$ a closed subspace that is an affine scheme. The henselization along X_0 exists and is affine.

Corollary

Let $X_0 \hookrightarrow X$ be a closed immersion of algebraic spaces/stacks and $X_0 \to Y_0$ an affine morphism. The pushout $X \coprod_{X_0} Y_0$ exists in the category of algebraic spaces/stacks.

This generalizes earlier results of Ferrand'70 (certain schemes) and Temkin–Tyomkin'13 (certain algebraic spaces).

- \mathscr{X} algebraic stack, $x \in |\mathscr{X}|$.
 - If *G_x* is geometrically reductive? Étale-locally [*U*/GL_N] with *U* affine?
 - If *G_x* is not reductive, e.g., \mathbb{G}_a ? Étale-locally [*U*/GL_N] with *U* quasi-affine?
 - Non-reductive version of good moduli spaces (in progress)
 - Version for *X* analytic stack? (Differential-geometric version: Weinstein'00, Zung'06)

General version of the main theorem

Linearly fundamental stacks

Definition

A stack \mathscr{X} has the **resolution property** if every sheaf of finite type is the quotient of a vector bundle. Equivalently $\mathscr{X} = [q-affine/GL_N]$.

A stack \mathscr{X} is **linearly fundamental** if it has an affine good moduli space and the resolution property.

Examples and remarks

- If *G* is linearly reductive and embeddable in GL_N , then $\mathscr{X} = [affine/G]$ is linearly fundamental.
- If x ∈ |X| is a point with linearly reductive (geometric) stabilizer, then the residual gerbe G_x → X is linearly fundamental.
- A stack X is fundamental if it has an affine adequate moduli space and the resolution property. Equivalently X = [affine/GL_N].

Theorem (AHHR3)

Let \mathscr{X} be a quasi-separated algebraic stack with affine stabilizers and (FC)=(finitely many different characteristics). Let

- 1. $\mathscr{X}_0 \hookrightarrow \mathscr{X}$ be a closed substack,
- 2. \mathcal{W}_0 be a linearly fundamental stack, and
- 3. $f_0: \mathscr{W}_0 \to \mathscr{X}_0$ be an étale/smooth/syntomic morphism.
- 4. If f_0 is not smooth, assume that \mathscr{X}_0 has the resolution property.

Then there exists

- a linearly fundamental stack ${\mathscr W}$, and
- an étale/smooth/syntomic morphism $f: \mathcal{W} \to \mathcal{X}$ extending f_0 .

Without (FC) or other assumptions, can only conclude that \mathscr{W} is fundamental. If \mathscr{X} derived, can replace syntomic with quasi-smooth.

Nisnevich neighborhoods

Theorem

Let \mathscr{X} be a quasi-separated algebraic stack with affine stabilizers and (FC). Let $x \in |\mathscr{X}|$ be a (not nec. closed) point with linearly reductive stabilizer. Then there exists a linearly fundamental stack \mathscr{W} and an étale neighborhood $f : \mathscr{W} \to \mathscr{X}$ of \mathscr{G}_x .

To get a Nisnevich neighborhood we need splittings at every point.

Theorem

Let \mathscr{X} be a quasi-separated algebraic stack with nice (=extension of finite tame étale group by multiplicative type) stabilizers. Then there exists a Nisnevich covering $f : \prod_i [\operatorname{Spec}(A_i)/G_i] \to \mathscr{X}$ where $G_i \hookrightarrow \operatorname{GL}_N$ are nice (and defined over some affine scheme).

In both results, if $\Delta_{\mathscr{X}}$ is affine/separated, then *f* is affine/representable.

References

- J Alper, J Hall, D Rydh. A Luna étale slice theorem for algebraic stacks. Ann. of Math. 191(3) (2020), 675–738
- J Alper, J Hall, D Rydh. The étale local structure of algebraic stacks. *Preprint* (2019), arXiv:1912.06162
- J Alper, J Hall, D Halpern-Leistner, D Rydh. Artin algebraization for pairs with applications to the local structure of stacks and Ferrand pushouts. *Manuscript* (2020)
- J Alper, D Halpern-Leistner, J Heinloth. Existence of moduli spaces for algebraic stacks. *Preprint* (2018), arXiv:1812.01228
- D Edidin, D Rydh. Canonical reduction of stabilizers for Artin stacks with good moduli spaces. *Preprint* (2017), arXiv:1710.03220
- J Hall, D Rydh. Coherent Tannaka duality and algebraicity of Hom-stacks. *Algebra Number Theory* 13(7) (2019), 1633–1675