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Deligne–Mumford stacks

Equivalent conditions for a stack X to be Deligne–Mumford:
There is an étale atlas p : U →X .
X = [R //

// U] (étale groupoid).
X algebraic w/ finite (étale) stabilizer groups.

Orbifold description
If X has a coarse moduli space X , then ∀x ∈ |X | = |X | exists:

U affine
Gx = stab(x) acting on U
∃u ∈ U fix-point
f étale, f (u) = x
stab(u)→ stab(x) isomorphism

[U/Gx ]
f //

��

X

��

U/Gx // X

�



Tame Artin stacks

Abramovich, Olsson and Vistoli 2008 give a similar description
for tame Artin stacks with finite stabilizers (positive
characteristic).



Artin stacks

Many moduli problems (Mg,n, Ag , . . . ) are Deligne–Mumford
(or at least have finite stabilizers) stacks. Not all though: moduli
of vector bundles, moduli of singular curves, . . . are Artin
stacks.

Example

Aut(P1) = PGL2,
Aut(P1,0) = Ga oGm,
Aut(P1,0,∞) = Gm,
Aut(nodal cubic curve) = Gm,
Aut(cuspidal cubic curve) = Ga.



GIT and good moduli spaces

Example (GIT, affine)
G reductive group (e.g., GLn or SLn) acting on affine scheme
U = Spec A. Then [U/G] is an Artin stack. GIT quotient is
U//G = Spec AG.

π : [U/G]→ U//G good/adequate moduli space

Example (GIT, projective)
G reductive acting linearly on projective (X ,L). Then
X ss → X ss//G := Proj

(⊕
H0(X , (Ln)G)

)
.

π : [X ss/G]→ X ss//G good/adequate moduli space

π good moduli space if G linearly reductive (e.g.,
G = (Gm)

r or char. zero).



GIT quotients as orbit spaces

Closed points of U//G correspond to closed orbits of U. If
Gx ∩Gy 6= ∅, then π(x) = π(y). There is a unique closed orbit
in every fiber of π : U → U//G.

Example
1 X = [A1/Gm] weights 1,
2 X = [A2/G2

m] weights (1,0) and (0,1),
3 X = [A2/Gm] weights 1 and -1,
4 X = [C/Gm] where C nodal cubic curve.

[pictures of X → X = Xgms]



Local structure theorem

Theorem (Alper–Hall–R 2015)

X algebraic stack of finite type over k = k and x ∈X (k) with
1 linearly reductive stabilizer Gx

2 affine stabilizers Gy for all y ∈ |X |

3 a good moduli space X → X

Then there exists:

U affine
Gx = stab(x) acting on U
∃u ∈ U fix-point
f étale, f (u) = x
stab(u)→ stab(x) isomorphism

[U/Gx ]
f //

��

X

U//Gx

Remark: Conditions 1+2 are necessary.



Local structure theorem (smooth version)

We have the following more precise version when X is
smooth.

[Tx/Gx ] [U/Gx ]oo //X

This is analogous to Weinstein’s conjecture/Zung’s theorem in
differential geometry.



Known cases

1 Moduli stack of semistable curves, Alper–Kresch 2014
(separated diagonal)

2 Stack of log structures, Olsson 2003 (non-separated
diagonal)



Outline of proof

0 BGx = X
[0]

x ↪→X
[1]

x ↪→ . . . ↪→X

1 Tx := [Tx/Gx ] smooth over k .

2 Lift X
[0]

x ↪→ Tx to closed immersions X
[n]

x ↪→ Tx (def thy)
3 Completions T̂x and X̂x ↪→ T̂x exist (complete stacks)
4 Lift X

[n]
x ↪→X to X̂x →X (Tannaka duality)

5 ∃W →X finite type such that Ŵw ∼= X̂x (equiv. Artin alg.)

Remarks
1 Tx = VBGx (Ix/I2

x ).
3 Unobstructed b/c Hn(BGx ,F) = 0, ∀n > 0 and Tx smooth.
5 W = [U/Gx ]: algebraization is done relative to BGx .

Linear reductivity: (2)+(3). Affine stabilizers: (4).



Outline for schemes

If X = X is a scheme:
0 X [n]

x = SpecOX ,x/m
n+1
x

1 Tx = Spec Symk (m/m
2).

2 k [x1, x2, . . . , xn] = Symk (m/m
2) � OX ,x/m

n
x

3 ÔX ,x = lim←−n
OX ,x/m

n

4 Spec(ÔX ,x)→ X
5 U → X (for some open affine U containing x)

Question

What is X̂x := lim−→n
X

[n]
x for stacks?



Complete stacks

Definition
A noetherian stack (X , x) is complete if
Coh(X )→ lim←−n

Coh(X [n]
x ) is an equivalence of categories.

(A,m) complete local =⇒ (Spec A, x) complete

(X , x) complete =⇒ X = lim−→n
X

[n]
x (Tannaka duality)

Theorem (Alper–Hall–R 2015)
If π : X → X is a good moduli space and (X , x0) complete local
scheme, then (X , x) is complete where x is the unique closed
point above x0.

T → T good moduli space =⇒ T̂ := T ×T T̂
∃X̂x ↪→ T̂ (b/c T̂ complete)



Equivariant Artin algebraization

Question

Given a complete local stack W , when is W ∼= Ŵw for some
stack W of finite type?

Theorem (Alper–Hall–R 2015)
Let X be a stack of finite type, G linearly reductive group, and
(W = [Spec A/G], z) be a complete stack together with a
formally versal map W →X . Then ∃W = [Spec A/G]→X

smooth and W ∼= Ŵw over X .

In step 5 in proof of main theorem: W = X̂x .

Proof.
Refined Artin–Rees lemma and Artin approximation.



Ten applications

1 Luna’s slice theorem for non-normal schemes and
algebraic spaces

2 Sumihiro’s theorem on torus actions for non-normal
schemes/alg.sp./DM-stacks

3 BB-decompositions for torus actions on smooth
DM-stacks, Oprea 2006

4 Equivariant versal deformation spaces of sing. curves
5 Existence of completion and henselization: X̂x , X h

x .

6 X̂x ∼= Ŷy ⇐⇒ (X , x) ét←− (Z , z) ét−→ (Y , y).
7 Compact generation of Dqc(X ).
8 Criterion for existence of good moduli space.
9 Drinfeld’s results on Gm-actions on algebraic spaces.

10 Global quotients and resolution property.
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