Exercise session 8

Problem 1

Let $a_j, j = 1, ..., n$ and b be given positive constants. Solve the following problem using Lagrangian relaxation. Motivate global optimality.

(P)
$$\min \sum_{j=1}^{n} x_j^2$$

s.t.
$$\sum_{j=1}^{n} a_j x_j \ge b$$

$$x_j \ge 0, \qquad j = 1, \dots, n.$$

Problem 2

Consider the following problem (P) in the variables x_1 , x_2 and x_3

(P)
$$\min \ \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + 9x_1 + 16x_2 + 25x_3$$
$$s.t. \ \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \le b$$
$$x_j > 0, \qquad j = 1, 2, 3.$$

where b > 0 is a given strictly positive number. Let the constraints $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} - b \le 0$ be the only explicit constraint $(g(\mathbf{x}) \le 0)$, while the constraints $x_j > 0$ are considered to be implicit constraints $(\mathbf{x} \in X)$.

a) Use Lagrange relaxation (with respect to the explicit constraint) to deduce an *explicit* expression for the dual objective function $\varphi(y)$, valid for $y \ge 0$.

b) Assume that b = 6. Calculate a number $\hat{y} \ge 0$ such that $\varphi(\hat{y}) \ge \varphi(y)$ for all $y \ge 0$. Then calculate a vector $\hat{\mathbf{x}} \in X$ which together with \hat{y} satisfies the global optimality condition (GOC) for (P). Finally, check that the primal objective value for $\mathbf{x} = \hat{\mathbf{x}}$ is equal to the dual objective value for $y = \hat{y}$.

c) Repeat all the steps in the above exercise (b), but now with b=18.

Note that this is Problem 4 on SF1811 Exam 2017-01-11.