
Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Taming wild ramification with stacks

David Rydh

Department of Mathematics
Royal Institute of Technology

May 23, 2011 / New York City



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications.

In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.

Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.

2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.

3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.

4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.

5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.

6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Goals

• Understand the category of stacky modifications. In
particular, find a cofinal subcategory of “explicit” stacky
modifications — these I call stacky blow-ups.

• Obtain an explicit description of wild ramification using
stacks.

It turns out that these two objectives are essentially equivalent.
Stacky blow-ups are the key behind the following applications:

1 Étalification by stacky blow-ups.
2 Existence of compactifications of Deligne–Mumford stacks.
3 Abelianification of Deligne–Mumford stacks.
4 Stacky semi-stable reduction.
5 Simultaneous resolution of singularities.
6 Weak factorization conjecture for stacks.



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

State of the art

Good notion of stacky blow-ups in tame case (e.g., char. zero):

tame stacky blow-up = sequence of Kummer blow-ups
= sequence of blow-ups and root stacks

(see preprint “Compactification of tame Deligne–Mumford
stacks” on my web page)

In pure characteristic p, have defined Artin–Schreier stacks:

stacky blow-up = sequence of tame stacky blow-ups
and Artin–Schreier stacks

are almost sufficient for the mentioned applications but not
quite. Work in progress! (joint with A. Kresch)
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Stack of branched covers — side note

New interpretation of “classifying stacks of branched covers”
(from Jordan Ellenberg’s abstract)

Googled this — tenth hit: How to Make a Bonfire (eHow.com)

Stack two more logs on top, running them in the opposite
directions, and then fill the space between with long tree
branches. Cover the branches with more . . .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Stack of branched covers — side note

New interpretation of “classifying stacks of branched covers”
(from Jordan Ellenberg’s abstract)

Googled this

— tenth hit: How to Make a Bonfire (eHow.com)

Stack two more logs on top, running them in the opposite
directions, and then fill the space between with long tree
branches. Cover the branches with more . . .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Stack of branched covers — side note

New interpretation of “classifying stacks of branched covers”
(from Jordan Ellenberg’s abstract)

Googled this — tenth hit: How to Make a Bonfire (eHow.com)

Stack two more logs on top, running them in the opposite
directions, and then fill the space between with long tree
branches. Cover the branches with more . . .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Stack of branched covers — side note

New interpretation of “classifying stacks of branched covers”
(from Jordan Ellenberg’s abstract)

Googled this — tenth hit: How to Make a Bonfire (eHow.com)

Stack two more logs on top, running them in the opposite
directions, and then fill the space between with long tree
branches. Cover the branches with more . . .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Contents

1 Stacky modifications and blow-ups

2 Root stacks and Kummer blow-ups

3 Artin–Schreier stacks

4 Results and applications
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Outline

1 Stacky modifications and blow-ups
Terminology
Stacky modifications
Blow-ups

2 Root stacks and Kummer blow-ups

3 Artin–Schreier stacks

4 Results and applications
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Assumptions and terminology

• All stacks are assumed to be algebraic.

• All stacks are noetherian (or at least quasi-compact and
quasi-separated) and all morphisms are of finite type.

• A stack is quasi-Deligne–Mumford if it has finite stabilizer
groups.

• A Deligne–Mumford stack is tame if ∀x ∈ |X |,
char k(x) - | stab(x)|.
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Stacky modifications

• A stackpair (X , U) is a stack X together with an open
(dense) substack U ⊆ X .

• A stacky modification f : (X , U)→ (Y , U) is a proper
morphism f : X → Y such that f−1(U)→ U is an
isomorphism.

• A modification is a representable stacky modification.

We let Mod(Y , U) denote the category of modifications of
(Y , U) and Modstacky(Y , U) denote the 2-category of stacky
modifications.
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Examples of stacky modifications

Example
Let G be a finite group acting on a scheme X . Let U ⊂ X be the
locus where G acts freely. Then ([X/G], U/G)→ (X/G, U/G)
is a stacky modification.

X

Z/2Z
BZ/2Z

[X/G] X/G

Example
Let X be an orbifold with coarse moduli space Xcms. Then
X → Xcms is a stacky modification.
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Stacky modifications (cont.)

Lemma
Let U ⊆ X be open dense.
• Modstacky(X , U) is equivalent to a directed 1-category.
• Mod(X , U) is equivalent to a partially ordered set.

Remark: Every stacky modification π : X → Y factors as

X
stacky modification

// Xcms/Y
modification // Y
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Blow-ups

A modification p : (X , U)→ (Y , U) is a blow-up if there exists a
closed substack Z ↪→ Y such that

1 X = BlZ Y = ProjY
(⊕

k≥0 Ik
)

where Z = V (I).

2 Z ∩ U = ∅.

We let Bl(Y , U) ⊂ Mod(Y , U) denote the full subcategory (i.e.,
subset) of blow-ups.

In diagrams we will denote modifications with M and blow-ups
with B. Filled squares denote strict transforms.
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Properties of blow-ups

1 [Open extension]

Blow-ups can
be extended over an open
immersion Y ⊆ Y . [trivial]

(X , U)
B //

��

(Y , U) c: Z
open

��

(X , U)
B // (Y , U) c: Z
�

2 [Closed extension]

Blow-ups
can be extended over a closed
immersion Y0 ↪→ Y . [trivial]

(X0, U0)
B //

��

(Y0, U0) c: Z0
� _
closed

��

(X , U)
B // (Y , U) c: Z0

�

3 [Étale quasi-extension]

Blow-ups can be extended over
an étale morphism Y ′ → Y up to
a blow-up. [étale dévissage]

(X̃ , U ′)
B //

��

(X ′, U ′)
B // (Y ′, U ′)

étale
��

(Ỹ , U)
B // (Y , U)

�

4 [Strong cofinality]

Every
modification is dominated by a
blowup. [flatification]

(X̃ , U)
B //

B

44
(X , U)

M // (Y , U)



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Properties of blow-ups

1 [Open extension] Blow-ups can
be extended over an open
immersion Y ⊆ Y . [trivial]

(X , U)
B //

��

(Y , U) c: Z
open

��

(X , U)
B // (Y , U) c: Z
�

2 [Closed extension]

Blow-ups
can be extended over a closed
immersion Y0 ↪→ Y . [trivial]

(X0, U0)
B //

��

(Y0, U0) c: Z0
� _
closed

��

(X , U)
B // (Y , U) c: Z0

�

3 [Étale quasi-extension]

Blow-ups can be extended over
an étale morphism Y ′ → Y up to
a blow-up. [étale dévissage]

(X̃ , U ′)
B //

��

(X ′, U ′)
B // (Y ′, U ′)

étale
��
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Stacky blow-ups

The primary goal is to identify a cofinal subcategory of stacky
blow-ups

Blstacky(X , U) ⊂ Modstacky(X , U)

where the stacky blow-ups have properties analogous to those
of usual blow-ups (previous slide).

To accomplish this, stacky
blow-ups need to be sufficiently explicit.

• (Representable) modifications: ordinary blow-ups.
• Tame modifications: sequences of Kummer blow-ups.
• Wild modifications in characteristic p: sequences of

Kummer blow-ups and Artin–Schreier stacks (work in
progress).

• Wild modifications in mixed characteristic: sequences of
Kummer blow-ups and Kummer–Artin–Schreier stacks ???
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Generalized effective Cartier divisors

Recall that an effective Cartier divisor D ↪→ X can be described
as a line bundle L together with a regular section s ∈ Γ(X ,L).

Definition
A generalized effective Cartier divisor on X is a pair (L, s)
consisting of a line bundle L ∈ Pic(X ) together with an arbitrary
section s ∈ Γ(X ,L).

We let Div(X ) ↪→ Divgen(X ) denote (generalized) effective
Cartier divisors. If D = (L, s) ∈ Divgen(X ) we write L = O(D),
s = sD and rD = (Lr , sr ).

Fact

Divgen(X ) = Mor(X , [A1/Gm])
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Kummer extensions

Let K be a field. A Kummer extension K ′/K is an extension of
the form

K ′ = K [z]/zr − s

where s ∈ K ∗. They are in one-to-one correspondence with
H1(K , µr ) = K ∗/(K ∗)r via the Kummer sequence

1 // µr // Gm
r̂ // Gm // 1.

The easiest globalization of a Kummer extension is a uniform
cyclic covering π : X ′ → X specified by D ∈ Div(X ) and an r th
root of O(D) in Pic(X ). Globally X ′ ↪→ V(O(−D)1/r ). Locally,

X ′ = Spec(A[z]/zr − s)→ X = Spec(A)

so that generically we obtain a Kummer extension K (X ′)/K (X ).
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Root stacks

Definition
Let D ∈ Divgen(X ) and r ≥ 1 an integer. The root stack XD,r is
the X -stack defined as

Mor
(
T , XD,r

)
=
{

f : T → X , E ∈ Divgen(T ) | f ∗D = rE
}

Facts
1 XD,r is a tame Artin stack and Deligne–Mumford if r is

invertible along D.
2 π : XD,r → X is a flat tame stacky modification.
3 1

r D → D is a µr -gerbe. Here 1
r D ∈ Divgen(XD,r ) is the

tautological divisor such that r
(1

r D
)

= D.

4 If D = rE then
(
XD,r

)norm
= X norm.
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Root stacks (picture)

XD,r

1
r D

Bµr

X

D

Locally a ramified µr -cover:

X = Spec(A), D = {s = 0}, XD,r =
[
Spec(A[z]/zr − s)/µr

]
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Kummer blow-ups

Definition
Let Z ↪→ X be a closed subscheme and r ≥ 1 an integer. The
r th Kummer blow-up of Z is the stacky modification

BlZ ,r (X ) := BlZ (X )E ,r → BlZ (X )→ X .

where E is the exceptional divisor.

Explicitly, if Z = V (I), then we have that

BlZ ,r (X ) = ProjX (A), (stacky proj)

where A =
⊕

k∈N Idk/re = O
0
⊕ I

1
⊕ I

2
⊕ · · · ⊕ I

r
⊕ I2

r+1
⊕ I2

r+2
⊕ . . .

• If Z and X are regular, then so is BlZ ,r (X ).
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Tame stacky blow-ups

Definition
A tame stacky blow-up π : (X ′, U)→ (X , U) is a sequence of
Kummer blow-ups

X ′ = Xn → Xn−1 → · · · → X1 = X

where Xk+1 = BlZk ,rk Xk for some Zk ↪→ Xk disjoint from
U = Xk ×X U such that rk is invertible along Zk .

• A tame stacky blow-up is a tame stacky modification.
• X ′ has a Gn

m-torsor with total space quasi-affine over X .
• If x ′ ∈ |X ′| then stab(x ′) ↪→ stab(π(x))× A for an abelian

group A.
• If X is a toric stack, then any subdivision can be realized

as a tame stacky blow-up with smooth equivariant centers.
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Tame stacky blow-ups (cont.)

Tame stacky blow-ups have properties analogous to blow-ups.
In particular, they are cofinal among tame stacky modifications.

Proof of cofinality: tame étalification!

• A flat modification is an isomorphism.
• An étale stacky modification is an isomorphism.
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Generalized Abhyankar lemma

Theorem (Generalized Abhyankar lemma — smooth tame
étalification)
Let X be a regular scheme of characteristic zero. Let
π : X ′ → X be a finite covering that is generically étale. Then
there is a sequence of Kummer blow-ups with smooth centers
X̃ → X such that norm(X ′ ×X X̃ ) is étale over X̃ .

Proof.
Let D ↪→ X be the branch divisor. We can assume that D has
simple normal crossings. For every component Di of D, choose
ai ∈ N such that the ramification index eZ divides ai for every
component Z ↪→ X ′ above Di . Then
X̃ = XD1,a1 ×X XD2,a2 ×X · · · ×X XDn,an does the job (it is a
sequence of n smooth root stacks).



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Generalized Abhyankar lemma

Theorem (Generalized Abhyankar lemma — smooth tame
étalification)
Let X be a regular scheme of characteristic zero. Let
π : X ′ → X be a finite covering that is generically étale. Then
there is a sequence of Kummer blow-ups with smooth centers
X̃ → X such that norm(X ′ ×X X̃ ) is étale over X̃ .

Proof.
Let D ↪→ X be the branch divisor. We can assume that D has
simple normal crossings. For every component Di of D, choose
ai ∈ N such that the ramification index eZ divides ai for every
component Z ↪→ X ′ above Di . Then
X̃ = XD1,a1 ×X XD2,a2 ×X · · · ×X XDn,an does the job (it is a
sequence of n smooth root stacks).



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Outline

1 Stacky modifications and blow-ups

2 Root stacks and Kummer blow-ups

3 Artin–Schreier stacks
Artin–Schreier coverings
Artin–Schreier stacks
Higher rank Artin–Schreier stacks
Extension problem

4 Results and applications



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Artin–Schreier extensions

Let K be a field of characteristic p. An Artin–Schreier extension
K ′/K is an extension of the form

K ′ = K [z]/zp − z − a, (Z/pZ acts via z 7→ z + 1)

where a ∈ K .

They are in one-to-one correspondence with
H1(K , Z/pZ) = K/℘(K ) via the Artin–Schreier sequence

0 // Z/pZ // Ga
℘

// Ga // 0

where ℘(x) = xp − x is the Artin–Schreier operator.
Global versions of Artin–Schreier extensions are more subtle
than cyclic coverings. Let us first study the case where the
base is a DVR.
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Artin–Schreier covers of DVRs

Let X = Spec(A) be the spectrum of a DVR A with uniformizer
t ∈ A. Every separable extension K ′/K (X ) determines a finite
generically étale cover π : X ′ = normK ′ X → X .

• K ′/K (X ) Kummer (and π totally ramified):

X ′ = Spec(A[z]/zr − ut), u ∈ A∗.

• K ′/K (X ) Artin–Schreier (and π is ramified):

K ′ = K (X )[z]/zp − z − f
ta , f ∈ A∗, a ∈ Z+

type cover data: X ′ → X stack data: [X ′/G]→ X
Kummer r ∈ Z+, u ∈ A∗/(A∗)r r ∈ Z+

Artin–Schreier a ∈ Z+, f ∈ A/ta℘(A) a ∈ Z+, f ∈ A/ta

(a is the jump in the higher ramification series of π.)
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Artin–Schreier stacks

The data of an Artin–Schreier stack over X consists of:
• a ∈ Z+,
• D ∈ Divgen(X ),
• A non-vanishing section f ∈ Γ(aD,O(aD)|aD).

Such data is in one-to-one correspondence with morphisms
X → [P(a, 1)/Ga] — local coordinates given by (f : sD).
The corresponding Ga-bundle is given by δ(f ) in:

0 // OX
saD // O(aD) // O(aD)|aD // 0

Γ(X ,OX )
saD // Γ(X ,O(aD)) // Γ(aD,O(aD)|aD)

δ // H1(X ,OX )

f � // δ(f )
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Interlude: Universal root stack

One-to-one correspondence

D ∈ Divgen(X ) ←→ morphisms X → [A1/Gm].

We have a cartesian square

XD,r

1
r D

//

��

[A1/Gm]

r̂
��

X D // [A1/Gm]

�
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Universal Artin–Schreier stack

Recall that we had a one-to-one correspondence{
Data of an Artin–Schreier

stack (D, a, f ) on X

}
←→

{
morphisms

X → [P(a, 1)/Ga]

}
.

We have a cartesian square

XD,a,f
( 1

p D,a,v)
//

��

[P(a, 1)/Ga]

Ψ
��

(v : w)
_

��

X
(D,a,f )

// [P(a, 1)/Ga]

�

(vp − vwa(p−1) : wp)

where Ψ is the universal Artin–Schreier stack and

v ∈ Γ

(
a
p

D,O
(

a
p

D
) ∣∣∣

a
p D

)
is a non-vanishing function such that f = vp − vs(p−1)

a
p D .
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Properties of Artin–Schreier stacks

Let (D, a, f ) be the data of an Artin–Schreier stack over X :

π : XD,a,f → X

• Let U = X \ D. Then (XD,a,f , U)→ (X , U) is a flat, wild,
stacky modification.

• If p - a, then π| 1
p D : 1

p D → D is a trivial Z/pZ-gerbe.

• If p | a, then XD,a,f is not Deligne–Mumford but have variant
X DM

D,a,f that is Deligne–Mumford and XD,a,f = X DM
D,a,f ×X XD,p.

• If X and D are regular (plus extra condition if p | a) then
XD,a,f is regular.
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First problem

Problem: Wild ramification is more complicated than
Artin–Schreier stacks!
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Example of a restricted Artin–Schreier stack

Example

Consider the Artin–Schreier covering of Spec
(
Fp(
√

2)[t ]
)

zp − z −
√

2
t

= 0.

The Weil-restriction along Fp(
√

2)/Fp of the corresponding
Artin–Schreier stack is a complicated stacky modification
related to the twisted Artin–Schreier sequence:

0 // G // G2
a

℘′
// G2

a
// 0

where ℘′(x , y) = (xp − x , 2
p−1

2 yp − y) and G is a twisted
version of (Z/pZ)2 if

√
2 /∈ Fp.

Weil restrictions of Artin–Schreier stacks have ramification that
cannot be handled by Artin–Schreier stacks!



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Example of a restricted Artin–Schreier stack

Example

Consider the Artin–Schreier covering of Spec
(
Fp(
√

2)[t ]
)

zp − z −
√

2
t

= 0.

The Weil-restriction along Fp(
√

2)/Fp of the corresponding
Artin–Schreier stack is a complicated stacky modification
related to the twisted Artin–Schreier sequence:

0 // G // G2
a

℘′
// G2

a
// 0

where ℘′(x , y) = (xp − x , 2
p−1

2 yp − y) and G is a twisted
version of (Z/pZ)2 if

√
2 /∈ Fp.

Weil restrictions of Artin–Schreier stacks have ramification that
cannot be handled by Artin–Schreier stacks!



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Example of a restricted Artin–Schreier stack

Example

Consider the Artin–Schreier covering of Spec
(
Fp(
√

2)[t ]
)

zp − z −
√

2
t

= 0.

The Weil-restriction along Fp(
√

2)/Fp of the corresponding
Artin–Schreier stack is a complicated stacky modification
related to the twisted Artin–Schreier sequence:

0 // G // G2
a

℘′
// G2

a
// 0

where ℘′(x , y) = (xp − x , 2
p−1

2 yp − y) and G is a twisted
version of (Z/pZ)2 if

√
2 /∈ Fp.

Weil restrictions of Artin–Schreier stacks have ramification that
cannot be handled by Artin–Schreier stacks!



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

F -bundles

Definition
An F -bundle on X is a locally free sheaf E together with an
isomorphism ϕ : F ∗E → E . (F is Frobenius)

Example

Let f : X ′ → X be a finite flat morphism and let E = f∗OX ′ . The
geometric Frobenius gives a homomorphism FX ′/X : F ∗E → E .
This is an isomorphism if and only if f is étale.

An F -bundle (E , ϕ) gives a twisted Artin–Schreier sequence:

0 // G // V(E∨)
℘

// V(E∨) // 0

where ℘(x) = xp − x and x 7→ xp is defined by:

E∨ ϕ∨
// F ∗E∨ can // Symp(E∨)

G is a twisted version of (Z/pZ)rk E .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

F -bundles

Definition
An F -bundle on X is a locally free sheaf E together with an
isomorphism ϕ : F ∗E → E . (F is Frobenius)

Example

Let f : X ′ → X be a finite flat morphism and let E = f∗OX ′ . The
geometric Frobenius gives a homomorphism FX ′/X : F ∗E → E .
This is an isomorphism if and only if f is étale.

An F -bundle (E , ϕ) gives a twisted Artin–Schreier sequence:

0 // G // V(E∨)
℘

// V(E∨) // 0

where ℘(x) = xp − x and x 7→ xp is defined by:

E∨ ϕ∨
// F ∗E∨ can // Symp(E∨)

G is a twisted version of (Z/pZ)rk E .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

F -bundles

Definition
An F -bundle on X is a locally free sheaf E together with an
isomorphism ϕ : F ∗E → E . (F is Frobenius)

Example

Let f : X ′ → X be a finite flat morphism and let E = f∗OX ′ . The
geometric Frobenius gives a homomorphism FX ′/X : F ∗E → E .
This is an isomorphism if and only if f is étale.

An F -bundle (E , ϕ) gives a twisted Artin–Schreier sequence:

0 // G // V(E∨)
℘

// V(E∨) // 0

where ℘(x) = xp − x and x 7→ xp is defined by:

E∨ ϕ∨
// F ∗E∨ can // Symp(E∨)

G is a twisted version of (Z/pZ)rk E .



Stacky modifications Kummer blow-ups Artin–Schreier stacks Applications Summary

Higher rank Artin–Schreier stacks

The data of a higher rank Artin–Schreier stack over X
consists of:
• a ∈ Z+,
• D ∈ Divgen(X ),
• An F -bundle (E , ϕ) on aD,
• A non-vanishing section f ∈ Γ(aD, E ⊗ O(aD)|aD).

From this data we can construct an Artin–Schreier stack
π : XD,a,E,f → X .

• There is a canonical divisor 1
p D ↪→ XD,a,E,f such that

p 1
p D = π∗D.

• Let U = X \ D. Then (XD,a,E,f , U)→ (X , U) is a flat, wild,
stacky modification.

• If p - a, then π| 1
p D : 1

p D → D is a trivial G-gerbe.
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Second problem

Higher rank Artin–Schreier stacks are powerful enough to
capture all wild ramification. . .

. . . locally! Not flexible enough to always have the open
extension property!

• Is this related to the fact that the gerbe over D always is
trivial?

• Are quasi-Deligne–Mumford stacks needed? (Z/pZ
degenerates to αp, cf. work of S. Maugeais et al.)
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Example demonstrating second problem

Let X be a smooth projective surface (e.g., X = Bl0(P2)) with a
smooth (−1)-divisor D and let P ∈ D be a point. Assume we
are given an Artin–Schreier stack over X \ P with stacky
structure along D \ P. We would like to extend this over X ,
possibly after replacing (X , X \ P) with a stacky modification.
As Γ(D,OD(aD)) = 0 we need to blow-up P.

X

D
−1 P

X

D
−2

E
−1

Now Γ(D,OD(aD + abE)) 6= 0 for sufficiently large b but then
Γ(E ,OE(aD + abE)) = 0 instead.
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Outline

1 Stacky modifications and blow-ups

2 Root stacks and Kummer blow-ups

3 Artin–Schreier stacks

4 Results and applications
Flatification and étalification
Compactification
Application — Abelianification
Application — Fundamental group
Application — Semi-stable reduction
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Flatification

Theorem (Raynaud–Gruson ’71)

Let (Y , U) be a schemepair
and let f : X → Y be a morphism such that f |U is flat. Then ∃
blow-up (Ỹ , U)→ (Y , U) such that the strict transform
f̃ : X̃ → Ỹ is flat.

X̃ = Blf−1(Z )(X )

X

f
��

Ỹ = BlZ (Y )

Y

(Z ∩ U = ∅)

Proof.

Étale dévissage and Raynaud–Gruson’s theorem (alternatively
Riemann–Zariski spaces).
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Étalification

Theorem (R. ’09)

Let f : (X , U)→ (Y , V ) be a morphism of Deligne–Mumford
stacks such that f |V is étale and tamely ramified. Then ∃ a
tame stacky blow-up (Ỹ , V )→ (Y , V ) and a blow-up
(X̃ , U)→ (X ×Y Ỹ , U) such that f̃ : X̃ → Ỹ is étale.

X̃
B //

ef
""FFFFFFFFFF X ×Y Ỹ

Bst //

��

X

f
��

Ỹ
Bst // Y

�
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Proof.
Riemann–Zariski spaces and étale dévissage.
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Étalification

Conjecture

Let f : (X , U)→ (Y , V ) be a morphism of Deligne–Mumford
stacks such that f |V is étale /////////////////////and///////////////////////////////////////////////////////////////////////////////////////////tamely ramified. Then ∃ a
/////////////////////////////tame stacky blow-up (Ỹ , V )→ (Y , V ) and a blow-up
(X̃ , U)→ (X ×Y Ỹ , U) such that f̃ : X̃ → Ỹ is étale.

X̃
B //

ef
""FFFFFFFFFF X ×Y Ỹ

Bst //

��

X

f
��

Ỹ
Bst // Y

�

The proof works in the non-tame case subject to the existence
of a cofinal category of stacky blow-ups with good properties.
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Compactification of Deligne–Mumford stacks

Theorem (R. ’09)
Let f : X → S be a separated morphism between tame
Deligne–Mumford stacks.
• There is a factorization f = f ◦ j : X → X → S where j is an

open immersion and f is proper, tame and
Deligne–Mumford.

• Moreover, the stabilizer group of a point in the boundary
X \ X is a subgroup of the direct product of stabilizer
groups of points in the interior X and an abelian group.

Proof.
Riemann–Zariski spaces, tame stacky blow-ups and tame
étalification.
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Compactification of Deligne–Mumford stacks

Conjecture
Let f : X → S be a separated morphism between ////////////////////////////tame
Deligne–Mumford stacks.
• There is a factorization f = f ◦ j : X → X → S where j is an

open immersion and f is proper, /////////////////////////////tame and
Deligne–Mumford.

• Moreover, the stabilizer group of a point in the boundary
X \ X is a subgroup of the direct product of stabilizer
groups of points in the interior X and an abelian group.

Proof.
Riemann–Zariski spaces, ////////////////////////////tame stacky blow-ups and ////////////////////////////tame
étalification.
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Abelianification of Deligne–Mumford stacks

Theorem (R. ’09)

Let (X , U) be a tame Deligne–Mumford stackpair such that U
has abelian stabilizer groups. Then there is a tame stacky
blow-up (X ′, U)→ (X , U) such that X ′ has tame abelian
stabilizer groups.

Proof.
Tame compactification and tame étalification.

This was proved for smooth X by Reichstein and Youssin in
characteristic zero using resolutions of singularities (2000).
Granting embedded functorial resolution of singularities we can
also arrange so that (X ′, U)→ (X , U) is a tame stacky blow-up
with smooth centers.
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stabilizer groups.

Proof.
///////////////////////////////Tame compactification and /////////////////////////////tame étalification.

This was proved for smooth X by Reichstein and Youssin in
characteristic zero using resolutions of singularities (2000).
Granting embedded functorial resolution of singularities we can
also arrange so that (X ′, U)→ (X , U) is a /////////////////////////////tame stacky blow-up
with smooth centers.
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Fundamental group

Theorem (R. ’09)

Let (X , U) be a Deligne–Mumford stackpair. Then

lim−→
(eX ,U)→(X ,U)

tame stacky blow-up

FÉT(X̃ )→ FÉTtame(X , U)

is an equivalence of categories. In particular, if u ∈ |U| then we
have an isomorphism of pro-finite groups

πtame
1 (U; u)→ lim←−

(eX ,U)

π1(X̃ ; u).

Perhaps generalizes to étale homotopy theory a’la Artin–Mazur.
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Stacky semi-stable reduction

Theorem (de Jong ’97)

Let (S, U) be an integral and excellent schemepair.
Let π : C → S be a proper flat family of curves such that π|U is a
semi-stable family.
Then ∃ a generically étale alteration S′ → S and a modification
C′ → C ×S S′ such that π′ is a semi-stable family.

C′ M //

π′
##HHHHHHHHHH C ×S S′ A //

��

C

π
��

S′ A // S

�

NB! S′ → S need not be over U.
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Let (S, U) be an integral and excellent schemepair.
Let π : C → S be a proper flat family of curves such that π|U is a
semi-stable family.
Then ∃ a stacky modification S′ → S and a modification
C′ → C ×S S′ such that π′ is a semi-stable family.
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π
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�

NB! S′ → S need not be an isomorphism over U.
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Stacky semi-stable reduction

Theorem (Temkin ’10)

Let (S, U) be a normal schemepair.
Let π : C → S be a, not necessarily proper, flat family of curves
such that π|U is a semi-stable family.
Then ∃ a stacky modification S′ → S and a modification
C′ → C ×S S′ such that π′ is a semi-stable family.

C′ M //

π′
##HHHHHHHHHH C ×S S′ Mst //

��

C

π
��

S′ Mst // S

�

NB! S′ → S need not be an isomorphism over U.
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Stacky semi-stable reduction

Theorem (R. ’09)

Let (S, U) be a normal Deligne–Mumford stackpair.
Let π : C → S be a, not necessarily proper, flat family of curves
such that π|U is a semi-stable family.
Assume that over every valuation ring, semi-stable reduction
can be obtained after a tame extension.
Then ∃ a tame stacky blow-up (S′, U)→ (S, U) and a
modification (C′, π−1(U))→ (C ×S S′, π−1(U)) such that π′ is a
semi-stable family.

C′ M //

π′
##HHHHHHHHHH C ×S S′ Bst //

��

C

π
��

S′ Bst // S

�

Here S′ → S is an isomorphism over U.
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Stacky semi-stable reduction

Conjecture

Let (S, U) be a normal Deligne–Mumford stackpair.
Let π : C → S be a, not necessarily proper, flat family of curves
such that π|U is a semi-stable family.
//////////////////////////////////////////////Assume/////////////////////////that////////////////////////////over///////////////////////////////////every//////////////////////////////////////////////////////valuation/////////////////////////////ring,/////////////////////////////////////////////////////////////////////semi-stable////////////////////////////////////////////////////////reduction
/////////////////////can/////////////////be/////////////////////////////////////////////////////obtained/////////////////////////////after///////////a////////////////////////////////tame//////////////////////////////////////////////////////////////extension.
Then ∃ a /////////////////////////////tame stacky blow-up (S′, U)→ (S, U) and a
modification (C′, π−1(U))→ (C ×S S′, π−1(U)) such that π′ is a
semi-stable family.

C′ M //
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��

C

π
��

S′ Bst // S

�

Here S′ → S is an isomorphism over U.
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Summary

• Explicit (stacky) modifications, i.e., (stacky) blow-ups
have nice properties.

• Cofinality together with these properties gives étalification
and a bunch of applications (e.g., compactification of
DM-stacks).

• Kummer case (=tame case) well understood and
Artin–Schreier case partly understood.
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End of talk

The end
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Ramification vs stacky modifications

We say that X1 → X is “more ramified” than X2 → X if there is a
morphism X1 → X2 up to an étale morphism.

X ′
1

��

étale // X1

��

X2 // X

(“ramification type of X1 → X ” > “ramification type of X2 → X ”)

For every generically étale morphism X ′ → X there is a stacky
modification X̃ → X that is more ramified.

“Galois” closure 99K X ′′ Sd -torsor
//

finite
��

X̃ = [X ′′/Sd ]

Mst
��

X ′ finite // X

◦
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Toric stacks

Let N = Zd and let Σ ⊆ NQ be a rational simplicial fan.

Σ

To Σ we associate the toric variety XΣ.

Let ρ1, ρ2, . . . , ρn be the
rays in Σ and choose generators bi ∈ ρi ∩ N of ρi .

b1
b2

b3

b4

Σ

To the stacky fan Σ = (Σ, b) we associate a toric stack XΣ.
Toric stacks are always regular and tame.
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Toric stacks and root stacks

Let Di be the toric divisor corresponding to the ray ρi . Taking
the r th root stack of Di results in the toric stack with stacky fan
Σ
′
= {Σ′, b′} where Σ′ = Σ and b′j = bj for j 6= i and b′i = rbi :

b1
b2

b3

b4

Σ

2b1 = b′1 b′2

b′3
b′4

Σ
′

2d root stack of D1



Ramification vs stacky mod. Toric geometry Simul. desing. Tameness Quasi-projective stacks

Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:

b1
b2

b3

b4

Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ

X
Σ
′ X

Σ
′′
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Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ X
Σ
′

BlD1,2
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X
Σ
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:

b1
b2

b3

b4

Σ

b′1 b′2

b′3
b′4

Σ
′

b′′1 b′′2

b′′3
b′′4

b′′5

Σ
′′

XΣ X
Σ
′

BlD1,2
oo X

Σ
′′

BlD′1∩D′4,1
oo
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Weak factorization of toric stacks

In the language of toric stacks and stacky blow-ups we have:

Theorem (Włodarczyk ’98)

1 A proper birational map XΣ 99K X
Σ
′ between toric stacks

factors as a sequence of stacky blow-ups and stacky
blow-downs with smooth equivariant centers.

2 A proper birational map XΣ 99K XΣ′ between regular toric
varieties factors as a sequence of blow-ups and
blow-downs with smooth equivariant centers.
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Weak factorization

Theorem (Abramovich–Karu–Matsuki–Włodarczyk ’02, W ’03)
A proper birational map X 99K Y between regular varieties over
a field of characteristic zero, factors as a sequence of blow-ups
and blow-downs with smooth centers.

Conjecture (R.)
A proper birational map X 99K Y between regular DM-stacks
over a field of characteristic zero, factors as a sequence of
stacky blow-ups and stacky blow-downs with smooth
centers.
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Simultaneous desingularization

Let X be an variety and K ′/K (X ) a finite field extension. It is
well-known (example by Abhyankar) that it is sometimes
impossible to find a resolution of singularities X̃ → X such that
normK ′ X̃ also is regular. However:

Theorem
Let X be a regular variety and let K ′/K (X ) a finite separable
field extension. Assume that functorial embedded resolution of
singularities exists for X (e.g., X of characteristic zero) and that
K ′/K (X ) is tamely ramified over X. Then there exists a
sequence of Kummer blow-ups with smooth centers

Xn // Xn−1 // . . . // X1 // X

such that normK ′ Xn is a regular stack that is étale over Xn.
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Simultaneous desingularization

Theorem
Let X be a regular variety and let K ′/K (X ) a finite separable
field extension. Assume that functorial embedded resolution of
singularities exists for X (e.g., X of characteristic zero) and that
K ′/K (X ) is tamely ramified over X. Then there exists a
sequence of Kummer blow-ups with smooth centers

Xn // Xn−1 // . . . // X1 // X

such that normK ′ Xn is a regular stack that is étale over Xn.

Proof.
First blow-up so that the branch divisor has simple normal
crossings. Then the theorem easily follows from the
generalized Abhyankar lemma (use Zariski–Nagata purity).
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Simultaneous desingularization (wild case)

Conjecture

Let X be a regular variety and let K ′/K (X ) a finite separable
field extension. Assume that functorial embedded resolution of
singularities exists for X . Then there exists a sequence of
“stacky blow-ups with smooth centers”

Xn // Xn−1 // . . . // X1 // X

such that normK ′ Xn is a regular stack that is étale over Xn.
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Tame Deligne–Mumford stacks

Recall that:
• a Deligne–Mumford stack is tame if ∀x ∈ |X |,

char k(x) - | stab(x)|;

• a morphism of Deligne–Mumford stacks f : X → Y is tame
if every fiber is tame;

• (mixed characteristic) a morphism of Deligne–Mumford
stacks f : X → Y is strictly tame if ∀x ∈ |X |, the order
| stabY (x)| is invertible along f (x).

In characteristic zero, every stack is tame. In equal
characteristic “strictly tame” and “tame” coincide.
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Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:
1 X is quasi-projective.
2 ∃ open embedding X ⊆ X with X projective.
3 ∃ embedding X ↪→ Pn

k .

Definition (char. 0)

Let X/k be a separated DM-stack of finite type over a field k of
characteristic zero. The stack X is (quasi-)projective if:

1 X is a global quotient stack, i.e., X = [U/GLn] for some
algebraic space U.

2 The coarse moduli space Xcms is (quasi-)projective.
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Quasi-projective varieties and stacks (cont.)

Theorem (Kresch ’09)

Let X/k be a DM-stack of characteristic zero. The following are
equivalent:

1 X is quasi-projective.
2 ∃ an open embedding X ⊆ X into a projective stack.
3 ∃ an embedding X ↪→ P where P is a smooth projective

DM-stack.
Moreover, every smooth DM-stack with (quasi-)projective cms
is (quasi-)projective.
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