Exercise session 8

Problem 1

Let $a_{j}, j=1, \ldots, n$ and b be given positive constants. Solve the following problem using Lagrangian relaxation. Motivate global optimality.

$$
\begin{aligned}
\text { (P) } & \min \\
& \sum_{j=1}^{n} x_{j}^{2} \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \geq b \\
& x_{j} \geq 0, \quad j=1, \ldots, n .
\end{aligned}
$$

Problem 2

Consider the following problem (P) in the variables x_{1}, x_{2} and x_{3}

$$
\begin{align*}
& \min \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+9 x_{1}+16 x_{2}+25 x_{3} \tag{P}\\
& \text { s.t. } \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \leq b \\
& \quad x_{j}>0, \quad j=1,2,3 .
\end{align*}
$$

where $b>0$ is a given strictly positive number.
Let the constraints $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}-b \leq 0$ be the only explicit constraint $(g(\mathbf{x}) \leq 0)$, while the constraints $x_{j}>0$ are considered to be implicit constraints $(\mathbf{x} \in X)$.
a) Use Lagrange relaxation (with respect to the explicit constraint) to deduce an explicit expression for the dual objective function $\varphi(y)$, valid for $y \geq 0$.
b) Assume that $\mathrm{b}=6$.

Calculate a number $\hat{y} \geq 0$ such that $\varphi(\hat{y}) \geq \varphi(y)$ for all $y \geq 0$.
Then calculate a vector $\hat{\mathbf{x}} \in X$ which together with \hat{y} satisfies the global optimality condition (GOC) for (P).
Finally, check that the primal objective value for $\mathbf{x}=\hat{\mathbf{x}}$ is equal to the dual objective value for $y=\hat{y}$.
c) Repeat all the steps in the above exercise (b), but now with $\mathrm{b}=18$.

Note that this is Problem 4 on SF1811 Exam 2017-01-11.

