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What is a free boundary problem?

Given a boundary value problem (possibly some
Euler-Lagrange equations)

PDE(x , t ,u,∇u,D2u) = f (x , t) for x ∈ D
u(x , t) = g(x , t) on ∂D.

Find and describe a given set (implicitly) defined by the
solution, for instance a level set.



An example: the Obstacle problem.

The Dirichet problem: Minimize∫
D
|∇u(x)|2dx (1)

among all functions u ∈W 1,2(D) such that u = g on ∂D.

The Obstacle Problem: Minimize (1) under the extra condition
that

u(x) ≥ φ(x) for a.e. x ∈ D,

where φ is a given obstacle (say i C2(D)) such that φ(x) ≤ g(x)
on ∂D.



Why is it important?

The “holy grail” of the theory is to prove that the free boundary
∂{x ; u(x) = φ(x)} is C1 a.e.

Six reasons why:
1. Mathematical curiosity

2. For instance: hat making
3. Other “big mathematicians” are doing it.
4. What about Riemann?
5. Gives me access to grants.
6. You are naive!
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The problem of this talk.

We will study a play version of Griffith’s crack growth: Given a
domain (reference body) D ⊂ R3 and boundary data g(x , t) find
a pair (u,Ω(t)), u is a function and Ω(t) a “2−dimensional set”
such that:

For each t > 0 the pair (u,Ω) minimizes∫
D\D(t)

F (∇u)dx +H2(Ω(t))

in the class of functions/sets
I u(·, t) ∈W 1,2(D \ Ω(t)),
I u(x , t) = g(x , t) on ∂D,
I Ω(s) ⊂ Ω(t) for s ≤ t ,
I F is some given (convex, smooth, et.c.) function.

Don’t worry, we will simplify this!
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Simplifications (Toy models).

Different kinds of simpler problems:
I 2d problem: Let D ∈ R2 and Ω be a 1d set.

Problems.
I Scalar problems: Consider u to be a scalar valued

function u.Still problems.
I Restrained (“no curvature”) problem: Assume that Ω is

contained in a given set. Not as many problems!
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Our simplified problem.

Let D = B+
1 (0) ∈ R3 and g(x , t) be given boundary data.

Minimize, for each t ≥ 0,∫
D\Ω(t)

|∇u(x)|2dx +H2(Ω(t))

where

I u ∈W 1,2(B+
1 )

I Ω(t) ⊂ {x ; x3 = 0} is a 2d set
I Ω(s) ⊂ Ω(t) for s ≤ t
I u(x , t) = g(x , t) om (∂B+

1 (0))

I u(x1, x2,0, t) = 0 for (x1, x2,0) /∈ Ω(t).
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Question and problems.

Our question: Describe how the crack evolves: i.e. find an
equation for how Γ(t) = ∂Ω(t) evolve.

In particular we would want to find some sort of
“Euler-Lagrange equations” for how the speed of Γ(t) is
determined by g(x , t) and Ω(t).

Problems:
I The free boundary Γ(t) does appear explicitly in the

minimization problem.
- we need to somehow find a connection between the
minimizer and Γ(t).

I There is no good way to make variations in Ω.
I To describe the evolution of Γ(t) we would want to

calculate the velocity in the normal direction η. But the
normal is not apriori defined.

I “Jumps” in the crack growth.
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Strategy.

We will approach the problem in the following steps:
1. Growth of Solutions: Investigating the size of the

minimizer close to the crack-front.

2. Weakly differentiable structure of the crack front: the
normal η exists a.e. (measure theoretic sense). NEW IDEA

- BY USING HIGHER ORDER SINGULAR INTEGRAL

OPERATORS!
3. Showing that Γ is C1 a.e. by integral equations.
4. Regularity makes it possible to attack the problem by

classical calculus. (More or less.)
5. Discuss some issues/open questions.
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Growth of solutions - a heuristic proof.

Theorem
If (u,Ω) is a minimizer of∫

D\Ω(t)
|∇u(x)|2dx +H2(Ω(t))

and 0 ∈ Γ then

c ≤
‖u‖L2(B+

r (0))

r
n+1

2

∼
‖∇u‖L2(B+

r (0))

r
n−1

2

≤ C.

Comments:
1. This means that u grows like supBr |u(x)| ≈ r1/2.
2. Gemometric interpretation/information of the set
{u = 0} ∩ {x3 = 0}.
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Ω(0) has finite perimeter - Ahlfors’ regularity.

Theorem
If (u,Ω) is a minimizer of∫

D\Ω(t)
|∇u(x)|2dx +H2(Ω(t)).

Then the set {u = 0} ∩ {x3 = 0} has finite perimeter.

In particular, the free boundary Γ has a (meas. th.) normal η(x)
at a.e. point x ∈ Γ.

Consequences:
1. Better growth estimates around free boundary points.

u(x) =

√
2
π

r1/2 sin
(ϕ

2

)
+ o(r1/2)

2. The measure µ =
√

2
πH

1⌊
Γ
.
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C1−regularity a.e.

Theorem
If the normal η(x) is well defined for some x ∈ Γ then there
exists a small neighbourhood, Br (x), of x such that the free
boundary Γ ∩ Br (x) is smooth.

Consequences: This is a regularity result bit it allows us to
differentiate the solution i a rigorous way which implies that we
can derive the growth equations rigorously in many cases.
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The equations for growth.

Theorem
Let (u(t),Ω(t)) be a solution to the crack-growth problem. Then
Γ(0) = ∂Ω(0) is C1 a.e.

Furthermore, the speed ν(x) of the free boundary in the normal
direction satisfies the following integral obstacle problem
equation:

1. ν(x) ≥ 0

2. ν(x) = 0 when c(x) ≤
√

2
π

3. whenever ν(x) > 0∫
Γ(t)

ν(y)K (x , y)dH1(y) = R(x)−
3c3/2(x)

2
ν(x)

4. when c1/2 =
√

2
π and ν(x) = 0∫

Γ(t)
ν(y)K (x , y)dH1(y) ≤ R(x)−

3c3/2(x)

2
ν(x).
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equation:

1. ν(x) ≥ 0

2. ν(x) = 0 when c(x) ≤
√

2
π

3. whenever ν(x) > 0∫
Γ(t)

ν(y)K (x , y)dH1(y) = R(x)−
3c3/2(x)

2
ν(x)

4. when c1/2 =
√

2
π and ν(x) = 0∫

Γ(t)
ν(y)K (x , y)dH1(y) ≤ R(x)−

3c3/2(x)

2
ν(x).
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Open questions.

I Behavior at singular points.

I Behaviour at boundary points.

I Jumps.
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