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Abstract

In this talk, I will focus on a recent result together with Vesa Julin,
concerning the approximation of functions of Bounded Variation
(BV) using special neural networks on the unit circle. I will present
the motivation for studying these special networks, their properties,
and hopefully some proofs. Specifically the results we will cover:
the closure of the class of neural networks in L2, a uniform
approximation result, and a localization result.
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Origin of the problem

A real valued single hidden layer neural network is defined as

fW ,a(x) =
m∑
i=1

aiσ(wi · x + bi ) : Ω ⊂ Rn → R

usually W ∈ Rm(n+2) is (a1, . . . , am,w1, b1,w2, b2, . . .). Above σ is
called an activation function.

1. σ(x) = 1
1+e−x , sigmoid

2. σ(x) = tanh(x)

3. σ(x) = max(0, x), ReLU.
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Origin of the problem

Neural networks can be used for many things, but often they are
used in the context of (least squares) regression

inf
W ,a
‖fW ,a − y‖2L2(µ)

where µ is the empirical measure and y(x) is the observation at x .
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A network on the sphere

Consider

fW ,a(x) =
1√
m

m∑
i=1

aiσ(wi · x),

where the vectors wi ∈ Rn, W = (w1, . . . ,wm) ∈ Rmn, denote the
weights, and the coefficients ai ∈ {−1, 1}, a = (a1, . . . , am), are
given and the activation function is σ(t) = max{t, 0}.



6/19

Exponential convergence in the overparametrized regime

Let µ be the empirical measure for N datapoints (xi , yi ), where xi
is on the unit sphere, and |yi | ≤ 1.

Theorem (Du, Zhai, Poczós, Singh: 2019)

If the number of hidden nodes m & N6

λ40
and we intialize W , a

randomly, then with high probability we have

‖fW (t),a − y‖2L2(µ) ≤ e−λ0t‖fW (0),a − y‖2L2(µ)

Here λ0 is the smallest eigenvalue of the following Gramian matrix

Ew∼N(0,1) [(xi I{xi · w ≥ 0}) · (xjI{xj · w ≥ 0})]
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What happens in the underparametrized regime?

Recall that the network is (in 2D)

fW ,a(x) =
1√
m

m∑
i=1

aiσ(wi · x), x ∈ S1

where the vectors wi ∈ R2, W = (w1, . . . ,wm) ∈ R2m, denote the
weights, and the coefficients ai ∈ {−1, 1}, a = (a1, . . . , am), are
given and the activation function is σ(t) = max{t, 0}.

Given the vector a we denote the class of functions above as Hm,a.
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What happens in the underparametrized regime?

These are the questions that we would like to answer in a
quantitative way:

1. Do we still have exponential convergence?

2. What can we say about the minimum value of

inf
W
‖fW ,a − y‖2
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The behavior changes

Let us take the following example

y(x) = y(x1, x2) = I{x2≥0}x1

and consider approximating the above using H2,a, a = (1,−1). We
will see in a moment that

inf
W∈R4

Φ(W ) := inf
W∈R4

‖fW ,a − y‖L2(S1) = 0,

but Φ(W ) > 0 for all W ∈ R4. Furthermore

d

dt
Wt = −∇W Φ(W )

satisfies limt→∞ ‖Wt‖ =∞ for certain W0.
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The behavior changes

y(x) = y(x1, x2) = I{x2≥0}x1

Take the network

fW ,a(x) = σ

(
1

h
x2 + x1

)
− σ

(
1

h
x2

)
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The behavior changes

So,

1. the problem is not coercive

2. does not have a global minimum

3. and the gradient descent may diverge.

A way to get around this would be to consider a penalized form of
the minimization problem, to keep |W | bounded.



12/19

The goal

1. What can we say quantitatively about the value of

inf
W
‖fW ,a − y‖2L2 ?

2. And how far away from that is

inf
W∈BR

‖fW ,a − y‖2L2 ?

In other words, how much do we pay in terms of the minimum
value, in order to constrain the minimization problem?

When we say quantitative, we mean estimates with explicit
constants.
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Closure in L2

Our example shows that in general there is no global minima for

inf
W
‖fW − y‖22

so we need to identify the closure of Hm,a in L2.

Theorem
A function g : S1 → R belongs to the space Hm,a if and only if it
is of the form

g(x) =
∑
i∈J

I{ŵi · x ≥ 0}(vi · x) +
∑
i∈K

aiσ(wi · x)

where ŵi are unit vectors, the set of indices J,K are disjoint and
|J| ≤ m.

m = min{|i : ai = −1|, |i : ai = 1|}
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The properties of the function class

Simple observation

σ(t) = max{t, 0} =
|t|
2

+
t

2
= symmetric + linear.

since wi · x is linear, we know that every function fW ∈ Hm,a is

fW = antipodally symmetric + linear.
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Symmetry

Lemma
For a function on S1 of the form

g(x) =
∑
i∈J

I{ŵi · x ≥ 0}vi · x

if we decompose it into the antipodally symmetric and
antisymmetric parts we get

gs(x) =
1

2

∑
i∈J

sgn(ŵi · x)(vi · x)

ga(x) =
1

2

(∑
i∈J

vi

)
· x
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Uniform approximation theorem

Written in polar coordinates, the function g : S1 → R

g(θ) = I(−θ0,θ0) cos(θ)− I(−θ0+π,θ0+π) cos(θ) ∈ H2,(−1,1)

Theorem (Uniform approximation)

Assume that y ∈ BV (S1) is symmetric + linear, then

inf
fW∈Hm,a

‖fW − y‖22 ≤
62‖y‖2BV

m
.
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Main result, the localization theorem

Theorem
Assume that y ∈ BV (S1) is such that ‖y‖L2(S1) ≤ 1. Then for all
R ≥ R0 the following holds

min
fW∈Hm,a

|W |≤C(m)R

‖fW − y‖2L2(S1)

≤ inf
fW∈Hm,a

‖fW − y‖2L2(S1) + 5 · 104(‖y‖2BV + 1)
1

R1/9
,

where C (m) =
√
m/m and

R0 = max{(10‖y‖BV )6, 4 · 107}.
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Idea of proof

1. We prove it assuming first that y ∈ C 1(S1).

2. The closure allows us to find the minimizer

g(x) =
∑
i∈J

I{ŵi · x ≥ 0}(vi · x) +
∑
i∈K

aiσ(wi · x)

3. The symmetric part of the minimizer satisfies an
Euler-Lagrange equation. The Euler-Lagrange equation can
be used to prove that the minimizer inherits some regularity
from y .

4. We then turn these regularity estimates into bounds of the
vectors vi .

5. We use these bounds to construct a local approximation
|W | ≤ C (m)R.
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