Local structure of stacks

Jarod Alper¹ Jack Hall¹ David Rydh²

¹Australian National University (ANU) Canberra, Australia

²Royal Institute of Technology (KTH) Stockholm, Sweden

AMS Summer Insitute in Algebraic Geometry Jul 24, 2015

Outline

3 Local structure of Artin stacks

Deligne–Mumford stacks

Equivalent conditions for a stack \mathscr{X} to be **Deligne–Mumford**:

- There is an étale atlas $p: U \to \mathscr{X}$.
- $\mathscr{X} = [R \rightrightarrows U]$ (étale groupoid).
- \mathscr{X} algebraic w/ finite (étale) stabilizer groups.

Orbifold description

If \mathscr{X} has a coarse moduli space *X*, then $\forall x \in |\mathscr{X}| = |X|$ exists:

- U affine
- $G_x = \operatorname{stab}(x)$ acting on U
- $\exists u \in U$ fix-point
- *f* étale, *f*(*u*) = *x*
- $stab(u) \rightarrow stab(x)$ isomorphism

Abramovich, Olsson and Vistoli 2008 give a similar description for tame Artin stacks with finite stabilizers (positive characteristic). Many moduli problems $(\mathcal{M}_{g,n}, \mathcal{A}_g, \ldots)$ are Deligne–Mumford (or at least have finite stabilizers) stacks. Not all though: moduli of vector bundles, moduli of singular curves, ... are **Artin stacks**.

Example

- $Aut(\mathbb{P}^1) = PGL_2$,
- Aut($\mathbb{P}^1, 0$) = $\mathbb{G}_a \rtimes \mathbb{G}_m$,
- Aut $(\mathbb{P}^1, 0, \infty) = \mathbb{G}_m$,
- Aut(nodal cubic curve) = \mathbb{G}_m ,
- Aut(cuspidal cubic curve) = \mathbb{G}_a .

GIT and good moduli spaces

Example (GIT, affine)

G reductive group (e.g., GL_n or SL_n) acting on affine scheme $U = \operatorname{Spec} A$. Then [U/G] is an Artin stack. GIT quotient is $U/\!\!/G = \operatorname{Spec} A^G$.

 $\pi \colon [U/G] \to U/\!\!/ G \quad \text{good/adequate moduli space}$

Example (GIT, projective)

G reductive acting linearly on projective (X, \mathcal{L}) . Then $X^{ss} \to X^{ss} /\!\!/ G := \operatorname{Proj} (\bigoplus H^0(X, (\mathcal{L}^n)^G)).$

 $\pi\colon [X^{ss}/G]\to X^{ss}/\!\!/G \quad \text{good/adequate moduli space}$

• π good moduli space if *G* linearly reductive (e.g., $G = (\mathbb{G}_m)^r$ or char. zero).

Closed points of $U/\!\!/ G$ correspond to closed orbits of U. If $\overline{Gx} \cap \overline{Gy} \neq \emptyset$, then $\pi(x) = \pi(y)$. There is a unique closed orbit in every fiber of $\pi: U \to U/\!\!/ G$.

Example

•
$$\mathscr{X} = [\mathbb{A}^1/\mathbb{G}_m]$$
 weights 1,

2
$$\mathscr{X} = [\mathbb{A}^2/\mathbb{G}_m^2]$$
 weights (1,0) and (0,1),

3
$$\mathscr{X} = [\mathbb{A}^2/\mathbb{G}_m]$$
 weights 1 and -1,

④ $\mathscr{X} = [C/\mathbb{G}_m]$ where *C* nodal cubic curve.

[pictures of $\mathscr{X} \to X = \mathscr{X}_{gms}$]

Local structure theorem

Theorem (Alper–Hall–R 2015)

 \mathscr{X} algebraic stack of finite type over $k = \overline{k}$ and $x \in \mathscr{X}(k)$ with

- Iinearly reductive stabilizer G_x
- 2 affine stabilizers G_y for all $y \in |\mathscr{X}|$

Then there exists:

- U affine
- $G_x = \operatorname{stab}(x)$ acting on U
- $\exists u \in U \text{ fix-point}$
- f étale, f(u) = x
- $stab(u) \rightarrow stab(x)$ isomorphism

$$\begin{bmatrix} U/G_x \end{bmatrix} \xrightarrow{f} \mathscr{X}$$
$$\bigcup_{\substack{\downarrow\\ U \not| \mid G_x}} U = U$$

We have the following more precise version when $\mathscr X$ is ${\bf smooth}.$

$$[T_x/G_x] \longleftarrow [U/G_x] \longrightarrow \mathscr{X}$$

This is analogous to Weinstein's conjecture/Zung's theorem in differential geometry.

- Moduli stack of semistable curves, Alper–Kresch 2014 (separated diagonal)
- Stack of log structures, Olsson 2003 (non-separated diagonal)

Outline of proof

Remarks

$$\mathfrak{T}_{x} = \mathbb{V}_{BG_{x}}(\mathcal{I}_{x}/\mathcal{I}_{x}^{2}).$$

- **3** Unobstructed b/c $H^n(BG_x, \mathcal{F}) = 0, \forall n > 0$ and \mathcal{T}_x smooth.
- **(** $\mathcal{W} = [U/G_x]$: algebraization is done relative to BG_x .

Linear reductivity: (2)+(3). Affine stabilizers: (4).

Outline for schemes

If $\mathscr{X} = X$ is a scheme: **(i)** $X_x^{[n]} = \operatorname{Spec} \mathcal{O}_{X,x}/\mathfrak{m}_x^{n+1}$ **(i)** $T_x = \operatorname{Spec} \operatorname{Sym}_k(\mathfrak{m}/\mathfrak{m}^2)$. **(i)** $k[x_1, x_2, \dots, x_n] = \operatorname{Sym}_k(\mathfrak{m}/\mathfrak{m}^2) \twoheadrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_x^n$ **(i)** $\widehat{\mathcal{O}}_{X,x} = \varprojlim_n \mathcal{O}_{X,x}/\mathfrak{m}^n$ **(i)** $\operatorname{Spec}(\widehat{\mathcal{O}}_{X,x}) \to X$ **(j)** $U \to X$ (for some open affine *U* containing *x*)

Question

What is
$$\widehat{\mathscr{X}_x} := \varinjlim_n \mathscr{X}_x^{[n]}$$
 for stacks?

Definition

A noetherian stack (\mathscr{X}, x) is **complete** if $\operatorname{Coh}(\mathscr{X}) \to \varprojlim_n \operatorname{Coh}(\mathscr{X}_x^{[n]})$ is an equivalence of categories.

- (A, \mathfrak{m}) complete local \implies (Spec A, x) complete
- (\mathscr{X}, x) complete $\implies \mathscr{X} = \varinjlim_n \mathscr{X}_x^{[n]}$ (Tannaka duality)

Theorem (Alper–Hall–R 2015)

If $\pi: \mathscr{X} \to X$ is a good moduli space and (X, x_0) complete local scheme, then (\mathscr{X}, x) is complete where x is the unique closed point above x_0 .

- $\mathscr{T} \to T$ good moduli space $\implies \widehat{\mathscr{T}} := \mathscr{T} \times_T \widehat{T}$
- $\exists \widehat{\mathscr{X}}_{x} \hookrightarrow \widehat{\mathscr{T}}$ (b/c $\widehat{\mathscr{T}}$ complete)

Question

Given a complete local stack $\overline{\mathscr{W}}$, when is $\overline{\mathscr{W}} \cong \widehat{\mathscr{W}}_w$ for some stack \mathscr{W} of finite type?

Theorem (Alper–Hall–R 2015)

Let \mathscr{X} be a stack of finite type, G linearly reductive group, and $(\overline{\mathscr{W}} = [\operatorname{Spec} \overline{A}/G], z)$ be a complete stack together with a **formally versal** map $\overline{\mathscr{W}} \to \mathscr{X}$. Then $\exists \mathscr{W} = [\operatorname{Spec} A/G] \to \mathscr{X}$ smooth and $\overline{\mathscr{W}} \cong \widehat{\mathscr{W}}_w$ over \mathscr{X} .

In step 5 in proof of main theorem: $\overline{\mathscr{W}} = \widehat{\mathscr{X}}_{x}$.

Proof.

Refined Artin–Rees lemma and Artin approximation.

Ten applications

- Luna's slice theorem for non-normal schemes and algebraic spaces
- Sumihiro's theorem on torus actions for non-normal schemes/alg.sp./DM-stacks
- BB-decompositions for torus actions on smooth DM-stacks, Oprea 2006
- Equivariant versal deformation spaces of sing. curves
- **5** Existence of completion and henselization: $\widehat{\mathscr{X}}_{x}, \mathscr{X}_{x}^{h}$.
- $\widehat{\mathscr{X}_x} \cong \widehat{\mathscr{Y}_y} \quad \Longleftrightarrow \quad (\mathscr{X}, x) \xleftarrow{\text{\'et}} (\mathscr{Z}, z) \xrightarrow{\text{\'et}} (\mathscr{Y}, y).$
- **Output** Compact generation of $D_{qc}(\mathscr{X})$.
- Oriterion for existence of good moduli space.
- **(9)** Drinfeld's results on \mathbb{G}_m -actions on algebraic spaces.
- Olobal quotients and resolution property.