Exercise session 4

Problem 1

Consider

$$
\begin{align*}
& \min \frac{1}{2} x^{T} H x+c^{T} x \tag{QP}\\
& \text { s.t. } x \in \mathbb{R}^{2}
\end{align*}
$$

with

$$
H=\left[\begin{array}{ll}
1 & 2 \\
2 & a
\end{array}\right]
$$

Determine if (QP) has any global optimal solutions for
a) $a=6$ and $c=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$.
b) $a=4$ and $c=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$.
c) $a=4$ and $c=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$.
d) $a=2$ and $c=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$.

Problem 2

Consider

$$
\begin{aligned}
& \min \frac{1}{2} x^{T} H x+c^{T} x \\
& \text { s.t. } x \in \mathbb{R}^{3}
\end{aligned}
$$

with

$$
H=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

a) Use $L D L^{T}$-factorization to determine if H is positive definite.
b) For $c=\left(\begin{array}{lll}2 & 2 & 4\end{array}\right)^{T}$ determine if $-c \in \mathcal{R}(H)$. If yes, find an expression for all optimal solutions. If no, find a decent direction d.
c) Same as b) but for $c=\left(\begin{array}{lll}2 & 2 & 0\end{array}\right)^{T}$.

Problem 3

Consider (P) in exercise 10.10a) on page 99 in ASKS.
a) Rewrite (P) as

$$
\begin{align*}
& \min \frac{1}{2} x^{T} H x+c^{T} x+c_{0} \tag{QP=}\\
& \text { s.t. } A x=b
\end{align*}
$$

b) Solve $(\mathrm{QP}=)$ with the null-space method.

