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Introduction



Bosons, Fermions and Anyons

Bosons & Fermions: N-identical-particle Schrodinger wave function
U : (RN — C in spatial dimension d > 3 is symmetric or anti-symmetric
under permutations o € Sy

U(z1,...,2N8) = (£)° U (Toyy .-, Toy)

For local relativistic QFT, fiels commute or anti-commute (Spin-Statistics
theorem), see [Fierz '39] [Pauli '40]

P)p(a') = (F)p@)e(z),  o#a’

Anyons: In d = 2, continuous exchange transformation allows for
representations of the Braid group, more formally 7 (X2') = By, for instance

U(xy,22) = "W (x2, 1) , a€0,2)

[Streater, Wilde '70] [Leinaas, Myrheim '77] [Goldin, Menikoff, Sharp '81]
[Wilczek '82]

e Anyonic statistics also studied in one spatial dimension, [Klaiber '68]
[Fréhlich, Marchetti '89] [Polychronakos '98]



Boson-Anyon Correspondence

Setting:
e Let o > 0 be the statistics parameter

o We restrict ourselves on the interval [—L/2, L/2] (IR cut-off). Observables
satisfy periodic b.c. (momenta p € (27/L)Z)

e Introduce bosonic Hilbert space with generated by the operators (acting on
the vacuum | o))

{p+(0)}pe2n/Lz,r==+ {Rr}r=x
satisfying p.(p)" = p(=p), Rl = R,
[or(p), i (=P")] = r%ér,wdp,p/ pr(P)|Wo) =0,  Vp>0
[PT(O)aRw} = T\/a(;,.m/R,«/ , <‘I/0|R3_+Rq_* W) = 50, 0000

e {pr(p)}po prop to creation and annihilation operators

e p.(0) are charge operators and R, are raising/lowering unitaries.



Fields: Let € > 0 (UV cut-off), introduce regularized fields [Carey, Langmann
'99]

— — X —7 . 2 1 ipr—e X
i (w5) = L/ SR, exp <m/5§ {m(o) +3° —pr(p)e” P'/QD :
p#0 P
o Operator-valued distribution as ¢ — 0T
e Vertex Operators on a Hilbert space [Klaiber '67] [Carey, Langmann '99]

e More general operators, e.g., composite anyons, inhomogeneous setting
[Moosavi et al. '17]

Exchange Relations: Equal time, = # 2’
G (a; )l (a5 ¢') = e rmad esmnlamalick )y’ (1 ) (a5 €)
(s )T (2 ) = eI (2 )l (as€)

e Interpolation between « even (bosons) and odd (fermions). Special case
a =1 are “standard” Dirac Fermions.

e sgn(z;e) is a smooth regularization of the sign function, also found in
[Frohlich, Marchetti "89] and peculiar of one dimension



Why correspondence?:

e Generalization boson-fermion correspondence (Hilbert spaces) [Carey, Hurst
'85]

e Boson operators are the anyon currents (anyon normal-ordering)

Anyon Normal-ordering: ¢ (z) operator-valued distribution, ;" (), ()
meaningless

e Point-splitting/Operator product expansions

NI @02 ()] = lim lim N ()0 (2 €]

pr(a) = N} ()0, (2)]

e Description of the models simpler in terms of the boson operators
(bosonisation). Models exactly solvable via Bogoliubov transformation.

Remarks: Anomalous commutators (Schwinger terms)

[N @r @), N (@) @)]] #0



QFTs of Anyons



Motivations and Goals

Question: Anyonic statistics interpolates between bosons and fermions: are
physical properties of fermionic QFTs sensitive to the statistics?

Goals:
e Makes sense of some one dimensional QFTs for anyons

i) Free relativistic anyons

ii) Current-current interaction [Luttinger '63][Mattis, Lieb ' 65] / [Thirring
'58][Klaiber '68]

iii) U(1)-gauge field interaction [Schwinger '62][Lowenstein, Swieca '71]
e Study condensation via ODLRO [Penrose, Onsager '56] [Yang '62]. ODLRO
studied in the anyonic Lieb-Liniger model [Colcelli, Trombettoni '18 -'20]

Remark: Luttinger and Schwinger models exactly solvable, expect the anyonic
extensions to be likewise (exact computation correlation functions)



Free Relativistic Anyons

Hamiltonian: Relativistic (Dirac) anyons with “Fermi velocity” vg formally

descr. by
L/2

Ho = Z / Az N (@)(—irvoda )iy (2)]

L/2
which is made precise in bosonised form as

Ho =3 (5000 + 3 2o (<rmpr(rp)

r==4 p>0

Exactly Solvable: Free boson Hamiltonian with GS |¥q) (« independent)
e Excitations and excitation energies explicit
e Correlation functions, e.g.,
Aim lim (Doly! (2, 85 €)v (2,85 €) [ Wo)
O ot ir *
- (2m)« (a: —a —ru(t—t)+ ir0+>




Anyonic Luttinger Model

Hamiltonian: Adding current-current interaction Har, := Ho + Hint — EaL

p— L/2
Hucm Y0 TP [ de NIt @) @IV (07 (o)

==+ —L/2

which, by rearranging the potential and by bosonisation is made precise as
Hini= 1A 3 ([0:(0)p-(0) + (0]
r==%

+> 2% [or(=p)p—r(p) + Pr(—p)m(p)})

p>0

Remarks:
e This is local version, requires multiplicative renormalization
e Physical properties captured by
Renormalized velocity v:i=1voV 1+ 2\
Luttinger parameter K:=1/v1+42X\



Anyonic Schwinger Model

Gauge Field:
e Electrodynamics with F,,» =¢€,,/E/c
e Quantization of E and A (temporal or Weyl gauge)

Hamiltonian: Gauge covariant derivative 10, — 10, — eA(x)

L/2
L/2 ~
+ Z / de[wj_(w)on(—iax + eA(2))P ( )] — Eas
r=+/-L/2

e Gauge invariance, Gauge invariant normal-ordering

Gauss’ Law: Non-dynamical constraint 0z E = gtot
e
Va

e (G generator (small) gauge transformations

G(p) := —ipE®) + —=(p+(p) + p—(p)) = Bext (D)



Physical Applications



What is Off-Diagonal Long-Range Order?

Penrose-Onsager Criterion: For a homogeneous system, condensation (BEC,
Superconductivity) when

D ona’) = (wi(x)w;(x» <wi<x>¢:(x>>)
’ W@y @) @ @) (@)

has largest eigenvalue A1 ~ O(Volume). Via Fourier transform

L/2 _
A1 = ﬁkn\in ng = Z / dz ;)'/.,(‘712 (l‘, O) eilkrz
r=+ —L/2

e ODLRO: Condensation <+ decay/integrability of v*)(z, 0)

Mesoscopic Condensation:

Pk, ~ L€ Condensation parameter C close to 1

min

For finite but large systems, e.g. cold atoms, experimentally observable
phenomenon!



Solution of the AL Model

Exact Solution:

e Make non-local with approximate delta function 6, — ¢

L/2
Hine( Z / da dae’ N[, (2)d; (2)]6a(a — 2" ) N[0 ('), (2)]

L/2

e Hamiltonian diagonalized via Bogoliubov transformation Sa1.(a) and GS
[War(a)) = e AL Wo)
e Singular local limit via multiplicative renormalization

Grl(x —a'st —t'5e) == ili% Za2(War(a)| 9 (z,t; €)1 (2, €) |Par(a))

Two-point Correlation Function:

. . AL
limp o0 lim Gy (x5 85 €)
e—0t

b ( i )mAi( —i )‘mA: At (EE r)?
T (2m)* \z — vt +ir0* z + vt —ir0t " 8K



Results: Mesoscopic Condensation in the AL Model

Mesoscopic Condensation:

e Algebraic behaviour with decay ~ |x|_°‘(K2+1)/2K

, Ty, decreasing

K?+1

Ca=1—« 9K

Comparison: Anyonic Luttinger Model vs Anyonic Lieb-Liniger Model



Solution of the AS Model
Gauge Transformations: Smooth periodic maps [—L/2,L/2] — U(1):
X = eiA<Z); A(l‘) = 27”1)% + Asmall(w) N w e VA

where Agmani () is a periodic real function

Action on operators:

Uy (@) = Ny () (47 (@ + L) = Q] (2)e™ )
A(z) = A(z) — %@A(x) B(z) - E(z)

Anomaly: because [p.(p), pr(—p)] = rLp/2m

rvo =
pr(p) = pr(p) + %5‘/\@)
Gauge invariant currents

pr(p) := pr(p) +TﬁA(p)



Representation:
e On physical Hilbert space Hpnys only gauge invariant quantities (up to U(1))
e Gauss' law generator is gauge invariant

e

G(p) = —ipE(p) + NG (P+(p) + p-(p))

Gauss' law is exact = U(1) representation of (small) gauge transformations

e Chiral current py — p_ not gauge invariant, that is, chiral symmetry is broken

Urarge| U as(0)) = e | Wag(0)), 0 €[0,2m)

52}
thys :/ thys(e)
e Wilson lines: w(z) = 2med; A(z) = lim,_, g+ we(z)

Uy (a5€) — YT (25€) = hy (z3€)

Godw (2’1, t) == (Was(0)| 0, (z,t; )0, (2,15 €) [Was(0))



Results: Screening in the AS Model

Mass Generation: Spectrum Easn = >, w(p)n(p) + 2,0 UQSLEEZ;E
e
w(p) = voy/m2v2 + p? mi= ———
( ) 0 7'('0(’[)8/2
Screening: Study the “particle-antiparticle” potential
[Was(0;d)) : Qeat () :e(5(xfd/2)+5(x+d/2))
Vas(d) := (Vas(0; d)|Has|Was(0;d)) — (Vas(0)|[Hasc|Vas(0))

e In the vacuum, Viacuum (d) is the Coulomb potential, which grows linearly
Vvacuum(d) ~d

o If charges are screened, they do not interact at large distance and V' (d)
saturates




Two-point Correlation Function:

(r=r)o ~

lim G?E r/(l',o;t,o) = lim e 2 Gorrr (x,t)RT Tl(t)eaKn,r/(z;t)
L—oo v L—oco B )
Properties:

o Go.rr(2;0) free anyon two-point correlation function. Go, —,(z;t) = 1
e No ODLRO & asymptotic freedom:
If m =0 K, ,(x;0) = 0, otherwise for |z| large

K, . (x;0) S —muolz|

Also, limg_,0 K, v (z;0) = 0 for m > 0.
e Chiral condensate & revival

If m >0 R,,(0) uniformly bounded, R,/ (27j/mv3) ~; Rr,_.(0) for
j € Z and

Lh_rf;o R, _-(0) = (mZSre"’ )a

Furthermore, we have suppression [Kasher, Kogut, Susskind '73 - '74]

Ry (215 /mod)| < e O te [—m, 7] /mud



Conclusions

e Given an introduction to anyons in one dimension via the boson-anyon
correspondence and we have

e Constructed one dimensional interacting QFTs of anyons and controlled their
correlation functions

e Showed that ODLRO possible in the weaker form of mesoscopic
condensation in the AL model

e Showed that the AS model has a mass generation and hence exhibits
screening regardless of the statistics parameter

Perspectives:

e How does the boson-anyon correspondence compare with with other
approaches to anyons?

e Study other statistics-dependent properties, i.e., stability of matter

e s it possible to interpret anyons as ‘“creation/annihilation operators” on a
suitable Hilbert space?

Thank you!
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