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Abstract. We introduce and develop the theory of stack-theoretic
weighted blow-ups which simultaneously generalize ordinary blow-ups,
root stacks and Cartierification of Q-Cartier divisors. A stack-theoretic
weighted blow-up in a weighted smooth center is locally described as the
toric stack corresponding to a star subdivision and is thus smooth. Such
stack-theoretic weighted blow-ups were recently used in the weighted
resolution of singularities in characteristic zero by Abramovich–Temkin–
W lodarczyk. We also show that the Kummer log blow-ups, introduced
by Abramovich–Temkin–W lodarczyk in their work on log resolution of
singularities, are stack-theoretic weighted blow-ups. Finally, we show
that GIT wall-crossings are given by stack-theoretic weighted blow-ups
and blow-downs in weighted smooth centers. DRAFT version with
2 missing sections.
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Introduction

Weighted blow-ups. Weighted blow-ups appear in the context of toric
varieties and, more generally, in locally toric situations. Given a fan Σ, a
cone σ and an interior lattice point v ∈ σ, we can form the star subdivision
Σ∗(v) which induces a map of toric varieties XΣ∗(v) → XΣ [CLS11, §11.1].

If σ is simplicial, then there is a unique way to write v =
∑

i dibi where
the bi are the primitive lattice points of the rays ρ1, ρ2, . . . , ρn of σ and
the di are positive integers. If D1, D2, . . . , Dn are the corresponding toric
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divisors, then XΣ∗(v) → XΣ is the weighted blow-up in the weighted center
1
d1
D1 ∩ · · · ∩ 1

dn
Dn. One way to make this precise is to take the usual blow-

up in the integral closure of the ideal I N
d1
D1

+ · · · + I N
dn
Dn

for a sufficiently

divisible integer N . If every cone containing σ is smooth, then the Di are
Cartier divisors and if all the multiplicities di are equal, then Σ∗(v)→ Σ is
the blow-up in the smooth center D1 ∩D2 ∩ · · · ∩Dn.

Similarly, given a sequence x1, x2, . . . , xn of functions and positive inte-

gers d1, d2, . . . , dn, the weighted blow-up in
(
x

1/d1
1 , x

1/d2
2 , . . . , x

1/dn
n

)
is the

blow-up in the integral closure of the ideal
(
x
N/d1
1 , x

N/d2
2 , . . . , x

N/dn
n

)
for suf-

ficiently divisible N .

Stack-theoretic weighted blow-ups. A simplicial toric variety is the
coarse space of a smooth toric stack [BCS05, FMN10]. Unless d1 = d2 =
· · · = dn, a weighted blow-up of a smooth toric variety is always singular.
Thus, if we want to study weighted blow-ups of smooth objects, we are lead
to consider stacks. The toric stack corresponding to the star subdivision
Σ∗(v) is the stack-theoretic weighted blow-up of XΣ(v) in the center given by
the Rees algebra

I• = (ID1 , d1) + (ID2 , d2) + · · ·+ (IDn , dn).

This Rees algebra is the smallest filtration (In) of OX containing IDi in
degree di. The stack-theoretic weighted blow-up in I• is the stack-theoretic
Proj

Proj(I•) =
[
SpecX(I•) r V (I+) / Gm

]
.

Similarly, the exceptional divisor is the stack-theoretic Proj of
⊕

n In+1/In
which is a weighted projective stack — a smooth stack whose coarse space
is a weighted projective space.

Rees algebras give a framework for stack-theoretic weighted blow-ups for
arbitrary algebraic stacks, without toric connections. This framework con-
tains:

(i) the usual blow-up in the ideal I, which corresponds to the usual
Rees algebra I• = (I, 1) =

⊕
n≥0 I

n;

(ii) the dth root stack in the Cartier divisor D, which corresponds to
the Rees algebra I• = (ID, d); and

(iii) the Cartierification of a Q-Cartier divisor D, which corresponds to
the Rees algebra I• = (ID, 1) + (I2D, 2) + · · · .

Whereas usual blow-ups modifies the space but does not introduce any stack-
iness, root stacks and Cartierifications leave the coarse space unmodified
and introduces stackiness in codimension 1 and codimension ≥ 2 respec-
tively. Toric stacks, with trivial generic stabilizer, can be obtained from
their coarse toric variety by taking Cartierifications and root stacks (Ex-
ample 2.3.8). Every stack-theoretic weighted blow-up is a usual blow-up
followed by a root stack up to normalization (Proposition 3.4.4).

The star subdivisions of toric stacks give rise to smooth weighted centers.
These are the Rees algebras that locally can be written as (x1, d1)+(x2, d2)+
· · ·+(xn, dn) where x1, x2, . . . , xn is a regular sequence and V (x1, x2, . . . , xn)
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is smooth. Smooth weighted centers can also be characterized as the Rees al-
gebras whose weighted normal cone Spec

(⊕
n≥0 In/In+1

)
is a twisted weighted

vector bundle and whose center V (I1) is smooth (§5).

Applications. Using weighted blow-ups instead of blow-ups (and root stacks)
gives more flexibility and significantly simplifies many algorithms. The
prominent example is weighted resolution of singularities by Abramovich,
Temkin and W lodarczyk [ATW19] which uses stack-theoretic weighted blow-
ups in weighted smooth centers and is far more effective than Hironaka’s
classical algorithm but at the expense of using smooth stacks.

Wall-crossing in GIT is described by a weighted blow-up followed by a
weighted blow-down. Except in the case where all degrees are equal, these
blow-ups are singular even if both sides of the wall are smooth. Using
stack-theoretic weighted blow-ups gives a description of the wall-crossing in
terms of smooth stacks and stack-theoretic weighted blow-ups in weighted
smooth centers (§7). This in turn gives an algorithm for weak factorization of
schemes and Deligne–Mumford stacks using stack-theoretic weighted blow-
ups that is much more effective than the classical one [Ryd15b]. Similarly, we
expect that the destackification algorithm of Bergh [Ber17] becomes simpler
and requires fewer blow-ups if stack-theoretic weighted blow-ups are used.

Overview. In Section 1, we study the stack-theoretic Proj. In particular
we describe its charts (§1.3) and its universal property (Proposition 1.5.1).

In Section 2, we give four examples of stack-theoretic Proj. The first
example is weighted projective stacks, which includes root stacks of line
bundles, and more generally twisted weighted affine and projective bundles.
The second example is root stacks of generalized Cartier divisors. The third
example is a construction making a Q-invertible sheaf into an invertible sheaf
(generalizing Cartierification). This was prominently used by Abramovich
and Hassett [AH10] to treat families of Q-Gorenstein varieties. The fourth
example is a stack-theoretic amplification of GIT quotients.

In Section 3 we introduce Rees algebras and stack-theoretic weighted
blow-ups (§3.1). In particular, we describe their universal property (Theo-
rem 3.2.9) and a simplified description in the normal case (Theorem 3.4.3).
We also describe how Rees algebras can be seen as certain valuative Q-ideals
using Zariski–Riemann spaces (§3.5).

In Section 4, we treat weighted normal cones. In particular, we describe
how the extended Rees algebra Iext

• gives rise to the deformation to the
weighted normal cone Spec(Iext

• ) (§4.3).
In Section 5, we consider stack-theoretic blow-ups in regular centers.

Firstly, we show that various notions of quasi-regularity coincide and are
equivalent to the weighted normal cone being a twisted weighted projective
stack (§5.1). Secondly, we show that when the weighted center is given by a
regular sequence, then the extended Rees algebra has a very simple descrip-
tion (Proposition 5.2.2). This gives simple equations for charts of weighted
blow-ups in regular sequences. Thirdly, we specialize to weighted blow-ups
in regular weighted centers (5.3). This is the case where I• is locally given
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by a regular sequence and the center V (I1) also is regular. Finally, we ex-
pand on some of the toric connections alluded to in the beginning of the
introduction (5.4).

In Section 6, we show that the Kummer log blow-ups of [ATW20, §5] that
were constructed by gluing partial coarsenings of stack quotients of ordinary
blow-ups by Galois actions, has a much neater description as stack-theoretic
weighted blow-ups. This was the initial motivation for writing this paper.

In Section 7, we show that a GIT wall-crossing between smooth Deligne–
Mumford stacks is given by a stack-theoretic weighted blow-up followed by
a stack-theoretic weighted blow-down, both in regular weighted centers.

Conventions. In general, we work over the base scheme Spec(Z) and occa-
sionally we write ∗ = Spec(Z) for the final object. The reader, if so inclined,
may instead work over a base scheme ∗ = S. The letter k denotes a field,
and unless otherwise mentioned, X denotes a scheme, or more generally, an
algebraic stack. By an ideal on X, we always mean a quasi-coherent, finitely
generated ideal on X.

Acknowledgments. We would like to thank Dan Abramovich, Michael
Temkin and Jaros law W lodarczyk for encouraging us to write this paper.
We would also like to thank Erik Paemurru for his useful comments.

1. Stack-theoretic Proj

1.1. Graded algebras and Gm-actions. Let R =
⊕

n≥0Rn be a quasi-
coherent graded OX -algebra. The grading on R corresponds to a coaction
of OX [t±1] on R:

β : R→ R⊗OX OX [t±1] = R[t±1]

mapping a section r of Rn to rtn, or equivalently, an action of Gm =
Spec(Z[t, t−1]) on SpecX(R):

α : Gm × SpecX(R)→ SpecX(R).

We will denote the ideal of R generated by
⊕

n≥1Rn by R+, and the dth

Veronese subalgebra
⊕

n≥0Rdn by R(d).

1.1.1. Stabilizers of the Gm-action. Let x : Spec(k)→ SpecX(R) be a point.
The stabilizer group scheme of x, denoted Gx, is a closed subgroup of Gm×
Spec(k), and sits in the cartesian diagram

Gx Spec(k)

Gm × SpecX(R) SpecX(R)×X SpecX(R).

(x,x)

(α,π2)

Thus, eitherGx = (µµµd)k = Spec
(
k[t]/(td−1)

)
for some d ≥ 1 orGx = (Gm)k.

Equivalently, the Cartier dual of Gx is either Z/dZ or Z.

Lemma 1.1.2. The Cartier dual of Gx is Z/(d : x /∈ V (Rd)), that is,

(i) Gx = Gm if and only if x ∈ V (R+), and
(ii) µµµd ⊂ Gx if and only if x ∈ V (Rn) for all n such that d - n.
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Proof. The question is local on X so we may assume that X is affine. Let
ϕx : R→ k be the corresponding ring homomorphism. Then µµµd ⊂ Gx if and
only if x is µµµd-equivariant, or equivalently, if and only if ϕx is Z/dZ-graded.
This happens precisely when the kernel of ϕx contains Rn for all n such that
d - n. �

In particular, V (R+) precisely contains the points fixed by Gm, whence
the action of Gm on SpecX(R) restricts to an action of Gm on W :=
SpecX(R) r V (R+). Moreover, if R is generated in degree 1, then this
action of Gm on W is free, i.e., Gx = {1} for all points x ∈ W . This is
because in that case (Rn : d - n) = R+ whenever d > 1.

1.2. Definition of the stack-theoretic Proj. Let W := SpecX(R) r
V (R+). The stack-theoretic Proj of R is the stack quotient

ProjX(R) := [W / Gm].

The Gm-equivariant map W → X, where X is equipped with the trivial
action, gives a map ProjX(R) → X × BGm. We let π : ProjX(R) → X
and q : ProjX(R) → BGm be the induced maps. In particular, we have a
cartesian square:

W ∗

ProjX(R) BGm

p

q

By Lemma 1.1.2, ProjX(R) is a tame algebraic stack [AOV08]. If the
orders of the stabilizer groups of the points of ProjX(R) are invertible on
X, then ProjX(R) is a Deligne–Mumford stack. In particular, this holds in
characteristic zero.

Since closed substacks of ProjX(R) correspond to Gm-invariant closed
subschemes of W , every closed substack of ProjX(R) can be written as
ProjX(R/I) for a homogeneous ideal I of R.

The stack-theoretic Proj also makes sense when X is an algebraic stack.
In this case SpecX(R) r V (R+) is an algebraic stack with an action of
Gm [Rom05].

Finally, note thatR is also anR0-algebra, so π factors through SpecX(R0),
and ProjX(R) → SpecX(R0) is the stack-theoretic Proj of R as an R0-
algebra. It is thus harmless to assume that R0 = OX .

1.3. Local charts. We can give local charts of ProjX(R) as follows. Let
fi ∈ R+ be homogeneous elements of degrees di ≥ 1, indexed by some index-

ing set I, such that R+ ⊂
√

(fi : i ∈ I). Then W = SpecX(R) r V (R+) =⋃
i∈I SpecX(Rfi), so we have an open covering ProjX(R) =

⋃
i∈I D+(fi),

where the ith chart is:

D+(fi) :=
[
SpecX(Rfi) / Gm

]
=
[
SpecX

(
Rfi/(fi − 1)

)
/ µµµdi

]
.(1.1)

The second equality follows from Lemma 1.3.1, with A = Z, a = di, R = Rfi
and r = fi. The intersection of charts works as usual: D+(fi) ∩D+(fj) =
D+(fifj) and the open inclusion D+(fi) ∩ D+(fj) ⊂ D+(fi) is given by
fj 6= 0.
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Lemma 1.3.1. Let A be a finitely generated abelian group, with correspond-
ing diagonalizable algebraic group D(A). Let R =

⊕
α∈ARα be an A-graded

algebra, and let r ∈ R be a homogeneous element of degree a ∈ A. Then
R/(r − 1) is an A/〈a〉-graded algebra and the A/〈a〉-graded homomorphism
R→ R/(r − 1) induces a morphism of algebraic stacks[(

Spec(R/(r − 1)
)
/ D

(
A/〈a〉

)] '−→ [Spec(R) / D(A)].

This is an isomorphism if r is invertible and a has infinite order.

Note that as A-graded modules R ' R/(r − 1)[r, r−1] but the algebra
structures do not coincide. Similarly, R/(r − 1) '

⊕
[α]∈A/〈a〉Rα but only

as A/〈a〉-graded modules.

Proof. We need to prove that the natural D(A)-equivariant map

Spec
(
R/(r − 1)

)
×D(A/〈a〉) D(A)→ Spec(R)

is an isomorphism. Let us elaborate on the left hand side. We have two
commuting actions on Spec

(
R/(r − 1)

)
×D(A) = Spec(R/(r − 1)[vA]) :=

Spec(R/(r − 1)[vα : α ∈ A]):

(i) the diagonal D(A/〈a〉)-action, given by (y, t) · s = (ys, s−1t), where
in the first factor the action corresponds to the induced A/〈a〉-
grading on R/(r − 1), and

(ii) the D(A)-action on the second factor given by (y, t) · s = (y, ts).

The D(A/〈a〉)-action is free with quotient Spec
(
R/(r−1)

)
×D(A/〈a〉)D(A) =

Spec(R◦) where R◦ is the degree 0 part of R/(r − 1)[vA] with the A/〈a〉-
grading. The D(A)-action endows R◦ with the following A-grading

R◦ =
⊕
α∈A

(
R/(r − 1)

)
[α]
vα.

The natural A-graded algebra homomorphism R → R◦ is thus an isomor-
phism. �

Remark 1.3.2. Let C be the full sub-category of algebraic stacks whose ob-
jects are Zariski-locally of the form [Spec(B) / D(A)] for a finitely generated
abelian group A with diagonalizable group scheme D(A), and an A-graded
ring B. Then we claim that C is closed under taking stacky Proj.

Indeed, let X = [Spec(B) / D(A)] as above, and let R be a quasi-coherent
graded OX -algebra, i.e., a quasi-coherent (A × Z)-graded B-algebra. For a
collection of (A×Z)-homogeneous elements fi ∈ R+ of degrees (ai, di) such

that R+ ⊂
√

(fi : i ∈ I), then ProjX(R) is covered by the charts D+(fi) =
[Spec(Rfi) / D(A× Z)] =

[
Spec(Rfi/(fi − 1)) / D

(
A× Z/〈(ai, di)〉

)]
.

1.4. Tautological line bundles O(d). Let as before p : W → ProjX(R)
denote the presentation. Pull-back of line bundles induces an isomorphism

ρ∗ : Pic
(
ProjX(R)

) '−→ PicGm(W )

where the right hand side denotes the Gm-equivariant Picard group of W .
Therefore, on the stack-theoretic Proj, there are tautological line bundles
O(d) for each d ∈ Z, arising from the shifts R(d), as well as natural maps
π∗Rd → O(d) induced from the multiplication maps R ⊗OX Rd → R(d).

Note that O(1) is invertible and that O(d) = O(1)⊗d.
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For each d ∈ Z, we let qd : ProjX(R) → BGm = [∗ / Gm] be the mor-
phism classifying the line bundle O(d). Then q1 = q, that is, O(1) corre-
sponds to the Gm-torsor W →ProjX(R). In particular, qd = (·)d ◦ q where
(·)d : BGm → BGm is induced by the dth power morphism. Equivalently,
qd : [W / Gm]→ [∗ / Gm] is induced by the structure morphism W → ∗ and
(·)d : Gm → Gm. Therefore, the morphism also fits in the following cartesian
square:

[W / µµµd] ∗

ProjX(R) BGm.
qd

1.5. The universal property of the stack-theoretic Proj. The stack-
theoretic Proj satisfies the following universal property:

Proposition 1.5.1 (Universal property). Let R be a graded quasi-coherent
OX-algebra. Given a scheme T with a morphism f : T → X, a lift of f to
ProjX(R) corresponds to the data of a line bundle L on T and a graded
homomorphism ϕ : f∗R→

⊕
n≥0 L ⊗n of sheaves of algebras on T such that

locally on T , ϕn : f∗Rn → L ⊗n is surjective for all sufficiently divisible n.

Proof. To lift f to ProjX(R), one needs to supply a Gm-torsor P over T
mapping Gm-equivariantly to W making the following diagram commute:

P W SpecX(R)

T X
f

Every line bundle L on T gives rise to a Gm-torsor P = SpecT
(⊕

n∈Z L ⊗n)
over T , and conversely any Gm-torsor P over T arises from some line bundle
L on T . Then a Gm-equivariant morphism

P = SpecT

⊕
n≥0

L ⊗n

r V

⊕
n≥1

L ⊗n

 −→ SpecX(R) r V (R+) = W

making the diagram above commute, is equivalent to a graded homomor-
phism ϕ : f∗R →

⊕
n≥0 L ⊗n such that

⊕
n≥1 L ⊗n ⊂

√
ϕ(f∗R+), i.e.,

L ⊂
√
ϕ(f∗R+). Given a trivialization t of L over an open subset U ⊂ T ,

there therefore exists a positive integer N such that the trivializing sec-
tion t⊗N of L ⊗N over U lifts to f∗RN . Thus, whenever N divides n,
ϕn : f∗Rn → L ⊗n is surjective over U . �

1.6. Properties of the stack-theoretic Proj and relations to the
usual Proj.

Proposition 1.6.1. Let R be a graded OX-algebra.

(i) ProjX(R) has finite diagonal relative to X. In particular, ProjX(R)
is separated over X.

(ii) If R is finitely generated, then ProjX(R) is proper over X.
(iii) The coarse space of ProjX(R), relative to X, is the usual ProjX(R).
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(iv) The morphism q1 : ProjX(R) → X × BGm corresponding to O(1)
is quasi-affine.

(v) The relative coarse space of qd : ProjX(R)→ X×BGm is ProjX(R(d)),

where R(d) =
⊕

n≥0Rdn.

(vi) If S is another graded OX-algebra and ϕ : R→ S is a graded homo-

morphism such that S+ ⊂
√
ϕ(R+), then there is an induced affine

morphism f : ProjX(S) → ProjX(R) such that f∗O(1) = O(1).
If R and S are of finite type and R0 → S0 is finite, then f is finite.

Proof. The questions are local on X, so we may assume that X = Spec(A)
is affine. For (i), we need to show that D+(fifj) → D+(fi) ×X D+(fj) is
finite. Over the tautological G2

m-torsor this map is Spec(Rfifj [u, u
−1]) →

Spec(Rfi) ×X Spec(Rfj ), where ϕ : Rfi ⊗A Rfj → Rfifj [u, u
−1] is given by

ϕ(r ⊗ s) = rsud if s ∈ Rd. It is finite since udi = ϕ(f−1
i ⊗ fi) and u−dj =

ϕ(fj ⊗ f−1
j ).

For (iii), note that ProjX(R) =
(
Spec(R) r V (R+)

)
/ Gm. Indeed,

the coarse space of D+(fi) = [Spec(Rfi) / Gm] is the spectrum of the
invariant ring of Rfi , that is, R(fi). For (ii), if R is finitely generated,
then ProjX(R) → X is proper. Coupled with the fact that the coarse
space morphism ProjS(R) → ProjX(R) is also proper, we conclude that
ProjX(R) is proper over X. For (iv), it suffices to note that the total
space of the Gm-bundle corresponding to O(1) is the quasi-affine scheme
W = Spec(R) r V (R+), which we saw in §1.4.

For (v), the question can be checked flat-locally, so we may pass to the
total space of the Gm-bundle corresponding to O(d), which is [W / µµµd] (by

§1.4 again), and which has coarse space Spec(R(d))rV (R
(d)
+ ). Consequently,

the relative coarse space of qd is [Spec(R(d))rV (R
(d)
+ ) / Gm] = ProjX(R(d)).

Finally, for (vi), we obtain an affine Gm-equivariant morphism Spec(S)→
Spec(R) such that the inverse image of V (R+) contains V (S+), whence we
obtain an affine morphism f : ProjX(S)→ProjX(R) over BGm. If R and
S are of finite type and R0 → S0 is finite, then both stacky Proj are proper
over Spec(R0), and hence f is finite (as f is proper and affine). �

Note that (vi) with S =
⊕

n≥0 L ⊗n retrieves the universal property

(Proposition 1.5.1). In the terminology of [AH10, §2.3], the stack-theoretic
Proj is a cyclotomic stack, i.e., has stabilizers µµµd (Lemma 1.1.2), which is
uniformized by O(1), i.e., q1 : ProjX(R)→ BGm is representable (Proposi-
tion 1.6.1(iv)).

Corollary 1.6.2. Let R be a graded OX-algebra. ProjX(R) coincides with
the usual ProjX(R) if and only if the action of Gm on W is free, in which
case O(1) is very ample relative to X. In particular, this happens when R
is generated in degree 1.

Proof. ProjX(R) coincides with the coarse space ProjX(R) if and only if
ProjX(R) is an algebraic space, if and only if the action of Gm on W is
free. �

Recall that the shift R(d) also gives rise to a coherent sheaf R̃(d) on
ProjX(R), but this sheaf is not always invertible if R is not generated in
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degree 1. There is a canonical morphism R̃(d)⊗ R̃(e)→ ˜R(d+ e) but this is
also not an isomorphism in general. If p : ProjX(R) → ProjX(R) denotes

the coarsening morphism, then R̃(d) = p∗O(d).

Proposition 1.6.3. Let R be a graded OX-algebra. If X is quasi-compact
and R is finitely generated, then R(d) =

⊕
n≥0Rdn is generated in degree 1

for all sufficiently divisible d. In particular, the usual ProjX(R) agrees with

the stack-theoretic ProjX(R(d)) and is the relative coarse space of qd.

Proof. This can be verified locally on X so we can assume that X = Spec(A)
is affine. If R has generators f1, . . . , fm with degrees d1, d2, . . . , dm, then we
claim that choosing d = m` suffices, where ` is the least common multiple
of the di. Indeed, for every n ≥ 0, Rn is generated by fa11 · · · famm with∑m

i=1 aidi = n. If n ≥ m`, then for each such generator fa11 · · · famm , there

exists some 1 ≤ i ≤ m such that fa11 · · · famm is divisible by f
`/di
i ∈ R`. This

shows that Rn = Rn−`R` whenever n ≥ m`, which implies the claim. �

Remark 1.6.4. If R has generators of degrees d1, d2, . . . , dm, then it is not
sufficient to take d as the least common multiple ` of d1, d2, . . . , dm in Propo-
sition 1.6.3.

1.7. Embeddings into the stack-theoretic Proj.

1.7.1. Morphisms into Proj. Let f : X → S be a qcqs morphism of algebraic
stacks and L a line bundle on X. If for every x ∈ X, there exists a
positive integer N such that f∗f∗L ⊗N → L ⊗N is surjective at x, then the
homomorphism

⊕
n≥0 f

∗f∗L ⊗n →
⊕

n≥0 L ⊗n induces, via the universal

property (Proposition 1.5.1), a morphism

(1.2) ϕL : X →ProjS

(⊕
n≥0

f∗L
⊗n
)

such that ϕ∗L O(1) = L . In particular, if L is uniformizing relative to S,
that is, the induced morphism X → S × BGm is representable, then so is
the induced morphism ϕL : X →ProjS(

⊕
n≥0 f∗L

⊗n).

Setup 1.7.2. Let f : X → S be a morphism of quasi-compact algebraic
stacks with finite diagonal. Then there is a relative coarse space p : X →
Xcs/S and fcs : Xcs/S → S is separated. Let L be a line bundle on X. Then

for sufficiently divisible k, the line bundle L ⊗k descends to Xcs/S [Ryd15a].

To be precise, p∗L ⊗k is a line bundle and p∗p∗L ⊗k → L ⊗k is an isomor-
phism.

Definition 1.7.3 (Ampleness). In Setup 1.7.2, we say that L is ample
relative to S if the line bundle p∗L ⊗k is ample relative to S.

Lemma 1.7.4. Keep the assumptions of Setup 1.7.2. If S is an affine
scheme, then the following statements are equivalent:

(i) L is ample.
(ii) The open subsets Xf , for f ∈ Γ(X,L ⊗d) where d is a positive

integer, form a basis for the topology on X.
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(iii) There exists a positive integer d and finitely many sections fi ∈
Γ(X,L ⊗d) such that (Xcs)fi is affine for all i, and such that X =⋃
iXfi.

(iv) There exists a positive integer d and finitely many sections fi ∈
Γ(X,L ⊗d) such that (Xcs)fi is quasi-affine for all i, and such that
X =

⋃
iXfi.

This can be verified via passage to the coarse space Xcs, and applying
the analogous classical result for p∗L ⊗k. The following example shows that
some caution is warranted though.

Remark 1.7.5. Retain the situation of Setup 1.7.2. If L is ample, and F
is a quasi-coherent OX -module of finite type, there does not always exist a
positive integer n0 such that F ⊗OX L ⊗n is globally generated over S for
all n ≥ n0. It is also not true that F ⊗OX L ⊗n is globally generated over S
for sufficiently divisible n. For example, take X = Bµµµd, L = OX , and F to
be the universal torsion line bundle on X. Then F ⊗OX L ⊗n = F for every
integer n, and F has no global sections.

Proposition 1.7.6. In Setup 1.7.2, the following holds.

(i) If L is ample, then f∗f∗L ⊗N → L ⊗N is surjective for all suffi-
ciently divisible N and thus induces a morphism

ϕL : X →ProjS
(⊕

n≥0 f∗L
⊗n)

as in (1.2).
(ii) If L is ample and uniformizing, the induced morphism ϕL is a

quasi-compact, schematically dominant, open immersion (so in par-
ticular, quasi-affine). If in addition f is proper, this morphism is
an isomorphism.

(iii) Assume there exists a positive integer N such that f∗f∗L ⊗N →
L ⊗N is surjective. If the induced morphism ϕL is quasi-affine,
then L is ample and uniformizing.

Proof. For (i), denote the induced morphism Xcs/S → S by fcs. Fix a pos-

itive integer k such that L ⊗k descends to Xcs/S . Since p∗L ⊗k is ample

over S, there exists a positive integer N such that for all n ≥ N , p∗L ⊗kn =
(p∗L ⊗k)⊗n is globally generated over S, that is, f∗cs(fcs)∗p∗L ⊗kn → p∗L ⊗kn

is surjective. Applying p∗ and noting f = fcs ◦ p, we see that f∗f∗L ⊗kn →
p∗p∗L ⊗kn '−→ L ⊗kn is surjective, as desired.

For (ii), the question is local and so we may assume that S = Spec(A)
is affine. Set R =

⊕
n≥0 Γ(X,L ⊗n). Since L is ample, we may ap-

ply Lemma 1.7.4(iii) above and thus X =
⋃
iXfi for some homogeneous

fi ∈ R with (Xfi)cs affine. Since each [Spec(Rfi) / Gm] is an open sub-
stack of ProjX(R), it suffices to prove that the induced morphism Xfi →
[Spec(Rfi) / Gm] is an isomorphism for every i. Therefore, we set up the
following diagram (where the reader should first disregard the dotted arrows
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and fill them in as the argument progresses):

(1.3)

Z ′ SpecXfi

(⊕
n∈Z L ⊗n) Spec(Rfi) S

Z Xfi

[
Spec(Rfi) / Gm

]
BGm

(Xcs)fi Spec
(
(Rfi)0

)

finite

affine

integral

finite
ϕL |Xfi

Since Xfi has finite diagonal over S (by assumption of Setup 1.7.2), there
exists a finite cover Z → Xfi from a scheme Z. Then Z is affine, since the
composition Z → Xfi → (Xcs)fi is integral, and (Xcs)fi is affine. Set

Z ′ := Z ×Xfi SpecXfi

(⊕
n∈Z L ⊗n) ,

which is also an affine scheme. Since L is uniformizing, Xfi is representable
over BGm, so that SpecXfi

(⊕
n∈Z L ⊗n) is an algebraic space (over S).

Moreover, it admits a finite surjection from the affine scheme Z ′, so Cheval-
ley’s Theorem implies that it is also an affine scheme. Hence, the morphism
SpecXfi

(⊕
n∈Z L ⊗n)→ Spec(Rfi), which induces an isomorphism on global

sections

Rfi =

(⊕
n≥0

Γ(X,L ⊗n)

)
fi

'−−→
⊕
n∈Z

Γ(Xfi ,L
⊗n),(1.4)

must be an isomorphism, and hence so is Xfi → [Spec(Rfi) / Gm], as
desired.

For (iii), the question is again local, so we assume that S = Spec(A) is
affine. Evidently, ϕL is representable, whence so is the morphismX → BGm

induced by L . Thus, L is uniformizing. To show that L is ample, let d
be a positive integer, and let f ∈ Γ(X,L ⊗d). Then ϕL |Xf : Xf → D+(f) is
quasi-affine, whence (Xcs)f is quasi-affine over Spec ((Rf )0). In particular,
(iii′) of Lemma 1.7.4 is satisfied, so L is ample. �

Remark 1.7.7. Let f : X → S and L be as §1.7.1. We warn the reader that
R =

⊕
n≥0 f∗L

⊗n is in general not finitely generated, so the corresponding
stack-theoretic Proj is in general not proper over S. However, if S is qcqs,
then R is the union of its finitely generated, quasi-coherent graded OS-
subalgebras Rλ. Since X is quasi-compact, there exists an index λ0 such that
for all λ ≥ λ0, the composition f∗(Rλ)n → f∗f∗L ⊗n → L ⊗n is surjective
for all sufficiently divisible n. For λ ≥ λ0, we get a morphism ϕλ : X →
ProjS(Rλ), where the stack-theoretic Proj is now proper over S, and such
that ϕλ factors (rationally) through ϕL : X →ProjS(R).

Now assume that Setup 1.7.2 holds, assume that L is ample and uni-
formizing, and that X is of finite type over S. By Proposition 1.7.6(ii),
ϕL : X →ProjS(R) is an open immersion. In this case, we will now show
that, after increasing λ0, the induced morphism ϕλ : X →ProjS(Rλ) is an
immersion for every λ ≥ λ0.

This is a local question on S, so we may assume that S = Spec(A) is affine
and that R =

⊕
n≥0 f∗L

⊗n =
⊕

n≥0 Γ(X,L ⊗n). We apply Lemma 1.7.4:
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there exists a positive integer d, as well as finitely many fi ∈ Γ(X,L ⊗d) such
that X =

⋃
iXfi and each (Xcs)fi is affine (and each ϕL |Xfi : Xfi → D+(fi)

is an isomorphism).
Since X is of finite type over S, the OS-algebra Rfi '

⊕
n∈Z Γ(Xfi ,L

⊗n)
is generated by finitely many homogeneous elements bij . Using the iso-
morphism in (1.4), we may, for a positive integer m, lift each bij to some
sij
fmi
∈ (Rfi)deg(bij) for some sij ∈ Γ(X,L ⊗md+deg(bij)). Thus, for sufficiently

large λ ≥ λ0, there exist homogeneous elements sλij and fλi of Rλ which re-
spectively lift each sij and each fi to Rλ. Therefore, for all such λ, ϕλ maps

each Xfi into D+(fλi ) ⊂ ProjS(Rλ). To complete the proof, it suffices to
show each ϕλ|Xfi is a closed immersion. To this end, recall each ϕλ|Xfi fits
into the following cartesian square:

(1.5)

SpecXfi

(⊕
n∈Z L ⊗n) SpecS

(
(Rλ)fλi

)

Xfi D+(fλi )
ϕλ|Xfi

and it suffices to show that the top row is a closed immersion. Since each
Xfi has finite diagonal and each (Xfi)cs is affine, we may argue, as in (1.3),
that the algebraic space SpecXfi

(⊕
n∈Z L ⊗n) is an affine scheme. Then the

top row of (1.5) is a morphism of affine schemes, which induces a surjection
on global sections

(Rλ)fλi
� Rfi

'−→
⊕
n∈Z

Γ(Xfi ,L
⊗n),

and hence is necessarily a closed immersion, as desired.

1.8. Sequences of stack-theoretic Proj. A sequence of stack-theoretic
Proj is not a stack-theoretic Proj because it need not be cyclotomic: the sta-
bilizers are subgroups of Gn

m, not of Gm. Instead of a single uniformizing line
bundle L , we have a uniformizing collection of line bundles L1,L2, . . . ,Ln

— the corresponding map to BGn
m is representable. In fact, this collection is

even generating in the sense that, locally on X, every quasi-coherent sheaf
on X ′ of finite type is a quotient of a direct sum of line bundles of the form
L ⊗d1

1 ⊗ · · · ⊗L ⊗dn
n , di ∈ Z. Equivalently, the corresponding map to BGn

m

is quasi-affine [Gro17, Cor. 6.7]. That is, X ′ is divisorial.

Proposition 1.8.1. Let X ′ := Xn → Xn−1 → · · · → X1 → X be a sequence
of n stack-theoretic Proj. Let OXi(1) ∈ Pic(Xi) denote the corresponding
ample uniformizing line bundle and let Li be the pull-back of OXi(1) to X ′.

(i) (L1,L2, . . . ,Ln) is generating, that is, the induced morphism X ′ →
BGn

m is quasi-affine.

(ii) If X is quasi-compact, then the line bundle L ⊗N1
1 ⊗L ⊗N2

2 ⊗ · · · ⊗
L ⊗Nn
N is ample relative to X for every N1 � N2 � · · · � Nn.

Proof. The first part is immediate and the second part follows from the
following lemma and the classical result for compositions of projective mor-
phisms [EGAII, Prop. 4.6.13 (ii)]. �
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Lemma 1.8.2. Let f : X → Y be a qcqs morphism of algebraic stacks with
finite inertia and let fcs : Xcs → Ycs be the induced morphism on coarse
spaces. Let L be an invertible sheaf on Xcs. If L |X is f -ample, then L is
fcs-ample.

Proof. By definition of ample, we may replace X with Xcs/Y so that f
becomes representable. The question is also local on Ycs so we may assume
that Ycs is affine and that Y admits a finite flat presentation Y ′ → Y of
constant rank d. Let X ′ = X ×Y Y ′ and note that Y ′ → Ycs and X ′ →
Xcs are affine. Let x ∈ |X| be a point. We need to find an affine open
neighborhood Xg of x for some g ∈ Γ(X,Lm) such that (Xg)cs is affine, or
equivalently, such that X ′g is affine.

Consider the preimage Z ⊂ |X ′| of x. Since Z is finite and L |X′ is ample,
there exists a section f ∈ Γ(X ′,L n) such that Z ⊂ X ′f [EGAII, Cor. 4.5.4].

The norm of f along X ′ → X gives a section g ∈ Γ(X,L dn) such that
Z ⊂ X ′g ⊂ X ′f and X ′g is affine, cf. [EGAII, Cor. 6.5.7]. �

Remark 1.8.3. One can also describe the iterated stack-theoretic Proj f : X ′ →
X as a single Nn-graded stack-theoretic Proj. When X is noetherian, we

can take R =
⊕

d1,d2,...,dn≥0 f∗

(
L ⊗d1

1 ⊗ · · · ⊗L ⊗dn
n

)
. When X is merely

quasi-compact and quasi-separated, we can replace R by a sufficiently large
subalgebra of finite type.

2. Examples of stack-theoretic Proj

In this section we give four examples of stack-theoretic Proj: (1) twisted
weighted projective stacks, which include root stacks of line bundles, (2) root
stacks of generalized Cartier divisors, (3) stacks that make Q-invertible
sheaves invertible, and (4) stack-theoretic amplifications of GIT quotients.

2.1. Weighted projective stacks, root stacks of line bundles and
twisted weighted vector bundles.

Example 2.1.1 (Weighted projective stacks [AH10, §2.1]). An important
class of examples of stack-theoretic Proj is weighted projective stacks. Given
weights d0, d1, . . . , dn ∈ Z≥1 we have the smooth stack

P(d0, d1, . . . , dn) = ProjX
(
OX [x0, x1, . . . , xn]

)
where the degree of xi is di. The generic stabilizer is µµµd, where d =
gcd(d0, d1, . . . , dn), and the coarse space is the usual, singular, weighted
projective space P(d0, d1, d2, . . . , dn). Slightly more general, given vector
bundles E1,E2, . . . ,Er on X and weights d1, . . . , dr ∈ Z≥1, the weighted (or
graded) vector bundle E = E1(−d1)⊕ · · · ⊕ Er(−dr) gives the smooth stack

P(E ) = P
(
E1(−d1)⊕ · · · ⊕ Er(−dr)

)
:= ProjX

(
r⊗
i=1

SymOX

(
Ei(−di)

))
.

The universal property of this stack is as follows: given a morphism f : T →
X, a lift to P(E ) corresponds to the data of a line bundle L on T and
homomorphisms ϕi : f

∗Ei → L ⊗di such that locally on T at least one of the
ϕi is surjective. An isomorphism between two lifts (L , {ϕi}) and (L ′, {ϕ′i})
is an isomorphism L ' L ′ compatible with the ϕi and ϕ′i.
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Example 2.1.2 (Root stacks of line bundles [Cad07, Def. 2.2.6]). A special
case of the previous example is roots of line bundles. Given a line bundle
E on X and a positive integer d, the stack P

(
E (−d)

)
parameterizes, for

a morphism of schemes f : T → X, a line bundle L on T together with

an isomorphism f∗E
'−→ L ⊗d. The corresponding graded algebra is R =

SymOX

(
E (−d)

)
. We call the corresponding stack-theoretic Proj the dth root

stack of the line bundle E , and denote it by X(E ,d) or X
(
d
√

E
)
.

We will need the following generalization of weighted vector bundles:

Definition 2.1.3. A twisted weighted vector bundle on X is a smooth affine
morphism E → X with a Gm-action such that E is smooth-locally Gm-
equivariantly isomorphic toX×An where Gm acts linearly with some weights
d1, d2, . . . , dn ∈ Z.

The morphism E → X is called a Gm-fibration in [BB73, §3]. Equiva-
lently, E = SpecX(R) where R is a quasi-coherent graded OX -algebra that
smooth-locally looks like the symmetric algebra over OX of a graded vector
bundle.

We will only need the case where all weights are positive (called fully
definite in [BB73, §2]). If X is a scheme and all weights are positive, then
smooth-locally can be replaced with Zariski-locally, see Remark 2.1.8.

Example 2.1.4 (Bia lynicki-Birula decomposition [BB73, Thm. 4.1]). Let X
be a smooth quasi-projective variety with an action of Gm. Let F ⊂ XGm be
a connected component of the fixed locus. Let F+ = {x ∈ X : limt→0 t.x ∈
F}. Then F and F+ are Gm-equivariant, F is closed, F+ is locally closed,
F and F+ are smooth, and the natural map F+ → F is a twisted weighted
vector bundle with strictly positive weights.

Definition 2.1.5. A twisted weighted projective stack over X is the stack-
theoretic Proj of a graded algebra corresponding to a twisted weighted bun-
dle on X with strictly positive weights.

In what follows, we always assume that E = SpecX(R) is a twisted
weighted bundle over a connected scheme X. Then there exist a Zariski
open cover Ui of X, weights d = (d1 < d2 < · · · < dr), and dimensions
n = (n1, n2, . . . , nr) ∈ Z≥1, such that for every i,

R|Ui ' Sym

(
r⊕
i=1

O⊕niUi
(−di)

)
=

r⊗
i=1

Sym
(
O⊕niUi

(−di)
)
.

2.1.6. An example. For a non-trivial example of a twisted weighted bundle,
let us consider the weights d = (d1, d2, d3) = (1, 2, 4) and the dimensions
n = (n1, n2, n3) = (1, 1, 1). Over each Ui, we have a graded isomorphism:

αi : R|Ui
'−→ OUi [xi, yi, zi],

where xi has weight 1, yi has weight 2, and zi has weight 4. Over pairwise
intersections Uij := Ui ∩ Uj , we then have the graded isomorphism on Uij :

αij = αj |Uij ◦ αi|
−1
Uij

: OUij [xi, yi, zi]
'−→ R|Uij

'−→ OUij [xj , yj , zj ].
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By considering the linear relations among the weights 1, 2, and 4, we deduce
that these αij ’s have the following form in general:

xi 7→ aij · xj
yi 7→ bij ·

(
yj + dij · x2

j

)
zi 7→ cij ·

(
zj + eij · x4

j + fij · x2
jyj + gij · y2

j

)
where aij , bij , cij ∈ Γ(Uij ,O

×
Uij

) and dij , eij , fij , gij ∈ Γ(Uij ,OUij ). Note that

the data dij , eij , fij , gij are precisely the “twists” in the twisted weighted
bundle R. Over triple intersections Uijk := Ui ∩ Uj ∩ Uk, we have the
following cocycle conditions:

aik = aijajk

bik = bijbjk

cik = cijcjk

dik = djk +
a2
jk

bjk
dijeikfik

gik

 =

ejkfjk
gjk

+
1

cjk

a4
jk a2

jkbjk · djk b2jk · d2
jk

0 a2
jkbjk · 1 b2jk · 2djk

0 0 b2jk · 1

eijfij
gij


Therefore, twisted weighted bundles R on X with weights d = (1, 2, 4) and
dimensions n = (1, 1, 1) are globally characterized by the Čech cocycles in
Ȟ1
(
X,G

)
, where

G =
(
Gm × ((Gm ×Gm) nGa)

)
nG3

a,

and the semidirect product are given by the actions:

(i) Gm ×Gm → Gm → Aut(Ga) where (a, b) 7→ a2

b ,

(ii) Gm × ((Gm ×Gm) nGa)→ GL3 → Aut(G3
a) where

(c, a, b, d) 7−→ 1

c

a4 a2bd b2d2

0 a2b 2b2d
0 0 b2

 .

2.1.7. General description of twisted weighted bundles. In general, twisted
weighted bundles R on X with weights d and dimensions n are globally
characterized by their respective Čech cocycles in Ȟ1(X,Gd,n), where the
group Gd,n can be described as follows. If all weights are equal, that is,
r = 1, then Gd1,n1 = GLn1 and twisted weighted vector bundles are just
weighted vector bundles. If not, that is r > 1, set d′ = (d1, . . . , dr−1),
n′ = (n1, . . . , nr−1), and Gd,n is a semidirect product of the form

Gd,n =
(
GLnr ×Gd′,n′

)
nGnrNr

a ,

where Nr is the dimension of the dr
th degree piece of a graded polynomial

algebra with free variables {xi,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ ni}, where xi,j is
given weight di. That is,

Nr =
∑

dr=
∑
mi≥0midi

r−1∏
i=0

(
mi + ni − 1

mi

)
.
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Remark 2.1.8. From the description of Gd,n we obtain an exact sequence

1 −→ Ud,n −→ Gd,n −→ GLn −→ 1

where Ud,n is a smooth connected unipotent group scheme of dimension
N(d,n) =

∑r
i=2 niNi and GLn = GLn1 × · · · ×GLnr . In particular, Gd,n is

special in the sense of Serre, that is, the Čech cohomology Ȟ1(X,Gd,n) can
be calculated in the Zariski topology if X is a scheme.

In particular, if di is not in the Z≥0-linear span of d1, . . . , di−1, for every
1 ≤ i ≤ r, then N(d,n) = 0 and any twisted weighted bundle E with
weights (d1, . . . , dr) is a weighted bundle, i.e., E “splits” as

E ' SpecX
(
SymOX (E1(−d1)⊕ · · · ⊕ Er(−dr))

)
for vector bundles E1, . . . ,Er on X with respective dimensions n1, . . . , nr.

2.1.9. Associated weighted vector bundle. To a twisted weighted vector bun-
dle E = SpecX(R) we can associate a weighted vector bundle E := R+/R

2
+

on X. This is nothing but the vector bundle corresponding to the image of
E under Ȟ1(X,Gd,n) → Ȟ1(X,GLn). Since E is locally free, the quotient
morphism R+ → R+/R

2
+ = E locally admits a graded section, which locally

induces a graded isomorphism SymOX (E )
'−→ R. One can interpret the pres-

ence of the “twists” in the twisted weighted bundle R as the obstructions to
patching these local isomorphisms to a global isomorphism. Note that the
weights d and the dimension n can be read off from E .

2.2. Root stacks of (generalized) Cartier divisors.

Definition 2.2.1. A generalized (effective) Cartier divisor on X is a pair
(L , s) where L is a line bundle and s ∈ Γ(X,L ) is a global section. Equiv-
alently, s gives a homomorphism s∨ : L ∨ → OX . We say that (L , s) is ordi-
nary if s∨ is injective, or equivalently, if (L , s) = (OX(D), sD) for an effec-
tive Cartier divisor D. Then s∨ is the inclusion of the ideal ID = OX(−D).

Example 2.2.2 (Root stacks of generalized divisors [Cad07, Def. 2.2.1]).
Given a generalized Cartier divisor (L , s) on X and a positive integer d, we
consider the following graded OX -algebra

(2.1) R =
⊕
n≥0

L −dn/de,

where the multiplication in this algebra makes sense by using the homomor-
phism s∨ : L ∨ → OX whenever applicable. For example, for 0 ≤ k, ` ≤ d,
the multiplication Rk ⊗R` → Rk+` is the canonical L ∨⊗L ∨ → (L ∨)⊗2 if

k+ ` > d, and is given by L ∨⊗L ∨ → (L ∨)⊗2 1⊗s∨−−−→ L ∨ if k+ ` ≤ d. We
denote the corresponding stack-theoretic Proj by X(L ,s,d), and call it the

dth root stack of (L , s).
The root stack X(L ,s,d) has the following universal property: if f : T → X

is a morphism then a lift to the root stack is equivalent to giving a generalized

Cartier divisor (E , t) on T together with an isomorphism ϕ : f∗(L , s)
'−→

(E , t)d. The corresponding universal generalized Cartier divisor on the root
stack is (O(−1), t) where t∨ is given by the natural map R(1) → R. An
isomorphism between two lifts (E , t, ϕ) and (E ′, t′, ϕ′) is an isomorphism
E → E ′ compatible with t, t′, ϕ and ϕ′.



WEIGHTED BLOW-UPS 17

Forgetting the section induces a morphism X(L ,s,d) → X(L ,d) to the root
stack of Example 2.1.2. Note that X(L ,d) ' X(L ∨,d).

Since R(d) = SymOX (L ∨), it follows that π : X(L ,s,d) → X is a coarse
space. Since R is flat, π is also flat.

Remark 2.2.3. When L is trivial, then ProjX(R) is covered by a single
chart as follows. Let f ∈ Γ(X,L ) be an everywhere non-vanishing section.
Then ProjX(R) = D+(f) =

[
SpecX

(
R/(f − 1)

)
/ µµµd

]
. Note that R/(f −

1) ' OX [x]/(xd − s
f ) where deg(x) = −1.

More generally, if there exists a line bundle E such that L ' E d, then
we can write the root stack as a global quotient by µµµd by first twisting R
with E so that

ProjX(R) =

[
SpecX

(
d−1⊕
n=0

E −n

)
/ µµµd

]
where E −n has degree −n and the multiplication is induced by s∨ : E −d =
L ∨ → OX .

Example 2.2.4 (Root stacks of ordinary divisors). If D is an effective
Cartier divisor on X, the previous construction gives the following graded
OX -graded algebra:

R =
⊕
n≥0

I
dn/de
D .

We sometimes denote X(OX(D),sD,d) by X(D,d) or X
(
d
√
D
)

instead, and call

it the dth root stack of D. For morphisms f : T → X such that f−1(D) is
a Cartier divisor, the root stack has the following universal property: a lift
to the root stack is equivalent to giving an effective Cartier divisor E on
T such that dE = f−1(D). In particular, the groupoid X(D,d)(T → X) is
equivalent to a set in this case, that is, there are no non-trivial isomorphisms
between lifts.

The morphism π : X(D,d) → X is a flat coarse space which is an isomor-

phism outside D. The morphism E → D is a gerbe isomorphic to the dth

root stack of the line bundle OD(D).

2.3. Inverting Q-invertible sheaves.

Setup 2.3.1. Let X be a noetherian scheme satisfying Serre’s condition S2

(for example, a normal scheme). Let F be a coherent OX -module that is
generically locally free, that is, there exists a dense open jV : V ↪→ X on
which F is locally free. If F |V is locally free of rank r, then we say that F
has rank r. Let tor(F ) be the torsion submodule of F , i.e.,

tor(F ) := ker
(
F → jV ∗(F |V )

)
and set Ftf := F/tor(F ). Note that tor(F ) is independent of V since X has
no embedded points.

Suppose that j : U ↪→ X is an open subset whose complement has codi-
mension ≥ 2 in X, and on which Ftf is locally free. If X is normal, then this
can always be arranged for since Ftf is free at every point of codimension 1.
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Lemma 2.3.2. The canonical morphism F → F∨∨ can be identified with
the canonical morphism F → Ftf → j∗(Ftf |U ).

We call F∨∨ = j∗(Ftf |U ) the reflexive hull of F . We say F is reflexive, if
the canonical morphism F → F∨∨ = j∗(Ftf |U ) is an isomorphism.

Proof. Firstly, since X is S2, F∨∨ is also S2, i.e., j∗(F
∨∨|U ) = F∨∨. Next,

since F∨∨ is torsion-free, F → F∨∨ factors through Ftf , and the resulting
morphism Ftf → F∨∨ induces a morphism j∗(Ftf |U )→ j∗(F

∨∨|U ) = F∨∨ of
S2-sheaves on X that is an isomorphism on U , and hence is an isomorphism
on X. �

For every integer n ≥ 0, we define the saturated nth power of F to be
F [n] := (F⊗n)∨∨. Note that F [n] = j∗(F

⊗n
tf |U ) since Ftf |U is locally free.

We say that F is Q-invertible if F [N ] is invertible for some positive integer
N , locally on X. Note that a Q-invertible sheaf has rank 1. In what follows,
we consider the graded OX -algebra

F [•] =
⊕
n≥0

F [n].

Proposition 2.3.3 (cf. [AH10, Prop. 5.3.2]). Let X ′ = ProjX(F [•]) with
structure morphism π : X ′ → X. If F is Q–invertible, then:

(i) F [•] is finitely generated, and hence, X ′ is proper over X.
(ii) π : X ′ → X is a coarse space and an isomorphism over U . In

particular, π is quasi-finite.

(iii) If F [N ] ' OX for some N ≥ 1, then X ′ =
[
SpecX

(⊕N−1
n=0 F

[n]
)
/ µµµN

]
.

(iv) X ′ satisfies S2. Moreover, if X is normal, so is X ′.

(v) For every positive integer n, the canonical morphism F [n] → π∗OX′(n)

is an isomorphism, and the canonical morphism π∗F [n] → OX′(n)
is a reflexive hull.

(vi) π : X ′ → X satisfies the following universal property: if T is a
scheme satisfying S2 (resp. T is a normal scheme) which admits a
morphism f : T → X such that codimT

(
T r f−1(U)

)
≥ 2 (resp.

f−1(U) is dense in T ), then there is a lift of f to X ′, unique up to
a unique 2-isomorphism, if and only if (f∗F )∨∨ is invertible.

Before proving the proposition, we note that in (vi), the hypothesis that
codimT (Trf−1(U)) ≥ 2 is satisfied whenever f satisfies one of the following
conditions:

(a) f is flat;
(b) f is dominant and integral and T is integral; or
(c) f is dominant and quasi-finite and T is integral.

Proof of Proposition 2.3.3. All statements, except (iii), are local on X so we

may assume that F [N ] is invertible for some integer N . For (i), note that

the multiplication F [kN ]⊗F [n] → F [kN+n] is an isomorphism for all integers
k, n ≥ 0. Thus F [•] is generated in degrees ≤ N . Since F [n] is coherent for
every n, we deduce that F [•] is finitely generated. Thus, X ′ is proper over
X by Proposition 1.6.1(ii).
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For (ii), we note that F [N•] is generated in degree 1 and thus that the

coarse space of X ′ is ProjX(F [•]) = ProjX(F [N•]) = P(F [N ]) = X (Propo-
sition 1.6.1(iii)). Moreover, since Ftf |U is invertible, π is an isomorphism
over U . For (iii), this follows from X ′ = D+(f) where f is a nowhere

vanishing section of F [N ] (§1.3). For (iv), the question is local so we can

assume that F [N ] ' OX and hence that we have a faithfully flat presentation
SpecX

(⊕N−1
n=0 F

[n]
)
→ X ′. The result follows since

⊕N−1
n=0 F

[n] is a coherent
S2-sheaf.

For (v), let U ′ := π−1(U), and consider the cartesian square:

U ′ X ′

U X.

'

j′

π

j

Since F [n]|U = F⊗ntf |U is invertible, the canonical morphism π∗F [n] →
OX′(n) is an isomorphism when restricted to U ′. Moreover, since OX′(n)

is invertible, it is S2 and thus OX′(n) = j′∗(π
∗F [n]|U ′), i.e., OX′(n) is the

reflexive hull of π∗F [n]. We also have that:

F [n] ' j∗j∗F [n] ' π∗j′∗j′∗π∗F [n] ' π∗OX′(n).

Finally, for (vi), by Proposition 1.5.1 a morphism T → X ′ corresponds to

a line bundle L on T and a graded homomorphism ϕ : f∗F [•] →
⊕

n≥0 L ⊗n

of sheaves on T such that ϕn : f∗F [n] → L ⊗n is surjective for sufficiently
divisible n, or equivalently, such that the induced (ϕn)tf : (f∗F [n])tf → L ⊗n

is surjective for sufficiently divisible n. Since F [n]|U is invertible, f∗F [n] is
invertible over f−1(U), so (ϕn)tf |f−1(U) is an isomorphism for sufficiently
divisible n, and hence an isomorphism for all n. This means the following:

(a) If T is S2, then by hypothesis, (ϕn)tf is an isomorphism away from
codimension ≥ 2 for all n. Since L ⊗n is invertible, (ϕn)tf is the
reflexive hull for all n, and thus so is ϕn.

(b) If T is normal, then by hypothesis, (ϕn)tf is generically an iso-
morphism for all n. In addition, Serre’s condition R1 implies that
(f∗F [n])tf is invertible in codimension 1, so (ϕn)tf is an isomor-
phism in codimension 1 for sufficiently divisible n, and hence an
isomorphism in codimension 1 for all n. In conclusion, (ϕn)tf is an
isomorphism away from codimension ≥ 2, and the same argument
as in (a) shows that ϕn is the reflexive hull for all n.

In either case, we conclude that such an L and ϕ exist precisely when
(f∗F )∨∨ is invertible and then L = (f∗F )∨∨. Finally, note that if F [N ] is
invertible, then ϕN is an isomorphism and in particular surjective. �

Remark 2.3.4. When F [N ] is invertible, the construction X ′ → X that makes
F invertible is closely related to taking the N th root of the invertible sheaf
F [N ] (Example 2.1.2). Since OX′(1)⊗n = OX′(n) = π∗F [N ], there is a canon-

ical map ϕ : X ′ → X
(N√

F [N ]
)

over X. This map is representable, hence
finite, since ϕ∗ is compatible with tautological line bundles. That is, ϕ is



20 MING HAO QUEK AND DAVID RYDH

also induced, via Proposition 1.6.1(vi), by the graded homomorphism

SymOX

(
F [N ](−N)

)
→
⊕
n≥0

F [N ].

The finite morphism ϕ is not an isomorphism. In fact, the root stack is a
gerbe, whereas X ′ → X is generically an isomorphism (a stacky modification,

i.e., proper and generically an isomorphism). On the root stack, F [N ] has
an N th root, but it does not coincide with the reflexive hull of the pull-back
of F because it does not agree over U . This is explained by the presence of
torsion in the Picard group in the root stack over U .

Example 2.3.5 (Q-Gorenstein varieties). We now apply Proposition 2.3.3
to the canonical sheaf. Let X be a Q-Gorenstein variety of index N , that is,
a normal variety of such that the N th pluricanonical divisor NKX is Cartier.

Let ω
[n]
X = OX(nKX) denote the nth pluricanonical sheaf, or equivalently,

(ω⊗nX )∨∨. Then ω
[n]
X is a reflexive sheaf of rank 1, which is invertible whenever

N divides n. Let X ′ = ProjX
(
ω

[•]
X

)
. Then π : X ′ → X is an isomorphism

over the locus where ωX is invertible, i.e., where X is quasi-Gorenstein, that

is, Q-Gorenstein of index 1. The coarse moduli space of X ′ is ProjX
(
ω

[N•]
X

)
which equals X, and π∗O(n) = ω

[n]
X for every positive integer n. The mor-

phism π : X ′ → X only adds some stackiness in codimension ≥ 2. Finally,
the canonical sheaf ωX′ is (π∗ωX)∨∨, and hence is equal to OX′(1).

Example 2.3.6 (Cartierification). More generally, fix a normal noetherian
scheme X, with an effective Q-Cartier divisor D ⊂ X, say ND is Cartier.
Let ID = OX(−D) be the ideal of D ⊂ X, which is a reflexive OX -submodule
of OX of rank one. Let U denote the largest open subset of X on which
D|U is Cartier (i.e., ID|U = ID|U is an invertible OU -submodule of OU ), so
that ID = j∗(ID|U ). Recall that U ⊃ Reg(X) (the latter has complement of
codimension ≥ 2 in X), and moreover note that U ⊃ Y rD.

We apply Proposition 2.3.3 with F = ID. Note that F [n] = I
[n]
D is precisely

the nth symbolic power InD of ID, since all the associated points of ID are
non-embedded, and hence, are contained in U . The OX -algebra F [•] =
I•D =

⊕
n≥0 InD is called the symbolic Rees algebra of D (or ID). Let

X ′ = ProjX(I•D) with structure morphism π : X ′ → X. The inverse image
of D under π is a Cartier divisor (v), and π satisfies the following universal
property (vi): if f : T → X is a morphism from a normal scheme T such
that f−1(D) is nowhere dense in T , then f factors, uniquely, through π if
and only the inverse image f∗D of D under f is an effective Cartier divisor
on T . Here, f∗D is the Weil divisor on T whose underlying ideal sheaf is
(f∗ID)∨∨.

As a final note, we will see later in Example 3.3.7 that
⊕

n≥0 InD is the

integral closure of the OX -subalgebra
⊕

n≥0 I
dn/Ne
ND of Example 2.2.4. In

other words, there is a canonical finite morphism X ′ = ProjX(I•D) →
X
(
N
√
ND

)
, which presents X ′ as the normalization of X

(
N
√
ND

)
.

Example 2.3.7 (Stacky modifications given by inverting Q-invertible sheaves).
Suppose that π : X ′ → X is a proper quasi-finite morphism of noetherian
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stacks satisfying S2, that L ∈ Pic(X ′) is an ample and uniformizing line
bundle relative to X, and that π is an isomorphism over an open substack
U ⊂ X and that U and π−1(U) have complements of codimension at least 2.

Then X ′ = ProjX(F [•]) where F = π∗L . Indeed, first note that X ′ → X
is a relative coarse space since X ′cs/X → X is a finite morphism between S2-

stacks that is an isomorphism outside codimension 2, hence an isomorphism.
It follows that π∗L ⊗N is a line bundle for sufficiently divisible N (1.7.2).
Moreover, X ′ = ProjX

(⊕
n≥0 π∗L

⊗n) by Proposition 1.7.6(ii) so it suffices

to note that π∗L ⊗n = π∗j
′
∗j
′∗L ⊗n = j∗(π|U )∗j

′∗L ⊗n = j∗j
∗F⊗n = F [n].

Example 2.3.8 (Toric varieties and toric stacks). Let Σ be a simplicial
fan. Then the associated toric variety XΣ is normal and the toric divisors
D1, D2, . . . , Dn are Q-Cartier. The corresponding toric stack XΣ is smooth
with smooth toric divisors. We thus get a map XΣ → X ′ where X ′ →
XΣ is the iterated stack-theoretic Proj that makes all the toric divisors
Cartier (Example 2.3.6). Since (O(D1),O(D2), . . . ,O(Dn)) is uniformizing
on the toric stack XΣ (by the Cox construction) as well as on X ′ (see
Proposition 1.8.1), it follows that XΣ → X ′ is a representable birational
homeomorphism between normal stacks, hence an isomorphism.

The toric stack XΣ is the canonical stack associated to the variety XΣ

with finite quotient singularities [FMN10, §4]. The Cartierification thus
gives a different description of the canonical stack for a toric variety. If Σ is
a stacky fan, then the associated toric stack can be described as the Cartieri-
fication of the toric divisors of the associated toric variety followed by taking
root stacks of these divisors and then root stacks of line bundles [FMN10,
Thm. 1].

2.4. Stack-theoretic amplification of GIT quotients. Let X be a pro-
jective variety with an action of a reductive group G and let L be an
ample line bundle with a G-action. Then we can form the GIT quotient
X //G = Proj

(⊕
n≥0 Γ(X,L n)G

)
. If Xss ⊆ X denotes the semi-stable locus

of X, then Xss → X //G is a good quotient. This can also be phrased as
saying that [Xss / G]→ X //G is a good moduli space.

It is very natural to also consider the “stack-theoretic GIT quotient”
[X //G] = Proj

(⊕
n≥0 Γ(X,L n)G

)
. Whereas [Xss / G] is typically an

Artin stack with infinite stabilizers, the stack [X //G] is a tame Artin stack
with finite cyclic stabilizers. To summarize, we have

[Xss / G]
rel. good mod. space−−−−−−−−−−−−→ [Xss //G]

tame coarse space−−−−−−−−−−−→ Xss //G.

The stack-theoretic GIT quotient [X //G] was studied by Hassett [Has05,
§3.1] and Gulbrandsen [Gul11] when X is the projective space of hypersur-
faces in Pn of degree d and G = SL(n+ 1) for small d and n.

3. Rees algebras and weighted blow-ups

3.1. Definition of Rees algebras.

Definition 3.1.1 (Rees algebras). A Rees algebra on X is a quasi-coherent,
finitely generated, graded OX -subalgebra R =

⊕
n≥0 In · tn of OX [t] such



22 MING HAO QUEK AND DAVID RYDH

that I0 = OX and In ⊃ In+1 for every n ∈ N. Equivalently, a Rees algebra
is a descending filtration

I• = (I0 ⊃ I1 ⊃ I2 ⊃ . . . )

of ideals of OX , satisfying the following conditions:

(i) I0 = OX ;
(ii) InIm ⊂ In+m for every n,m;
(iii) locally on X, there exists a sufficiently large positive integer d such

that for all integers n ≥ 1,

In =

(
I`11 I

`2
2 · · · I

`d
d : `i ∈ N,

d∑
i=1

i`i = n

)
,

in which case, we say that I• is generated in degrees ≤ d. Equiva-
lently, the graded module R+/R

2
+ is concentrated in degrees ≤ d.

Rees algebras are partially ordered by inclusion. The initial object is the
zero Rees algebra which is OX in degree 0 and zero in positive degrees. For
any positive integer d, we write Id• for the dth Veronese subalgebra of I•.

Remark 3.1.2.

(i) That I• is generated in degrees≤ d does not imply that the Veronese
subalgebra I`• is generated in degree 1 for ` the least common mul-
tiple of 1, 2, . . . , d, see Remark 1.6.4. But it does imply that the
Veronese subalgebra Id• is generated in degree 1 for sufficiently di-
visible d, see Proposition 3.1.7 below.

(ii) Rees algebras are called idealistic filtrations by Kawanoue [Kaw07].
Moreover, the element gtn ∈ Int

n is also written there as (g, n);
however, we shall reserve that notation for the smallest Rees algebra
containing gtn.

(iii) Encinas–Villamayor [EV07] do not require their Rees algebras to
satisfy Ii ⊃ Ii+1. This condition is, however, essential for the pur-
pose of weighted blow-ups (Definition 3.2.1): without this condi-
tion, the exceptional divisor (Definition 3.2.2) of a weighted blow-up
would not make sense.

It is also convenient to account for the condition that I• is a descending
filtration by extending Rees algebras trivially in negative degrees:

Definition 3.1.3 (Extended Rees algebras). An extended Rees algebra on X
is a quasi-coherent, finitely generated Z-graded OX [t−1]-subalgebra Iext

• =⊕
n∈Z I

ext
n · tn of OX [t, t−1] such that Iext

0 = OX .

3.1.4. For an extended Rees algebra Iext
• on X, I• :=

⊕
n≥0 I

ext
n · tn is a

Rees algebra on X in the sense of Definition 3.1.1. Conversely, every Rees
algebra I• on X can uniquely be extended to an extended Rees algebra Iext

•
on X by setting

Iext
n :=

{
OX , if n < 0;

In, if n ≥ 0.
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Definition 3.1.5. Given an ideal J ⊂ OX and d ≥ 1, we let (J, d) denote
the smallest Rees algebra containing Jtd. Given a finite collection of Rees
algebras Ik,• we let

∑
k Ik,• denote the smallest Rees algebra containing all

the Ik,•.

The marked ideal (J, d), used in resolution of singularities, can be identi-

fied with the Rees algebra (J, d). Explicitly, we have that (J, d)n = Jdn/de,
that is:

(J, d) = OX ⊕ Jt⊕ Jt2 ⊕ · · · ⊕ Jtd ⊕ J2td+1 ⊕ J2td+2 ⊕ · · ·

and that

(I1,• + · · ·+ Ir,•)n =
∑

n=n1+···+nr

I1,n1I2,n2 · · · Ir,nr .

In particular, I• is generated in degree ≤ d if and only if I• = (I1, 1) +
(I2, 2) + · · ·+ (Id, d).

At this point the reader should be familiar with some examples of Rees
algebras:

Example 3.1.6 (Ordinary Rees algebras). If a Rees algebra I• is generated
in degree 1, i.e., In = In1 for all n ≥ 1, then we say that I• = I•1 = (In1 ) =
(I1, 1) is the Rees algebra of the ideal I1 ⊂ OX .

The next proposition is a direct translation of Proposition 1.6.3:

Proposition 3.1.7. Let I• be a Rees algebra on X and suppose that X is
quasi-compact. Then for all sufficiently divisible d, we have Ird = (Id)

r for
all integers r ≥ 1, i.e., Id• is the Rees algebra of the ideal Id. �

Example 3.1.8. The graded OX -algebra of the dth root stack of the divi-
sorD (Example 2.2.4) is the Rees algebra (ID, d). The symbolic Rees algebra
I•D of the Cartierification of D (Example 2.3.6) is also a Rees algebra.

We can also see (ID, d) as a dilation of the ordinary Rees algebra (ID, 1):

Example 3.1.9 (Dilation). Given a Rees algebra I• on X, and a positive
integer d, the dth dilation of I• is the Rees algebra D• := Id•/de, i.e., Dn :=

Idn/de for every integer n ≥ 0. Note that the dth Veronese subalgebra of D•
is I•, and I• ⊂ D•.

Taking the dth dilation of the dth Veronese subalgebra of a Rees algebra
I• on X gives:

Example 3.1.10 (Truncation). Given a Rees algebra I• on X, and a pos-
itive integer d, the dth truncation of I• is the Rees algebra T• := Idd•/de =∑

d|n(In, n), i.e., Tn = Iddn/de for every integer n ≥ 0. Note that Td• = Id•,

and T• ⊂ I•.

Remark 3.1.11. The Rees algebra
⊕

n≥0 I
dn/Ne
ND mentioned at the end of

Example 2.3.6 is precisely (IND, N), i.e., the N th truncation of I•D, since
ND is a Cartier divisor.



24 MING HAO QUEK AND DAVID RYDH

3.2. Weighted blow-ups.

Definition 3.2.1 (Weighted blow-ups). If I• is a Rees algebra on X, the
(stack-theoretic) weighted blow-up of X along I• is defined as the morphism

BlI• X = ProjX(I•) −→ X

which is proper (Proposition 1.6.1(ii)). Note that
√
In =

√
I1 for any positive

integer n. We call V (I1) the center of the weighted blow-up (or the Rees
algebra).

Definition 3.2.2 (Exceptional divisor). Let X ′ := BlI• X
π−→ X. The nat-

ural inclusion I•+1 ↪→ I• corresponds to the inclusion OX′(1) ↪→ OX′(0) =
OX′ of invertible sheaves, and defines an effective Cartier divisor E on X ′

such that OX′(1) = OX′(−E). We call E the exceptional divisor of BlI• X.

Remark 3.2.3. Explicitly, if we write I• locally as (f1, d1) + · · · + (fm, dm),
then the ideal sheaf IE of E can be described locally on BlI• X as follows.
On the chart

D+(fi · tdi) =
[
SpecX

(
I•[(fi · tdi)−1]

)
/ Gm

]
of BlI• X, the ideal sheaf IE is generated by t−1 = fi·tdi−1

fi·tdi
∈ I•[(fi · tdi)−1].

In particular, the Cartier divisor diE is principal and given by the vanishing
of π−1(fi) on this chart. Thus, for all N divisible by d1, d2, . . . , dm, the
Cartier divisor NE has ideal sheaf

INE =
(
π−1(fi)

N/di : i = 1, 2, . . . ,m
)
.

Remark 3.2.4 (Weighted blow-ups in terms of extended Rees algebras). Note
that if Iext

• denotes the extended Rees algebra of I• (3.1.4), then:

BlI• X = ProjX(Iext
• ) :=

[
SpecX(Iext

• ) r V (Iext
+ ) / Gm

]
.

Indeed, if we write I• locally as (f1, d1) + · · · + (fm, dm), then one has, for
each 1 ≤ i ≤ m, that Iext

• [(fi · tdi)−1] = I•[(fi · tdi)−1], and thus

D+(fi · tdi) =
[
SpecX

(
Iext
• [(fi · tdi)−1]

)
/ Gm

]
.

Evidently these identifications are compatible with each other.
Note too that the exceptional divisor E of BlI• X is induced by the prin-

cipal divisor given by t−1 = 0 on SpecX(Iext
• ) whereas the ideal sheaf I•+1

on SpecX(I•), which is not even invertible, only becomes principal over the
localizations I•[(fi · tdi)−1] (Remark 3.2.3).

The next proposition, like Proposition 3.1.7, is a direct translation of
Proposition 1.6.3:

Proposition 3.2.5. Let I• be a Rees algebra on X. The coarse space of
BlI• X, relative to X, is the ordinary blow-up BlId X for any positive integer
d such that Id• is generated in degree 1. Such a d always exists if X is quasi-
compact (Proposition 3.1.7). �

Example 3.2.6 (Ordinary blow-ups). Let I ⊂ OX be an ideal. The
weighted blow-up BlI• X of X along the Rees algebra I• = (I, 1) of I is
the usual blow-up BlI X of X along I.
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Example 3.2.7 (Root stack of a divisor). Given an effective Cartier divisor

D on X, and a positive integer d, the root stack X
(
d
√
D
)

is the weighted
blow-up Bl(ID,d)X (see Examples 2.2.4 and 3.1.8).

Example 3.2.8 (Cartierification). If X is normal and noetherian and D is
an effective Q-Cartier divisor, then the Cartierification of D in X is BlI•D X
(see Examples 2.3.6 and 3.1.8).

Theorem 3.2.9 (Universal property of weighted blow-ups). Let I• be a
Rees algebra, and let π : X ′ = BlI• X → X be the corresponding weighted
blow-up.

(i) For every n ∈ N we have an inclusion of ideals π−1(In) ·OX′ ⊂ InE,
which is an equality for all sufficiently divisible n (locally on X).

(ii) Let f : T → X be a morphism such that U := T r f−1
(
V (I1)

)
is

schematically dense. The groupoid of factorizations through π is
equivalent to the set of effective Cartier divisors D on T such that
f−1(In) ·OT ⊂ InD for all n with equality for all sufficiently divisible
n (locally on T ). If f = π ◦ g, then D = g−1(E).

Proof. By Proposition 1.5.1, a factorization of f through π corresponds
to a line bundle L on T together with a graded algebra homomorphism
ϕ :
⊕

n≥0 f
∗In →

⊕
n≥0 L ⊗n which is surjective for all sufficiently divisible

n. The case T = BlI• X corresponds to L = OX′(1) = OX′(−E) with the
canonical map ϕ.

Let N be a sufficiently divisible integer. We begin by noting that ϕN |U is
an isomorphism and hence that ϕ|U is an isomorphism. Since j : U → T is
schematically dominant, we have that L n → j∗j

∗L n = j∗j
∗OT is injective

whereas the image of f∗In → j∗j
∗f∗In = j∗j

∗OT is f−1(In) · OT . It follows
that ϕ factors through an injective graded homomorphism

ψ :
⊕
n≥0

f−1(In) · OT →
⊕
n≥0

L ⊗n.

In particular, ψN is an isomorphism. The composition of ψ−1
N , the inclusion

f−1(IN ) ·OT ⊂ f−1(IN−1) ·OT and ψN−1 gives an injective homomorphism
L N ↪→ L N−1, or equivalently, an injective homomorphism s : L ↪→ OT .
This defines the Cartier divisor D. Note that s|U = (ψ1|U )−1 so ψn together
with sn gives the inclusion of ideals f−1(In) · OT ↪→ L n = OT (−nD) ↪→
OT . �

Remark 3.2.10. For all n, we have a commutative diagram

nE V (In)

BlI• X Xπ

which is cartesian for sufficiently divisible n. Unlike the usual blow-up, the
diagram is not always cartesian for n = 1. Nevertheless:

(i) π is an isomorphism away from V (I1).
(ii) Ered = π−1(V (I1))red.
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(iii) π−1(V (I1)) is of codimension 1 in BlI• X and its complement is
schematically dense in BlI• X.

Remark 3.2.11. If one locally writes I• as (f1, d1) + · · ·+ (fm, dm), then the
condition in Theorem 3.2.9(ii) that f−1(In) ⊂ InD for all n with equality
for sufficiently divisible n (locally on T ) can be explicated as the following

equivalent condition: f−1(fi) ∈ IdiD for all 1 ≤ i ≤ m and locally on T there

exists an i such that IdiD =
(
f−1(fi)

)
. The latter occurs on the preimage of

the chart D+(fi · tdi) of BlI• X (Remark 3.2.3). Thus, f−1(In) ·OT = InD for
every n divisible by the d1, d2, . . . , dm.

The next corollary generalizes Example 3.2.7.

Corollary 3.2.12. Let I ⊂ OX be an ideal, and fix a positive integer d.
Then Bl(I,d)X coincides with the dth root stack (Example 2.2.4) of the ex-
ceptional divisor of the usual blow-up BlI X of X along I.

Proof. Let X ′ denote the dth root stack of the exceptional divisor of BlI X.
For a morphism T → X:

(a) The groupoid of factorizations through X ′ → X is equivalent to the
set of effective Cartier divisors D on T such that f−1(I) ·OT = IdD
(Example 2.2.4).

(b) The groupoid of factorizations through Bl(I,d)X → X is equiv-
alent to the set of effective Cartier divisors D on T such that
f−1(Idn/de) ⊂ InD for every n with equality whenever d | n (Re-
mark 3.2.11).

The groupoids in (a) and (b) are equivalent, and the corollary follows. �

Remark 3.2.13. The corollary shows that our definition of Bl(I,d)X agrees
with the definition of Bl(I,d)X as the dth root stack of the usual blow-up

in [Ryd09]. The weighted blow-up Bl(I,d)X is called the dth Kummer blow-
up of X along I in [Ryd09].

Corollary 3.2.14 (Functoriality for weighted blow-ups). Let f : Y → X
be a morphism of schemes, and let I• be a Rees algebra on X. There is a
unique morphism g : Blf−1(I•)·OY Y → BlI• X making the following diagram
commute:

(3.1)

Blf−1(I•)·OY Y (BlI• X)×X Y BlI• X

Y X

g

πY

ι

π

f

and the morphism ι is a closed immersion. Hence:

(i) Blf−1(I•)·OY Y is the schematic closure of the complement of E×XY
in (BlI• X)×X Y .

(ii) If f is a closed immersion, then so is g : Blf−1(I•)·OY Y → BlI• X.
(iii) If f is flat (e.g., f is an open immersion), then ι is an isomorphism.

Proof. The existence and uniqueness of g follow from Theorem 3.2.9. To see
that ι is a closed immersion, note that ι is induced by the natural surjective
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morphism f∗I• → f−1(I•) · OY of graded OY -algebras, i.e.,

ι : Blf−1(I•)·OY Y = ProjY (f−1(I•) ·OY ) ↪→ProjY (f∗I•) = (BlI• X)×X Y.
Then parts (i) and (ii) are immediate. For part (iii), note that if f is flat,
then f∗I• → f−1(I•) · OY is an isomorphism. �

Definition 3.2.15 (Transforms under weighted blow-ups). In the above
corollary, Blf−1(I•)·OY Y is known as the proper (or strict) transform of Y →
X under the weighted blow-up BlI• X

π−→ X, while π−1(Y ) = (BlI• X)×X Y
is the total transform of Y → X under the weighted blow-up BlI• X

π−→ X.

3.3. Integral closure of Rees algebras.

Definition 3.3.1 (Integral closure). For a Rees algebra I• (or more gener-
ally, a quasi-coherent OX -subalgebra of OX [t]) onX, we denote by IC(I•) the
integral closure of I• in OX [t]. We say I• is integrally closed if IC(I•) = I•.

Note that if X is normal, then I• is integrally closed if and only if
SpecX(I•) is normal.

Remark 3.3.2. For a Rees algebra I• on X, note that (by definition) the
integral closure of Id• is the dth Veronese subalgebra of IC(I•).

Remark 3.3.3. Given a Rees algebra I•, the integral closure IC(I•) is always
a quasi-coherent graded OX -subalgebra of OX [t] but not necessarily of finite
type. However, if X is integral and Nagata, then we claim that IC(I•) is of
finite type over OX , and hence a Rees algebra on X.

Indeed, the question is local, so we may assume that X = Spec(A) is
affine. Let K be the fraction field of A. Let IC(I•) be the integral closure
of I• in K(t). Since A is Nagata, so is I• (being a finitely generated A-
subalgebra ofA[t]). SinceK(t) is also the field of fractions of I•

1, we conclude
that IC(I•) is finite over I•. In particular, it is a noetherian I•-module, so its
I•-submodules (e.g., IC(I•)) are finitely generated I•-modules, and hence,
finitely generated A-algebras.

3.3.4. Integral closure of ideals. For an ideal I on X, the t1-graded piece of
IC(I•) is known in the literature (e.g., [Laz04, 9.6.A]) as the integral closure

IC(I) of the ideal I ⊂ OX . Note that I ⊂ IC(I) ⊂
√
I.

Example 3.3.5. Let X be a normal scheme. If E is an effective Cartier
divisor on X, then the ordinary Rees algebra (IE , 1) of IE = OX(−E) on X
is integrally closed. Indeed, locally on X, we have that I•E ' OX [t] which is
integrally closed.

Example 3.3.6 (Integral closure of truncations). Let I• be a Rees algebra
on X, and for any positive integer d, let T• be the dth truncation of I•
(Example 3.1.10). Then IC(I•) = IC(T•). For this, it suffices to observe
that the dth Veronese subalgebra of IC(I•) coincides with that of IC(T•).

Example 3.3.7 (Cartierification, II). Adopt the set-up in Example 2.3.6.
We shall now show that I•D =

⊕
n≥0 InD is the integral closure in OX [t]

of (IND, N) =
⊕

n≥0 I
dn/Ne
ND . Since (IND, N) is the N th truncation of I•D

1If In = 0 for n > 0, then IC(I•) = I• and there is nothing to prove.
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(Remark 3.1.11(i)), it remains to show (because of Example 3.3.6) that I•D
is integrally closed.

For this, let U be as in Example 2.3.6. On U , we have I•D|U = (ID, 1)|U ,
and hence, by Example 3.3.5, I•D|U is integrally closed. Thus, so is I•D =
j∗(I•D|U ).

3.4. Normalized weighted blow-ups. In this subsection we assume that
X is normal.

Definition 3.4.1 (Normalized weighted blow-ups). The normalized weighted
blow-up of X along a Rees algebra I• on X is the normalization of BlI• X
(denoted Blnorm

I• X), or equivalently, ProjX (IC(I•)).

Note that IC(I•) is not always a Rees algebra (Remark 3.3.3), and thus
the normalized weighted blow-up Blnorm

I• X of X is not always proper (not
always of finite type but always separated, quasi-compact and universally
closed) over X.

Example 3.4.2. Adopt the set-up in Example 2.3.6. Then the Cartierifi-
cation (Example 3.2.8) of D in X is the normalized weighted blow-up of X
along (IND, N) by Example 3.3.7. In other words,

BlI•D X = Blnorm
(IND,N)X =

(
X
(N√

ND
))norm
.

The integral closure I•D = IC
(
(IND, N)

)
is always finitely generated and

hence a Rees algebra by Proposition 2.3.3(i).

The universal property of weighted blow-ups in Theorem 3.2.9 has a neater
re-interpretation after passage to normalizations:

Theorem 3.4.3 (Universal property of normalized weighted blow-ups). For
a Rees algebra I• on X, the normalized weighted blow-up π : Blnorm

I• X → X
satisfies the following universal property. Let f : T → X be a morphism,
where T is normal and such that f−1(V (I1)) is nowhere dense. Then there
exists at most one lift g : T → Blnorm

I• X of f , and such a lift exists if and

only if IC(f−1(I•) ·OT ) = (ID, 1) for some effective Cartier divisor D on T .
If this is the case, then D = g−1(E).

Proof. By Theorem 3.2.9, the lifts T → Blnorm
I• X are equivalent to the set

of Cartier divisors D such that f−1(IC(In)) · OT ⊂ InD for every n ≥ 1
with equality for sufficiently divisible n (locally on T ). Since T is normal,
the Rees algebra (ID, 1) is integrally closed and the condition is equivalent
to IC

(
f−1(I•) ·OT

)
⊂ (ID, 1) with equality for sufficiently divisible n. This

means that we have an equality of Rees algebras (Examples 3.3.5 and 3.3.6).
In particular, D is unique. �

A partial converse to Corollary 3.2.12 is:

Proposition 3.4.4. Let X be a normal, quasi-compact scheme. Every nor-
malized weighted blow-up of X is a normalized Kummer blow-up Blnorm

(I,d) X

of X.

Proof. Let I• be a Rees algebra on X, and let X ′ = BlIC(I•)X. By Proposi-
tion 3.1.7, there exists a positive integer d such that Id• is generated in degree
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1. Let T• be the dth truncation of I•. By Example 3.3.6, IC(I•) = IC(T•),
so X ′ = BlIC(T•)X. By definition, T• is the dth dilation of Id•. Thus,
X ′ = BlIC(T•)X = BlIC(Id,d)X = Blnorm

(Id,d)X. �

Under an additional hypothesis on stackiness, we can also describe a Kum-
mer blow-up as an ordinary blow-up followed by a Cartierification.

Proposition 3.4.5. Let X be a normal scheme, I ⊂ OX be an ideal, and
d be a positive integer. If the normalized Kummer blow-up Blnorm

(I,d) X →
X is representable over an open subset U ⊂ Blnorm

(I,d) X with complement of

codimension ≥ 2, then:

(i) Blnorm
I X has an effective Q-Cartier divisor D such that dD is the

exceptional divisor on Blnorm
I X.

(ii) Blnorm
(I,d) X → X can be factored as follows:

Blnorm
(I,d) X

p−−−−→ Blnorm
I X

q−−−−→ X

where q is the normalized blow-up of X along I, and p is the Cartier-
ification of D in Blnorm

I X.

Proof. Let E (resp. E′) denote the exceptional divisor on Blnorm
I X (resp.

Blnorm
(I,d) X). By the universal property of Blnorm

I X, the map Blnorm
(I,d) X → X

factors uniquely through Blnorm
I X as follows:

Blnorm
(I,d) X

p−−−−→ Blnorm
I X

q−−−−→ X.

Since Blnorm
(I,d) X has no relative stackiness over X in codimension 1, and since

p is a coarse moduli space (Proposition 1.6.1(iii)), p is an isomorphism in
codimension 1, and thus p induces an identification of Weil divisors of both
sides. Since p−1(E) = dE′ with E′ a Cartier divisor on Blnorm

(I,d) X, there

exists a Weil divisor D on Blnorm
I X such that dD = E.

Next, set Y := Blnorm
I X, and we show that p can be identified with the

Cartierification of D, i.e., π : BlI•D Y → Y . We do so by comparing the
universal properties of π and q ◦ p. Let f : T → Y be a morphism from a
normal scheme T , where f−1(D) is nowhere dense in T , i.e., (q ◦ f)−1(V (I))
is nowhere dense in T (for example, f = π or f = p). Then:

(a) f factors uniquely through π if and only if f∗D is an effective Cartier
divisor on T (Example 2.3.6).

(b) f factors uniquely through p if and only if

IC
(
(q ◦ f)−1(I, d) · OT

)
= IC(f−1(IE , d) · OT )

= IC(f−1(I•D) · OT ) = I•f∗D

is generated in degree 1 by the underlying ideal of an effective
Cartier divisor on T (Theorem 3.4.3). Note that the last equal-
ity above holds since both sides are integrally closed Rees algebras
whose dth Veronese subalgebras coincide.

Evidently the universal properties in (a) and (b) coincide, as desired. �
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3.5. Valuative Q-ideals. Let X be (unless otherwise specified) an inte-
gral and separated scheme, with field of fractions K(X). As outlined in
[ATW19] and explicated in [Que20], integrally closed Rees algebras on X
have an equivalent formulation as valuative Q-ideals over X. We recall this
equivalence in this subsection, before relating it back to the previous sub-
section.

3.5.1. Zariski–Riemann spaces. We denote by ZR(X) the Zariski–Riemann
space of X, which is the inverse limit of the system of modifications X ′ → X
in the category of locally ringed spaces over X. As a set, its elements are
valuations ν of K(X) that possess a (necessarily unique) center xν on X,
i.e., Rν dominates some local ring OX,xν on X.

As a topological space, it has a basis of open sets of the form U(x1, x2, . . . ,
xn) for an integer n ≥ 0 and x1, x2, . . . , xn ∈ K(X)×, where

U(x1, x2, . . . , xn) :=
{
ν ∈ ZR(X) : xi ∈ Rν for every 1 ≤ i ≤ n

}
.

If X is quasi-compact, then so is ZR(X). Next, its structure sheaf OZR(X),
evaluated over an open subset U of ZR(X), is given by the intersection⋂
ν∈U Rν in K(X). There is also a canonical morphism of locally ringed

spaces

πX : ZR(X) −→ X

ν 7−→ xν

sending a valuation ν to its unique center xν on X, and whose morphism of

structure sheaves π]X : OX → (πX)∗OZR(X) is given on stalks by the canonical
inclusion OX,xν ↪→ Rν . If X is normal, a standard result in commutative

ring theory implies that π]X is an isomorphism. These facts and more can
be found in [Que20, Appendix A].

Finally, the Zariski–Riemann space ZR(X) carries a sheaf of partially or-
dered groups ΓX = K(X)×/O×ZR(X), whose stalk at ν ∈ ZR(X) is given by

the (totally ordered) value group Γν := K(X)×/R×ν of ν. Here K(X)× de-
notes the constant sheaf on ZR(X) with value K(X)×. There is a canonical
morphism of sheaves val : K(X)× � ΓX , and the image val(OZR(X) r {0})
is the sheaf of monoids consisting of non-negative sections of ΓX , denoted
ΓX,+. Note that ΓX is the sheaf of Cartier divisors on ZR(X) and ΓX,+ is
the sheaf of effective Cartier divisors. In what follows, we will also need the
tensor product ΓX,Q := ΓX ⊗Q, and similarly its subsheaf ΓX,Q+ consisting
of non-negative sections of ΓX,Q.

Definition 3.5.2 (Valuative Q-ideals [ATW19, Section 2.2]). A valuative
Q-ideal over X is a section γ ∈ H0(ZR(X),ΓX,Q+). For ν ∈ ZR(X), we
write γν for the stalk of γ at ν.

Remark 3.5.3. The notion of valuative Q-ideals over X still makes sense
when we drop the separatedness assumption on X, i.e., X is just an integral
scheme. In this case, we just work affine-locally. Namely, a valuative Q-ideal
over X is a collection of sections (γSpec(A))Spec(A)⊂X , where the indexing
set consists of the nonempty open affine subsets Spec(A) ⊂ X, and each
γSpec(A) is a valuative Q-ideal over Spec(A), such that (γU )|ZR(V ) = γV for
every inclusion V ↪→ U of open affine subsets of X. This definition is easily
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seen to be equivalent to Definition 3.5.2 if X is separated. In this way, our
results below can be reduced to the case when X is also separated.

3.5.4. Idealistic exponents. Given a non-zero Rees algebra I• on X, we as-
sociate a valuative Q-ideal γI• over X stalk-wise:

γI• := (γI•,ν)ν∈ZR(X) ∈
∏

ν∈ZR(X)

(Q⊗ Γν)+,

where for each ν ∈ ZR(X),

γI•,ν := min

{
ν(In)

n
: n ≥ 1

}
, where ν(In) := min

{
ν(g) : 0 6= g ∈ (In)xν

}
.

One can show that this minimum exists in (Q⊗Γν)+, and that (γI•,ν)ν∈ZR(X)

is a compatible collection of germs of ΓX,Q+ [Que20, Section 2.2]. This
defines a map:

(3.2)

{
non-zero Rees algebras
I• on X

}
→
{

valuative Q-ideals γ over X
}
.

The valuative Q-ideals in the image of this map (3.2) are called idealistic
exponents over X.

Remark 3.5.5. A valuative Q-ideal γ is an effective Cartier divisor with
Q-coefficients on ZR(X). If X is quasi-compact, we can also see γ as a
Cartier divisor with Q-coefficients on a modification of X. Indeed, there
exists a positive integer N such that Nγ locally is the image under val
of some element in OZR(X). Since ZR(X) is quasi-compact, finitely many
representatives suffice, and therefore, we may take some modification X ′ →
X such that these representatives are regular on X ′. In other words, γ is the
idealistic exponent associated to the Rees algebra (ID, N) for some effective
Cartier divisor D on X ′.

3.5.6. Ideally, we want a map going backwards in (3.2) as well. Given a
valuative Q-ideal γ over X, an obvious candidate for a filtration Iγ,• of ideals
of OX associated to γ is:

Iγ,n(U) :=
{
g ∈ OX(U) : ν(g) ≥ n · γν for every ν ∈ π−1

X (U)
}
.(3.3)

Note that Iγ,• is quasi-coherent as an OX -algebra. Indeed, fix a modification
π : X ′ → X such that Nγ is the idealistic exponent associated to an effective

Cartier divisor on X ′ (Remark 3.5.5). Then the OX′-algebra I
(X′)
γ,• associated

to γ is quasi-coherent (for example, by Theorem 3.5.7(ii)), and hence, the

OX -algebra Iγ,• = π∗I
(X′)
γ,• ∩ OX is also quasi-coherent.

However, we caution that Iγ,• is not in general a Rees algebra on X,
because it may not be finitely generated. Nevertheless, the constructions in
3.5.4 and (3.3) provide a numerical approach to computing integral closures
of Rees algebras. Moreover, under the additional assumption that X is
Nagata, both maps (3.2) and (3.3) restrict to an order-reversing one-to-one
correspondence between{

integrally closed, non-zero
Rees algebras I• on X

}
←→

{
idealistic exponents γ
over X

}
.(3.4)

Indeed, both statements are consequences of:
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Theorem 3.5.7. Let X be an integral scheme.

(i) If γ is a valuative Q-ideal over X, then the OX-subalgebra Iγ,• of
OX [t] is integrally closed in OX [t].

(ii) If γ = γI• is an idealistic exponent over X, then Iγ,• = IC(I•). In
particular, if X is Nagata, Iγ,• is an integrally closed Rees algebra
on X (Remark 3.3.3).

Proof. Both parts can be proven affine-locally (Remark 3.5.3), so we may
assume X is separated, in which case we refer the reader to [Que20, Lemma
2.2.1 and Theorem 2.2.2]. �

Definition 3.5.8 (cf. [ATW19, Section 3.3]). Let X be normal and let γ
be an idealistic exponent over X. The weighted blow-up of X along the
idealistic exponent γ is

Blγ X := BlIγ,• X = ProjX(Iγ,•),

where Iγ,• is the quasi-coherent graded OX -subalgebra of OX [t] associated
to γ (see 3.5.6).

If I• is a Rees algebra on X and γ = γI• is the corresponding idealistic
exponent, then Theorem 3.5.7(ii) says that Blnorm

I• X = Blγ X. The universal
property of the normalized blow-up (Theorem 3.4.3) can be reformulated as
follows:

Theorem 3.5.9 (cf. [ATW19, Section 3.3]). Let γ be an idealistic exponent
on an integral scheme X. The weighted blow-up π : Blγ X → X satisfies the
following universal property. Let f : T → X be a dominant morphism, with
T normal and integral. Then there exists at most one lift g : T → Blγ X of
f and such a lift exists if and only if γOT is equal to the idealistic exponent
over T associated to an effective Cartier divisor D on T (3.4). If this is the
case, then D = g−1(E). �

4. Weighted normal cones

4.1. Weighted embeddings. There is a one-to-one correspondence be-
tween closed embeddings (of finite presentation) and quasi-coherent ideal
sheaves (of finite type). Similarly, we introduce the geometric objects cor-
responding to Rees algebras:

Definition 4.1.1. A weighted closed embedding Z• ↪→ X is a sequence of
closed embeddings {Zn ↪→ X}n≥0, such that if In denotes the ideal sheaf of
Zn ↪→ X, then I• is a Rees algebra.

A weighted closed embedding thus consists of a closed embedding Z1 ↪→
X, together with a choice of infinitesimal thickenings Zn ↪→ X for n ≥ 1
satisfying the compatibility conditions of a Rees algebra. Note that Z0 = ∅.

We say that Z• is the weighted center of the weighted blow-up BlI• X (or
the Rees algebra I•). We also write BlZ• X for BlI• X.

4.2. Weighted normal cones. Given a weighted closed embedding Z• ↪→
X, we can forget the weighting and form

(i) the conormal algebra CZ1/X :=
⊕

n≥0(I1)n/(I1)n+1, and

(ii) the conormal sheaf N ∨
Z1/X

:= I1/I
2
1 ,
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(iii) the normal cone CZ1X := SpecX(CZ1/X).

For every n, the weighting defines a decreasing filtration F on (I1)n/(I1)n+1

where for d ∈ N, the dth filtered piece is F d =
(
(I1)n∩Id+(I1)n+1

)
/(I1)n+1.

We next introduce the weighted analogues of the above constructions:

Definition 4.2.1. Associated to a weighted closed embedding Z• ↪→ X are

(i) its weighted conormal algebra CZ•/X :=
⊕

n≥0 In/In+1 = Iext
• /(t−1),

(ii) its weighted conormal sheaf N ∨
Z•/X

:= (CZ•/X)+/(CZ•/X)2
+, and

(iii) its weighted normal cone CZ•X := SpecX(CZ•/X).

Note that the sheaf N ∨
Z•/X

has a natural N-grading induced from that of

the weighted conormal algebra. Recall too from Definition 3.2.2 that:

(iv) the projectivized weighted normal cone ProjX(CZ•/X) of Z• ↪→ X
is the exceptional divisor E of the weighted blow-up BlZ• X → X.

In the event that Z1 is a point, (iv) is also known as the projectivized weighted
tangent cone of Z• ↪→ X.

4.3. Deformation to the weighted normal cone. We will now general-
ize the classical deformation to the normal cone [Ful84, §5.2] to the weighted
case2. Recall that in the classical case, given a closed embedding i : Z ↪→ X,
there is a flat morphism π : DZX → A1 such that π−1(0) = CZX is the
normal cone and π−1(p) = X for all p 6= 0. More precisely, there is a closed
embedding k : Z × A1 ↪→ DZX such that outside 0 ∈ A1, the embedding
k is identified with k|A1r0 = i × 1 : Z × Gm ↪→ X × Gm and over 0, the
embedding k is the zero section k|0 = s : Z ↪→ CZX of the normal cone.
One can also replace A1 with P1.

Let us first begin with some generalities.

Definition 4.3.1 (Weighted cones). For a quasi-coherent, finitely generated
graded OX -algebra R with R0 = OX , we call C = SpecX(R) the weighted
cone of R.

If R is generated in degree 1, we simply call C the cone of R. Note that
every twisted weighted bundle (Definition 2.1.3) is a weighted cone.

4.3.2. Zero section. Every weighted cone C = SpecX(R) over X admits
a zero section s : X ↪→ C, induced by the surjection R � R0 = OX . This
closed embedding s : X ↪→ C fits into a weighted closed embedding s• : X• ↪→
C with s1 = s. This weighted embedding s• : X• ↪→ C is defined by the Rees
algebra I• on C given by

Id :=
⊕
n≥d

Rn for d ∈ N.

Note that the weighted normal cone CX•C recovers C. Finally, C → X is a
twisted weighted bundle, if and only if s• is a regular weighted embedding.

Definition 4.3.3. Let i• : Z• ↪→ X be a weighted embedding. The defor-
mation to the weighted normal cone is DZ•X = SpecX(Iext

• ).

We make the following observations:

2We use the notation DZX ⊂ DZX instead of M◦ZX ⊂ MZX and the special point 0
instead of ∞.
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(i) The grading equips DZ•X with a Gm-action.
(ii) The inclusion OX [t−1] ⊂ Iext

• induces a Gm-equivariant map p : DZ•X →
X × A1.

(iii) The induced morphism π : DZ•X → A1 is flat since t−1 is regular
on Iext

• .
(iv) The filtration (Iext

≥d ) induces a weighted closed Gm-equivariant em-

bedding k• : (Z × A1)• ↪→ DZ•X.

Note that k1 is induced by the surjection Iext
• → Iext

• /(Iext
+ ) = (OX/I1)[t−1]

so (Z × A1)1 = Z1 × A1. In general, however, (Z × A1)n 6= Zn × A1, e.g.,
Iext
• /(Iext

≥2 ) is OX/I2 in degrees ≤ 0 and I1/I2 in degree 1.

Proposition 4.3.4 (Deformation to the weighted normal cone). Consider

the sequence (Z × A1)•
k•−→ DZ•X

p−→ X × A1 → A1.

(i) Outside 0 ∈ A1, this restricts to

Z• ×Gm ↪
i•×1−−−→ X ×Gm

1−→ X ×Gm → Gm

(ii) Over 0 ∈ A1, this restricts to

Z• ↪
s•×1−−−→ CZ•X → X → {0}

where s• is the weighted zero section.

Proof. Outside 0, we are inverting t−1. This gives

Iext
• [t] = OX [t, t−1] and (Iext

≥d ) = Id[t, t
−1].

Over 0, we are taking the quotient with t−1 which gives

Iext
• /(t−1) =

⊕
n≥0

In/In+1 = CZ•/X and (Iext
≥d ) =

⊕
n≥d

In/In+1. �

4.3.5. Compactified version. There is also a compactified version of the de-
formation to the normal cone which is projective over X × A1 (or X × P1).
This is constructed as DZX = BlZ×{0}(X×A1). Similarly, given a weighted
embedding i• : Z• → X, we let

DZ•X = BlZ•×{0}(X × A1)

where Zn × {0} ↪→ X × A1 is the natural map. To describe DZ•X, we first
need to introduce projective completions of weighted cones.

Definition 4.3.6 (Projective completion). Fix a quasi-coherent, finitely
generated graded OX -algebra R with R0 = OX , with corresponding weighted
cone C. Let y be an indeterminate (with degree 1), and let R[y] denote the
quasi-coherent graded OX -algebra whose degree d piece is:

R[y]d := Rd ⊕Rd−1 · y ⊕ · · · ⊕R1 · yd−1 ⊕R0 · yd.
Then the projective completion of C, denoted P(C ⊕ 1), is defined as

P(C ⊕ 1) := ProjX(R[y]).

The projectivized weighted cone P(C) := ProjX(R) sits inside ProjX(R[y])
as the “hyperplane at infinity” cut out by y = 0, whose complement is the
y-chart D+(y) := [SpecX(R[y]y) / Gm] = SpecX(R), which coincides with
the cone C, cf. §1.3.
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Proposition 4.3.7. Let Z• ↪→ X be a weighted embedding, and let π denote
the composition

DZ•X := BlZ•×{0}(X × A1)
p−→ X × A1 pr2−−→ A1.

Then:

(i) The exceptional divisor of BlZ•×{0}(X×A1) is canonically identified
with the projective completion P(CZ•X⊕1) of the weighted normal
cone CZ•X.

(ii) π−1(0) = p−1 (X × {0}) is canonically identified with

BlZ• X ∪E P(CZ•X ⊕ 1)

where E = P(CZ•X) is the exceptional divisor of BlZ• X.
(iii) The deformation to the weighted normal cone DZ•X is naturally

identified as the open substack DZ•X r BlZ• X.

Proof. Let A1 = SpecZ[u]. Let J• be the Rees algebra of the embedding
Z• × {0} ↪→ X × A1. Then Jext

• = Iext
• [u, U ]/(t−1U − u). In particular,

CZ•×{0}/X×A1 = Jext
• /(t−1) = CZ•/X [U ] and the part (i) follows.

For part (ii), the fiber π−1(0) corresponds to t−1U = u = 0 and thus
splits up in two components. The first, t−1 = 0, is the exceptional divisor
P(CZ•X ⊕ 1), the second, U = 0, is BlZ• X = ProjX(Iext

• ) and their
intersection t−1 = U = 0 is the exceptional divisor E.

For part (iii), the open set in question is

D+(U) =
[
SpecX(Iext

• [U,U−1]) / Gm

]
= SpecX(Iext

• ) = DZ•X. �

5. Weighted blow-ups along regular embeddings

Recall that if Z ↪→ X is a regular embedding, then it is a quasi-regular
embedding [Stacks, 00LN], i.e., the conormal sheaf I/I2 is locally free and
the canonical surjection SymOZ (I/I2) � CZ/X is an isomorphism. In this
section we will discuss the notions of quasi-regular weighted embeddings and
regular weighted embeddings. However, we forewarn the reader that even
if Z• ↪→ X is a quasi-regular weighted embedding, there are only local
isomorphisms between SymOZ1

(N ∨
Z•/X

) and CZ•/X , which in general are not

compatible with each other. The former is a weighted (or graded) vector
bundle (2.1.9) while the latter in general is a twisted weighted vector bundle
(Proposition 5.1.4).

In the noetherian case, a weighted embedding is regular, if and only if it
is quasi-regular (Corollary 5.2.4). In this case there is a simple description
of the extended Rees algebra Iext

• (Proposition 5.2.2) and the charts of the
weighted blow-up (Corollary 5.2.5).

5.1. Quasi-regular weighted embeddings. Suppose that we have global
sections x1, x2, . . . , xm ∈ OX and positive integers d1, d2, . . . , dm such that
I• = (x1, d1) + · · · + (xm, dm). We consider the graded polynomial ring
(OX/I1)[X1, X2, . . . , Xm] where Xi has degree di. We have a natural graded
homomorphism

α : (OX/I1)[X1, X2, . . . , Xm]→ CZ•/X =
⊕
n≥0

In/In+1
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taking Xi to xi ∈ Idi/Idi+1. This map is evidently surjective.

Definition 5.1.1. We say that (x1, d1), . . . , (xm, dm) is a quasi-regular se-
quence if α is bijective.

When d1 = d2 = · · · = dm = 1, then In = In1 and this is the usual notion
of a quasi-regular sequence x1, x2, . . . , xm.

Proposition 5.1.2. The sequence (x1, d1), . . . , (xm, dm) is quasi-regular if
and only if x1, x2, . . . , xm is quasi-regular.

Proof. It suffices to prove that if (x1, d1), . . . , (xm, dm) is quasi-regular, then
so is (x1, e1), . . . , (xm, em) for every sequence e1, e2, . . . , em ∈ Z>0. Let J• =
(x1, e1) + · · ·+ (xm, em) and note that I1 = J1. For a multi-index α ∈ Nm,
let |α|d = d1α1 + · · ·+ dmαm and |α|e = e1α1 + · · ·+ emαm.

By quasi-regularity of (x1, d1), . . . , (xm, dm), we have that Ia/Ia+1 is a free
OX/I1-module with generators xα such that |α|d = a. We have a filtration

Ia/Ia+1 = Ia ∩ J1/Ia+1 ⊇ (Ia ∩ J2 + Ia+1)/Ia+1 ⊇ · · ·

By definition, we have the inclusion

(5.1)
⊕
|α|d=a
|α|e≥b

(OX/I1)xα ⊂ (Ia ∩ Jb + Ia+1)/Ia+1.

Claim. The inclusion (5.1) is an equality.

Proof of Claim. To see this, let z ∈ Ia∩Jb. Then by definition of J•, we have
that z =

∑
|α|e≥b zαx

α for some (non-unique) zα ∈ OX . Let c = min{|α|d :

zα 6= 0}. If c ≥ a, then z mod Ia+1 is in the left hand side and we are done.
If c < a and there exists α with |α|d = c and zα /∈ I1, then it follows by

quasi-regularity of (x1, d1), . . . , (xm, dm) that z ∈ IcrIc+1. This contradicts
that z ∈ Ia.

Finally, suppose that c < a and zα ∈ I1 = (x1, x2, . . . , xm) for all α such
that |α|d = c. Then z can be written as a polynomial

∑
α z̃αx

α where the
non-zero terms have |α|d > c and |α|e ≥ b. Repeating the argument with
this expression of z increases c and eventually c ≥ a and we get the desired
equality. 4

Next, we show that the equality (5.1) implies that (x1, e1), . . . , (xm, em) is
quasi-regular. Indeed, let f(X) =

∑
|α|e=b fαX

α ∈ OX [X1, X2, . . . , Xm] be

a polynomial that is homogeneous of degree b with respect to the ei-grading,
and such that the image of f in (OX/J1)[X1, X2, . . . , Xm] is non-zero. We
want to show that f(x) /∈ Jb+1. Set a = min{|α|d : fα /∈ I1}, so that by
the quasi-regularity of (x1, d1), . . . , (xm, dm), f(x) ∈ Ia r Ia+1. Then the
image of f(x) in (Ia ∩ Jb + Ia+1)/Ia+1 is non-zero, and is not contained
in (Ia ∩ Jb+1 + Ia+1)/Ia+1, by the claim and the hypothesis that f(X) is
homogeneous of degree b. In other words, f(x) /∈ Jb+1, as desired. �

Definition 5.1.3. We say that a weighted closed embedding Z• ↪→ X is
quasi-regular if at every point p ∈ |Z1|, there exists a smooth neighborhood
U → X of p, a quasi-regular sequence x1, x2, . . . , xm on U , and positive
integers d1, d2, . . . , dm, such that I•|U = (x1, d1) + · · ·+ (xm, dm).



WEIGHTED BLOW-UPS 37

Proposition 5.1.4. A weighted closed embedding Z• ↪→ X is quasi-regular
if and only if the weighted normal cone CZ•/X → Z1 is a twisted weighted
vector bundle.

Proof. If I• = (x1, d1) + · · ·+ (xm, dm) for a quasi-regular sequence, then we
have seen that CZ•/X is a graded polynomial ring. Conversely, if CZ•/X →
Z1 is a twisted weighted vector bundle, then locally on X we have that CZ•/X
is a graded polynomial ring OZ1 [X1, X2, . . . , Xm]. If we take any preimages
xi ∈ Idi of Xi ∈ Idi/Idi+1, then (x1, d1), . . . , (xm, dm) is quasi-regular. �

Remark 5.1.5. Recall that the weighted conormal sheaf N ∨
Z•/X

is a graded

vector bundle whereas the unweighted conormal sheaf N ∨
Z1/X

is equipped

with a filtration (§4.2). There is a canonical surjection N ∨
Z•/X

→ GrF (N ∨
Z1/X

)

but it is not an isomorphism of OZ1-modules in general, see Example 5.1.7.
For d ≥ 1, the dth graded pieces are as follows:

(N ∨
Z•/X

)d '
Id/Id+1

(Id/Id+1) ∩ (CZ•/X)2
+

GrdF (N ∨
Z1/X

) ' Id
(I2

1 + Id+1) ∩ Id
' Id/Id+1(

(I2
1 ∩ Id) + Id+1

)
/Id+1

.

Remark 5.1.6. If Z• ↪→ X is quasi-regular, then the canonical surjection
N ∨
Z•/X

� GrF (N ∨
Z1/X

) in Remark 5.1.5 is an isomorphism. Indeed, we may

assume we are in the local situation where I• = (x1, d1) + · · · + (xm, dm)
for a quasi-regular sequence x1, x2, . . . , xm ∈ OX , and positive integers
d1, d2, . . . , dm. By Definition 5.1.1, (N ∨

Z•/X
)d is only non-zero (in which

case it is locally free as an OZ1-module) in degrees d ∈ {d1, d2, . . . , dm},
and the same holds for GrdF (N ∨

Z1/X
). It remains to note that the canonical

surjection carries the free generators xi in each non-zero degree of N ∨
Z•/X

to

free generators in the corresponding degree of GrdF (N ∨
Z1/X

).

Example 5.1.7. For a counterexample, consider on X = A1
k = Spec(k[x])

the Rees algebra I• = (x, 1) + (x2, 3). Then (N ∨
Z•/X

)d 6= 0 if and only if

d ∈ {1, 3}, where (N ∨
Z•/X

)1 = (x)/(x2) and (N ∨
Z•/X

)3 = (x2)/(x3). On the

other hand, Gr1
F (N ∨

Z1/X
) = (x)/(x2), and GrdF (N ∨

Z1/X
) = 0 for d 6= 1.

5.2. Regular weighted embeddings. As before, suppose we have global
sections x1, x2, . . . , xm ∈ OX and positive integers d1, d2, . . . , dm such that
I• = (x1, d1) + · · ·+ (xm, dm). We have the graded polynomial ring

OX [t−1, X1, X2, . . . , Xm]

where we let deg(t−1) = −1 and deg(Xi) = di. There is a natural map

OX [t−1, X1, X2, . . . , Xm]→ Iext
• ⊂ OX [t, t−1]

of OX -algebras that takesXi to xit
di and t−1 to t−1. We note that t−diXi−xi

is in the kernel so that we obtain a map

β : B := OX [t−1, X1, X2, . . . , Xm]/(t−diXi − xi : 1 ≤ i ≤ m)→ Iext
• .

Note that β is surjective.
The following lemma generalizes [Stacks, 0G8S].

http://stacks.math.columbia.edu/tag/0G8S
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Lemma 5.2.1. The kernel of β equals the kernel of B → Bt−1, that is,
kerβ =

⋃
n≥1 AnnB(t−n). In particular, β is bijective if and only if t−1 ∈ B

is a non-zero divisor.

Proof. The composition B
β−→ Iext

• ↪→ OX [t, t−1] has the same kernel as β,
and factors through the localization B → Bt−1 . The result follows since
Bt−1 → OX [t, t−1] is an isomorphism. �

The following proposition generalizes [Stacks, 0BIQ]. For the definition of
H1-regular sequences, see [Stacks, 062D]. For noetherian stacks, H1–regular
is equivalent to regular.

Proposition 5.2.2. If x1, x2, . . . , xm is an H1-regular sequence, then β is
bijective, so that

BlI• X = ProjX(Iext
• )

'−→ProjX

(
OX [t−1, X1, X2, . . . , Xm]

(t−diXi − xi : 1 ≤ i ≤ m)

)
.

Proof. If x1, x2, . . . , xm ∈ OX is an H1-regular sequence, then the sequence
x1, x2, . . . , xm, t

−1 in OX [t−1, X1, X2, . . . , Xm] is H1-regular as well [Stacks,
0668]. The sequence t−d1X1 − x1, t

−d2X2 − x2, . . . , t
−dmXm − xm, t−1 gen-

erates the same ideal and is thus also H1-regular. It follows that t−1 ∈ B is
a non-zero divisor [Stacks, 068L]. �

Question 5.2.3. Is x1, x2, . . . , xm always an H1-regular sequence if β is
bijective?

The following corollary shows that the answer is ‘yes’ in the noetherian
case.

Corollary 5.2.4. Let I• = (x1, d1) + · · ·+ (xm, dm) as before. Consider the
conditions

(i) x1, x2, . . . , xm is an H1-regular sequence.
(ii) β is bijective.
(iii) x1, x2, . . . , xm is a quasi-regular sequence.

Then (i) =⇒ (ii) =⇒ (iii). If X is locally noetherian, then the three condi-
tions are equivalent.

Proof. We have seen that (i) =⇒ (ii) and if X is locally noetherian then
(iii) =⇒ (i). It thus remains to prove (ii) =⇒ (iii). But if β is bijective, then
the weighted conormal algebra becomes

CZ•/X = Iext
• /t−1Iext

• = OX [t−1, X1, X2, . . . , Xm]/(t−1, x1, x2, . . . , xm)

= OZ1 [X1, X2, . . . , Xm]

so the sequence x1, x2, . . . , xm is quasi-regular. �

As a consequence of Proposition 5.2.2 and Lemma 1.3.1 (with A = Z,
a = di ∈ Z, and r = xi · tdi), we obtain

Corollary 5.2.5 (Charts for blow-ups along regular weighted embeddings).
If x1, x2, . . . , xm is an H1-regular sequence, then for each 1 ≤ i ≤ m, the

http://stacks.math.columbia.edu/tag/0BIQ
http://stacks.math.columbia.edu/tag/062D
http://stacks.math.columbia.edu/tag/0668
http://stacks.math.columbia.edu/tag/068L
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chart D+(xi · tdi) of BlI• X is:[
SpecX

(
OX [t−1, X1, X2, . . . , Xm][X−1

i ]

(t−djXj − xj : 1 ≤ j ≤ m)

)
/ Gm

]
=

[
SpecX

(
OX [t−1, X1, X2, . . . X̂i, . . . , Xm]

(t−di − xi) + (t−djXj − xj : 1 ≤ j ≤ m, j 6= i)

)
/ µµµdi

]

where X̂i means Xi omitted. �

Slightly more generally, let A be a finitely generated abelian group, D(A)
be the corresponding diagonalizable algebraic group, and let D(A) act on X.
Assume that x1, x2, . . . , xm ∈ OX is an A-homogeneous H1-regular sequence,
with weights wtA(xi) = ai for 1 ≤ i ≤ m, so that I• = (x1, d1)+· · ·+(xm, dm)
is an A-graded Rees algebra on X defining a regular weighted embedding
Z• ↪→ X. Thus, I• descends to a Rees algebra I• on [X / D(A)], which
defines a regular weighted embedding [Z• / D(A)] ↪→ [X / D(A)]. Consider
the diagram:

D+(xi · tdi) BlI• X X

[D+(xi · tdi) / D(A)] [BlI• X / D(A)] [X / D(A)]

where the right morphism in the bottom row is also the weighted blow-up
BlI• [X / D(A)] → [X / D(A)]. The next corollary obtains a description
for [D+(xi · tdi) / D(A)] which is analogous to that for D+(xi · tdi) in the
previous corollary:

Corollary 5.2.6 (Charts for blow-ups along regular weighted embeddings,
with respect to a D(A)-action). For 1 ≤ i ≤ m, the ith chart [D+(xi ·
tdi) / D(A)] of BlI• [X / D(A)] is:[

SpecX

(
OX [t−1, X1, X2, . . . X̂i, . . . , Xm]

(t−di − xi) + (t−djXj − xj : 1 ≤ j ≤ m, j 6= i)

)
/ D(A′)

]
where A′ = A〈−ai

di
〉 := (A⊕Z)/〈(ai, di)〉 and the action of D(A′) corresponds

to the weights wtA′(Xj) = aj − dj aidi for j 6= i, and wtA′(t
−1) = ai

di
.

Proof. Note that the ith chart is, by Proposition 5.2.2:[
SpecX

(
OX [t−1, X1, X2, . . . , Xm][X−1

i ]

(t−djXj − xj : 1 ≤ j ≤ m)

)
/ D(A)×Gm

]
where the action of D(A) × Gm is expressed via the weights wtA⊕Z(Xj) =
(aj , dj) for 1 ≤ j ≤ m, and wtA⊕Z(t−1) = (0,−1). The corollary thus follows
from Lemma 1.3.1, with A there replaced by A ⊕ Z here, a there replaced
by (ai, di) here, and r = Xi. �

Motivated by the results above, we conclude the subsection with the fol-
lowing definition:
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Definition 5.2.7. A weighted closed embedding Z• ↪→ X is called regular
(resp. H1-regular) if at every point p ∈ |Z1|, there exists a smooth neighbor-
hood U → X of p, a regular (resp. H1-regular) sequence x1, x2, . . . , xm on U ,
and positive integers d1, d2, . . . , dm, such that I•|U = (x1, d1)+· · ·+(xm, dm).

5.3. Regular weighted centers. In this subsection we assume that X is
noetherian and regular, and we let Z• ↪→ X be a weighted closed embedding.

Definition 5.3.1. We say that the weighted center Z• is regular, if Z1 is
regular and Z• ↪→ X is a regular weighted embedding.

Recall that the latter is equivalent to the weighted normal cone CZ•/X →
Z1 being a twisted weighted vector bundle (Proposition 5.1.4). Note too that
while Z1 being regular ensures that Z1 ↪→ X is a regular embedding, it does
not imply that Z• ↪→ X is a regular weighted embedding (Example 5.1.7).

This means that smooth locally around each point p ∈ |Z1|, I• = (x1, d1)+
· · · + (xm, dm), where x1, x2, . . . , xm is a regular sequence that can be ex-
tended to a regular system of parameters at p, and d1, d2, . . . , dm are positive
integers. Note that our notion of regular weighted centers here is precisely
the notion of “centers” in [ATW19, Section 2.4].

Corollary 5.3.2. If Z• is a regular weighted center, then the deformation
to the weighted normal cone DZ•X = SpecX(Iext

• ) is regular. In particular,
the stack-theoretic weighted blow-up BlZ• X ⊂

[
DZ•X / Gm

]
is regular.

Proof. By Proposition 5.1.4, the weighted normal cone NZ•X is a twisted
weighted vector bundle over Z1, hence regular if Z1 is regular. Since NZ•X
is the Cartier divisor t−1 = 0 in DZ•X and its complement is X × Gm, it
follows that DZ•X is regular. �

For the remainder of this subsection, we focus on the local case where
X is a scheme, and I• = (x1, d1) + · · · + (xm, dm) for a regular sequence
x1, x2, . . . , xm ∈ OX that admits an extension x1, x2, . . . , xm, xm+1, . . . , xr
onX that is a regular system of parameters at some point p ∈ |Z1|. Adopting
the notation in Corollary 5.2.5, Corollary 5.3.2 can be made more precise as
follows:

Proposition 5.3.3. Let 1 ≤ i ≤ m. On DZ•X, the sequence

t−1, X1, X2, . . . , Xm, xm+1, . . . , xr

is a Z-homogeneous regular system of parameters at any preimage of p in
t−1 = 0. On the ith chart D+(xi · tdi) of BlI• X, there is a µµµdi-torsor and
the induced Gm-torsor as in Corollary 5.2.5.

(i) On the total space of the Gm-torsor,

t−1, X1, X2, . . . , X̂i, . . . , Xm, xm+1, . . . , xr

is a Z-homogeneous regular sequence at any preimage of p that cuts
out the Gm-orbit Spec

(
κ(p)[Xi, X

−1
i ]
)
.

(ii) On the total space of the µµµdi-torsor,

t−1, X1, X2, . . . , X̂i, . . . , Xm, xm+1, . . . , xr

is a Z/diZ-homogeneous regular system of parameters at any preim-
age of p.
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In both cases, wt(t−1) = −1 and wt(Xj) = dj.

Proof. Let q be a preimage of p in the Gm-torsor (resp. the µµµdi-torsor). Then
the dimension at q is r + 1 (resp. r). By Corollary 5.2.5, the sequences cut
out the same scheme as x1, x2, . . . , xr cuts out on X, and the proposition
follows. �

Slightly more generally, adopt the hypotheses and notations of Corol-
lary 5.2.6, and moreover assume that x1, x2 . . . , xm, xm+1 . . . , xr is an A-
homogeneous regular system of parameters on X at p. Then it is immediate
that:

Corollary 5.3.4. On the ith chart D+(xi · tdi) of BlI• [X / D(A)], the se-

quence t−1, X1, X2, . . . X̂i, . . . , Xm, xm+1, . . . , xr is an A′-homogeneous regu-
lar system of parameters (on the total space of the A′-torsor) with wt(t−1) =
ai
di

and wt(Xj) = aj − dj aidi . �

The sequences above can also be interpreted as sequences of sections of
line bundles on the stack D+(xi · tdi) itself. Similarly, in the A-graded case
xi · tdi is also only a section of a line bundle.

5.4. Toric interpretation. In this subsection, we consider toric varieties
and stacks over some base scheme (e.g., SpecC or SpecZ). Let N be a
lattice and let Σ be a fan in NR = N ⊗Z R. This defines a toric variety XΣ.
If Σ is simplicial, then the corresponding toric stack XΣ is smooth with
finite stabilizers and coarse space XΣ.

More generally, let ΣΣΣ = (N,Σ, β) be a stacky fan [BCS05, FMN10]. Recall
that this consists of a finitely generated abelian group N , a simplicial fan
Σ in NR and a homomorphism β : ZΣ(1) → N with finite cokernel. Here
Σ(1) denotes the rays of Σ and for every ρ ∈ Σ(1), the image of β(eρ) in
Ntf = N/tor(N) ⊂ NR is required to be a lattice point on the ray ρ. Thus, if
N is free, then β is the choice of a lattice point on every ray of Σ. A stacky
fan gives rise to a smooth toric stack XΣΣΣ with finite abelian stabilizers and
coarse space XΣ (a possibly singular toric variety). The toric stack XΣ

alluded to above is the toric stack corresponding to the stacky fan where we
for every ray ρ have chosen the generator of N ∩ ρ.

Example 5.4.1 (Weighted blow-up of smooth toric variety). Let N be a
lattice, and let Σ be a smooth fan in NR. Let σ be a cone in Σ with rays
ρ1, ρ2, . . . , ρn generated by primitive lattice points b1, b2, . . . , bn. Let v be a
lattice point contained in the cone σ. Then it can be uniquely expressed as
v =

∑n
i=1 dibi for some di ∈ N.

Consider the subdivision Σ∗(v) of Σ at v, i.e., this is the set of all cones
in Σ r {σ}, as well as the cones generated by subsets of {b1, b2, . . . , bn, v}
not containing {b1, b2, . . . , bn}. Letting XΣ∗(v) be the corresponding toric
variety, the identity map on N is compatible with the fans Σ∗(v) and Σ,
and thus induces a toric morphism

XΣ∗(v) → XΣ

which is simply the coarse space of the weighted blow-up of XΣ along the
regular weighted center I• = (ID1 , d1) + · · · + (IDn , dn), where each IDi is
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the ideal of the toric divisor Di corresponding to the ray ρi. The new ray
ρE in Σ∗(v), generated by v, corresponds to the exceptional divisor E.

To recover the Deligne–Mumford stack and not the coarse space, let
Σ∗(v)(1) = Σ(1) ∪ {ρE}3 denote the rays of Σ∗(v), and consider the surjec-

tive homomorphism β∗(v) : ZΣ∗(v)(1) → N , which sends eρ for each ρ ∈ Σ(1)
to the first lattice point of ρ and sends eρE to v. The associated toric stack
XΣΣΣ∗(v) coincides with the stack-theoretic weighted blow-up.

Example 5.4.2 (Weighted blow-up of toric stack). More generally, let
ΣΣΣ = (N,Σ, β) be a stacky fan and let σ ∈ Σ be a cone generated by
rays ρ1, ρ2, . . . , ρn with lattice points bi = β(eρi) and pick a lattice point
v contained in σ such that it can be written as v =

∑n
i=1 dibi for some,

necessarily unique, di ∈ N. Then there is a subdivided stacky fan ΣΣΣ∗(v) =(
N,Σ∗(v), β∗(v)

)
where Σ∗(v) is as above and β∗(v) extends β by assigning

β∗(v)(eρE ) = v. The identity map on N induces a morphism of toric stacks
XΣΣΣ∗(v) → XΣΣΣ and this is the weighted blow-up along the regular weighted
center I• = (ID1 , d1) + · · ·+ (IDn , dn).

Remark 5.4.3 (Partial Cox construction). We can also describe the weighted
blow-up using a partial Cox construction. Let Σ be a smooth fan4 and let
σ ∈ Σ be a cone with rays ρi and primitive generators bi as before. Let
v =

∑
i dibi be a lattice point in σ. Consider the lattice N ′ = N ⊕Z and the

homomorphism γ : N ′ → N defined by γ(x, 0) = x and γ(0, 1) =
∑

i dibi.
This gives the exact sequence

0 −→ Z α−−−−→ N ′
γ−−−−→ N −→ 0

where α(1) = (
∑

i dibi,−1). We lift the fan Σ∗(v) in NR to a fan Σ′(v) in N ′R
by lifting every ray ρ ∈ Σ(1) with generator b to the ray through (b, 0) and
the ray ρE to the ray through (0, 1). Note that Σ′(v)→ Σ∗(v) is a bijection

on cones. We can also partially compactify Σ′(v) to Σ′(v) by adding the

cones σ = {ρ1, . . . , ρn} and {ρ1, . . . , ρn, ρE}. Note that Σ′(v) → Σ induces
a bijection on maximal cones.

Then X
Σ′(v)

= Spec(Iext
• ) and XΣ′(v) = Spec(Iext

• ) r V (I+). The ho-

momorphism α corresponds to the Gm-action on Spec(Iext
• ) and the homo-

morphism γ induces Spec(Iext
• ) → XΣ. We can thus describe the weighted

blow-up as the stack-theoretic quotient
[
XΣ′(v) / Gm

]
.

To see this, let τ ∈ Σ be a maximal cone and let τ ′ ∈ Σ′(v) be the
corresponding cone. This induces a morphism of affine toric varieties Uτ ′ →
Uτ given by the morphism of monoids Mτ = (τ∨ ∩M)→Mτ ′ = (τ ′∨ ∩M ′)
induced by γ∨ : M →M ′ = M ⊕ Z where γ∨(m) =

(
m,m(v)

)
. Let ι : M →

M ′ be given by ι(m) = (m, 0).

(i) If τ 6= σ, then Mτ ′ = ι(Mτ ) ⊕ Z = γ(Mτ ) ⊕ Z so Uτ ′ = Uτ × Gm

where the Gm-action is on the second factor.
(ii) If τ = σ, then Mτ ′ = ι(Mτ ) ⊕ N. If m1,m2, . . . ,mn is a dual basis

to b1, . . . , bn, then the Gm-action on Uτ ′ corresponds to the weights

3If σ is a ray, then Σ∗(v)(1) =
(
Σ(1) \ {σ}

)
∪ {ρE}.

4More generally, it is enough that every cone containing σ is smooth: this ensures that
the Di are Cartier divisors in a neighborhood of D1 ∩ · · · ∩ Dn. Alternatively, we could
start with a stacky fan ΣΣΣ and the corresponding smooth toric stack.
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wt(mi, 0) = di and wt(0, 1) = −1 and γ∨(mi) = (mi, di). Thus,
Uτ = Spec k[m1,m2, . . . ,mn] and Uτ ′ = Spec k[M1,M2, . . . ,Mn, u]
where mi = udiMi in agreement with Proposition 5.2.2.

Moreover, if σi is the unique maximal cone in Σ′(v) above σ not containing
ρi, then Uσi is exactly the ith chart D+(xi · tdi) of the weighted blow-up
where IDi = (xi).

Example 5.4.4 (A local description via root stacks and ordinary blow-ups).
The above toric interpretation also motivates a local description of weighted
blow-ups along regular weighted centers via a sequence of root stacks (Ex-
ample 2.2.4), followed by a usual blow-up, and finally a sequence of “de-
rootings”. For convenience, let us illustrate this via an example, which is no
less informative than the general case.

Let X = A2
C = Spec(C[x1, x2]), i.e., the toric variety associated to the

standard fan Σ in R2. Consider the weighted blow-up of X along the regular
weighted center I• = (x1, 3) + (x2, 2). Let Di = V (xi) for i = 1, 2. Then
there exists a canonical identification as shown in the dotted arrow below:

Bl(
x
1
3
1 ,x

1
2
2

)X( 3
√
D1,

2
√
D2

) (
BlI• X

)(
3
√
D′1,

2
√
D′2
)

BlI• X

X
(

3
√
D1,

2
√
D2

)
X

usual blow-up

' sequence of

root stacks

weighted blow-up

sequence of root stacks

where D′i is the proper transform of Di in BlI• X. The corresponding stacky
fans are shown below:

root−−−−−−→

root−−−−−−→

−→ usual
blow-up

−→ weighted
blow-up

e1

e2

1 2 3

1

2

0
1

2

e1

e2

1 2 3

1

2

0
1

2

e1

e2

1 2 3

1

2

0
1

2 3

e1

e2

1 2 3

1

2

0
1

2

3

In the diagram above, each corner illustrates a fan Σ in the usual lattice
N = Z2, as well as some markings which define a homomorphism β : Zk →
N , where β(ei) is marked with the circle that is labeled i. The data (Σ, β)
at each corner then defines a stacky fan (N,Σ, β).

This also means that there are compatible canonical identifications be-
tween the (x′1 := x1 · t3)-chart (resp. (x′2 := x2 · t2)-chart) of BlI• X and the

(x
1/3
1 )′-chart (resp. (x

1/2
2 )′-chart) of Bl(x1/3,y1/2)X( 3

√
D1,

2
√
D2). Indeed, this
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can be sketched as follows:

(x1, x2)
root
 
(
x

1/3
1 , x

1/2
2

)
blow-up
 


(
x

1/3
1 ,

x
1/2
2

x
1/3
1

)
on the (x

1/3
1 )′-chart(

x
1/3
1

x
1/2
2

, x
1/2
2

)
on the (x

1/2
2 )′-chart

de-root
 



(
x

1/3
1 , x2(

x
1/3
1

)2
)

on the x′1-chart(
x1(

x
1/2
2

)3 , x1/2
2

)
on the x′2-chart

Example 5.4.5. We conclude this subsection with an example. Let X =
A3
C = Spec(C[x, y, z]), i.e., the toric variety associated to the standard fan

Σ in R3. Let us compute the logarithmic embedded resolution algorithm of
[Que20] for the closed subscheme Z = V (x2 +yz2 +y5) ⊂ X. The algorithm
first blows up X in the weighted center I• = (x, 3) + (y, 2) + (z, 2):

BlI• X = ProjX

(
k[x, y, z][x′, y′, z′, u]

(u3x′ − x, u2y′ − y, u2z′ − z)

)
−→ X

where V (u) denotes the exceptional divisor of BlI• X. The proper transform
of Z is V (x′2 + y′z′2 + y′5u4) ⊂ BlI• X, which is smooth on the x′-chart
and the z′-chart, but not on the y′-chart. The algorithm then resolves the
isolated singularity in the y′-chart by blowing up in the weighted center
I ′• = (x′, 2) + (z′, 2) + (u, 1). In terms of fans, the algorithm is depicted by
the following subdivisions of the standard fan Σ:

ex

ez

ey

 

ex

ez

ey
u

 

ex

ez

ey
u

v

Here, u = 3ex+2ey +2ez = (3, 2, 2) and v = 2ex+2ez +u = (5, 2, 4). After
the first subdivision at u, the unique maximal cone that does not contain ey
gives rise (via Remark 5.4.3(iv)) to the y′-chart of BlI• X. Thus, the second
weighted blow-up of the y′-chart along I ′• corresponds to the subdivision of
that maximal cone at v.

Example 5.4.6. In the example above, let us also demonstrate the utility
of Corollary 5.2.6 by using it to write down a presentation for one of the
charts of the second weighted blow-up. First recall from Corollary 5.2.5 that
the y′-chart of the first weighted blow-up BlI• X is:[

SpecX

(
k[x, y, z][u, x′, z′]

(u3x′ − x, u2 − y, u2z′ − z)

)
/ µµµ2

]
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where wtZ/2(u) = wtZ/2(x′) = 1 and wtZ/2(z′) = 0. Next, we directly apply
Corollary 5.2.6 to see that the x′′-chart of the second weighted blow-up is:[

SpecX

(
k[x, y, z][v, u′, z′′]

(v5u′3 − x, v2u′2 − y, v4u′2z′′ − z)

)
/ µµµ4

]
where wtZ/4(u) = wtZ/4(x′) = 2, wtZ/4(z′) = 0, wtZ/4(v) = 1, wtZ/4(u′) = 1,

and wtZ/4(z′′) = 2. Here, we have used the isomorphism (Z/2)〈−1
2〉 =(

(Z/2)⊕ Z
)
/〈(1, 2)〉 '−→ Z/4 that maps [(a, b)] 7→ 2a− b.

6. Kummer log blow-ups (not complete)

NOT COMPLETE. REMOVED IN THIS VERSION.

7. Geometric invariant theory (yet missing)

TO BE WRITTEN.
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