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Introduction



Bosons, Fermions and Anyons

Bosons & Fermions: N -identical-particle Schrödinger wave function
Ψ : (Rd)N → C in spatial dimension d ≥ 3 is symmetric or anti-symmetric
under permutations σ ∈ SN

Ψ(x1, . . . , xN ) = (±)σΨ(xσ1 , . . . , xσN )

For local relativistic QFT, fiels commute or anti-commute (Spin-Statistics
theorem), see [Fierz ’39] [Pauli ’40]

ψ(x)ψ(x′) = (±)ψ(x′)ψ(x) , x 6= x′

Anyons: In d = 2, continuous exchange transformation allows for
representations of the Braid group, more formally π1(XN

2 ) = BN , for instance

Ψ(x1, x2) = eiαπΨ(x2, x1) , α ∈ [0, 2)

[Streater, Wilde ’70] [Leinaas, Myrheim ’77] [Goldin, Menikoff, Sharp ’81]
[Wilczek ’82]

• Anyonic statistics also studied in one spatial dimension, [Klaiber ’68]
[Fröhlich, Marchetti ’89] [Polychronakos ’98]



Boson-Anyon Correspondence

Setting:

• Let α > 0 be the statistics parameter

• We restrict ourselves on the interval [−L/2, L/2] (IR cut-off). Observables
satisfy periodic b.c. (momenta p ∈ (2π/L)Z)

• Introduce bosonic Hilbert space with generated by the operators (acting on
the vacuum |Ψ0〉)

{ρr(p)}p∈2π/LZ,r=± , {Rr}r=±

satisfying ρr(p)
† = ρr(−p), R†

r = R−1
r[

ρr(p), ρr′(−p′)
]

= r
Lp

2π
δr,r′δp,p′ ρr(p)|Ψ0〉 = 0 , ∀p ≥ 0[

ρr(0), Rr′
]

= r
√
αδr,r′Rr′ , 〈Ψ0|R

q+
+ R

q−
− |Ψ0〉 = δq+,0δq−,0

• {ρr(p)}p6=0 prop to creation and annihilation operators

• ρr(0) are charge operators and Rr are raising/lowering unitaries.



Fields: Let ε > 0 (UV cut-off), introduce regularized fields [Carey, Langmann
’99]

ψ−r (x; ε) = L−α/2
×
×R−rr exp

(
ir
√
α

2π

L

[
xρr(0) +

∑
p6=0

1

ip
ρr(p)e

ipx−ε|p|/2
])
×
×

• Operator-valued distribution as ε→ 0+

• Vertex Operators on a Hilbert space [Klaiber ’67] [Carey, Langmann ’99]

• More general operators, e.g., composite anyons, inhomogeneous setting
[Moosavi et al. ’17]

Exchange Relations: Equal time, x 6= x′

ψqr(x; ε)ψq
′
r (x′; ε′) = e−irπqq′α sgn(x−x′;ε+ε′)ψq

′
r (x′; ε′)ψqr(x; ε)

ψqr(x; ε)ψq
′

−r(x
′; ε′) = e−irπqq′αψq

′

−r(x
′; ε′)ψqr(x; ε)

• Interpolation between α even (bosons) and odd (fermions). Special case
α = 1 are “standard” Dirac Fermions.

• sgn(x; ε) is a smooth regularization of the sign function, also found in
[Fröhlich, Marchetti ’89] and peculiar of one dimension



Why correspondence?:

• Generalization boson-fermion correspondence (Hilbert spaces) [Carey, Hurst
’85]

• Boson operators are the anyon currents (anyon normal-ordering)

Anyon Normal-ordering: ψ±r (x) operator-valued distribution, ψ+
r (x)ψ−r (x)

meaningless

• Point-splitting/Operator product expansions

N [ψ+
r (x)∂nxψ

+
r (x)] = lim

ε→0
lim
x′→x

Nε[ψ
+
r (x; ε)∂nx′ψ

+
r (x′; ε)]

ρr(x) = N [ψ+
r (x)ψ−r (x)]

• Description of the models simpler in terms of the boson operators
(bosonisation). Models exactly solvable via Bogoliubov transformation.

Remarks: Anomalous commutators (Schwinger terms)[
N [ψ+

r (x)ψ−r (x)], N [ψ+
r (x)ψ−r (x)]

]
6= 0



QFTs of Anyons



Motivations and Goals

Question: Anyonic statistics interpolates between bosons and fermions: are
physical properties of fermionic QFTs sensitive to the statistics?

Goals:

• Makes sense of some one dimensional QFTs for anyons

i) Free relativistic anyons

ii) Current-current interaction [Luttinger ’63][Mattis, Lieb ’ 65] / [Thirring
’58][Klaiber ’68]

iii) U(1)-gauge field interaction [Schwinger ’62][Lowenstein, Swieca ’71]

• Study condensation via ODLRO [Penrose, Onsager ’56] [Yang ’62]. ODLRO
studied in the anyonic Lieb-Liniger model [Colcelli, Trombettoni ’18 -’20]

Remark: Luttinger and Schwinger models exactly solvable, expect the anyonic
extensions to be likewise (exact computation correlation functions)



Free Relativistic Anyons

Hamiltonian: Relativistic (Dirac) anyons with “Fermi velocity” v0 formally
descr. by

H0 :=
∑
r=±

∫ L/2

−L/2
dxN [ψ+

r (x)(−irv0∂x)ψ−r (x)]

which is made precise in bosonised form as

H0 =
∑
r=±

(π
L
ρr(0)2 +

∑
p>0

2π

L
ρr(−rp)ρr(rp)

)

Exactly Solvable: Free boson Hamiltonian with GS |Ψ0〉 (α independent)

• Excitations and excitation energies explicit

• Correlation functions, e.g.,

lim
L→∞

lim
ε→0+

〈Ψ0|ψ+
r (x, t; ε)ψ−r′(x

′, t′; ε)|Ψ0〉

=
δr,r′

(2π)α

(
ir

x− x′ − rv0(t− t′) + ir0+

)α



Anyonic Luttinger Model

Hamiltonian: Adding current-current interaction HAL := H0 +Hint − EAL

Hint :=
∑

r,r′=±

πv0λ

L

∫ L/2

−L/2
dxN [ψ+

r (x)ψ−r (x)]N [ψ+
r (x)ψ−r′(x)]

which, by rearranging the potential and by bosonisation is made precise as

Hint := v0λ
∑
r=±

([
ρr(0)ρ−r(0) + ρr(0)2]

+
∑
p>0

2π

L

[
ρr(−p)ρ−r(p) + ρr(−p)ρr(p)

])

Remarks:

• This is local version, requires multiplicative renormalization

• Physical properties captured by

Renormalized velocity v := v0

√
1 + 2λ

Luttinger parameter K := 1/
√

1 + 2λ



Anyonic Schwinger Model

Gauge Field:

• Electrodynamics with Fµµ′ = εµµ′E/c

• Quantization of E and A (temporal or Weyl gauge)

Hamiltonian: Gauge covariant derivative i∂x → i∂x − eA(x)

HAS :=
1

2

∫ L/2

−L/2
dxE(x)2

+
∑
r=±

∫ L/2

−L/2
dx Ñ

[
ψ+
r (x)rv0(−i∂x + eA(x))ψ+

r (x)
]
− EAS

• Gauge invariance, Gauge invariant normal-ordering

Gauss’ Law: Non-dynamical constraint ∂xE = %tot

Ĝ(p) := −ipÊ(p) +
e√
α

(
ρ+(p) + ρ−(p)

)
= %̂ext(p)

• G generator (small) gauge transformations



Physical Applications



What is Off-Diagonal Long-Range Order?

Penrose-Onsager Criterion: For a homogeneous system, condensation (BEC,
Superconductivity) when

γ(1)(x, x′) =

(
〈ψ+

+(x)ψ−+(x)〉 〈ψ+
+(x)ψ−−(x)〉

〈ψ+
−(x)ψ−+(x)〉 〈ψ+

−(x)ψ−−(x)〉

)
has largest eigenvalue λ1 ∼ O(V olume). Via Fourier transform

λ1 = nkmin nk =
∑
r=±

∫ L/2

−L/2
dx γ̃(1)

r,r (x, 0) e−ikrx

• ODLRO: Condensation ↔ decay/integrability of γ(1)(x, 0)

Mesoscopic Condensation:

nkmin ∼ L
C Condensation parameter C close to 1

For finite but large systems, e.g. cold atoms, experimentally observable
phenomenon!



Solution of the AL Model

Exact Solution:

• Make non-local with approximate delta function δa → δ

Hint(a) :=
∑
r=±

1

L

∫ L/2

−L/2
dx dx′N [ψ+

r (x)ψ−r (x)]δa(x− x′)N [ψ+
r′(x

′)ψ−r′(x
′)]

• Hamiltonian diagonalized via Bogoliubov transformation SAL(a) and GS
|ΨAL(a)〉 = e−iSAL(a)|Ψ0〉
• Singular local limit via multiplicative renormalization

GAL
r,r′(x− x′; t− t′; ε) := lim

a→0
Z−2
a;ε 〈ΨAL(a)|ψ+

r (x, t; ε)ψ−r′(x
′, t′; ε) |ΨAL(a)〉

Two-point Correlation Function:

limL→∞ lim
ε→0+

GAL
r,r′(x; t; ε)

=
δr,r′

(2π)α

( i

x− vt+ ir0+

)2α∆+
r
( −i

x+ vt− ir0+

)2α∆−r
∆±r :=

(K ± r)2

8K



Results: Mesoscopic Condensation in the AL Model

Mesoscopic Condensation:

• Algebraic behaviour with decay ∼ |x|−α(K2+1)/2K , nk decreasing

CAL = 1− αK
2 + 1

2K
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Comparison: Anyonic Luttinger Model vs Anyonic Lieb-Liniger Model



Solution of the AS Model

Gauge Transformations: Smooth periodic maps [−L/2, L/2]→ U(1):

x 7→ eiΛ(x), Λ(x) = 2πw
x

L
+ Λsmall(x) , w ∈ Z

where Λsmall(x) is a periodic real function

Action on operators:

ψ−r (x)→ eiαΛ(x)ψ−r (x)
(
ψ−r (x+ L) = eiπαQψ−r (x)eiπαQ

)
A(x)→ A(x)− α

2πe
∂xΛ(x) E(x)→ E(x)

Anomaly: because
[
ρr(p), ρr(−p)

]
= rLp/2π

ρr(p)→ ρr(p) +
r
√
α

2π
∂̂Λ(p)

Gauge invariant currents

ρ̃r(p) := ρr(p) + r
e√
α
Â(p)



Representation:

• On physical Hilbert space Hphys only gauge invariant quantities (up to U(1))

• Gauss’ law generator is gauge invariant

Ĝ(p) ≡ −ipÊ(p) +
e√
α

(
ρ̃+(p) + ρ̃−(p)

)
Gauss’ law is exact ⇒ U(1) representation of (small) gauge transformations

• Chiral current ρ+−ρ− not gauge invariant, that is, chiral symmetry is broken

Ularge|ΨAS(θ)〉 = e−iθ|ΨAS(θ)〉 , θ ∈ [0, 2π)

Hphys =

∫ ⊕
Hphys(θ)

• Wilson lines: w(x) = 2πe∂−1
x A(x) = limε→0+ wε(x)

ψ−r (x; ε)→ eiwε(x)ψ−r (x; ε) =: ψ̃−r (x; ε)

GAS
θ;r,r′(x, x

′; t, t′) := 〈ΨAS(θ)| ψ̃+
r (x, t; ε)ψ̃−r (x′, t′; ε) |ΨAS(θ)〉



Results: Screening in the AS Model

Mass Generation: Spectrum EAS,n =
∑
p ω(p)n(p) +

∑
p 6=0

v20 |Ĝ(p)|2

2Lω(p)2

ω(p) := v0

√
m2v2

0 + p2 m :=
e

√
παv

3/2
0

Screening: Study the “particle-antiparticle” potential

|ΨAS(θ; d)〉 : %ext(x) = e
(
δ(x− d/2) + δ(x+ d/2)

)
VAS(d) := 〈ΨAS(θ; d)|HAS|ΨAS(θ; d)〉 − 〈ΨAS(θ)|HASc|ΨAS(θ)〉

• In the vacuum, Vvacuum(d) is the Coulomb potential, which grows linearly
Vvacuum(d) ∼ d
• If charges are screened, they do not interact at large distance and V (d)
saturates

VAS(d) =
e2

2mv0

(
1− e−dmv0

)



Two-point Correlation Function:

lim
L→∞

GAS
θ;r,r′(x, 0; t, 0) = lim

L→∞
ei

(r−r′)θ
2 G̃0;r,r′(x; t)Rr,r′(t)e

αKr,r′ (x;t)

Properties:

• G̃0;r,r(x; 0) free anyon two-point correlation function. G̃0;r,−r(x; t) = 1

• No ODLRO & asymptotic freedom:
If m = 0 Kr,r′(x; 0) = 0, otherwise for |x| large

Kr,r′(x; 0) . −mv0|x|

Also, limx→0 Kr,r′(x; 0) = 0 for m ≥ 0.

• Chiral condensate & revival
If m > 0 Rr,r′(0) uniformly bounded, Rr,r′(2πj/mv

2
0) ∼j Rr,−r(0) for

j ∈ Z and

lim
L→∞

Rr,−r(0) =
(mv0eγ

4π

)α
Furthermore, we have suppression [Kasher, Kogut, Susskind ’73 - ’74]

|Rr,r′(2πj/mv2
0)| ≤ e−CtL

2

t ∈ [−π, π]/mv2
0



Conclusions

• Given an introduction to anyons in one dimension via the boson-anyon
correspondence and we have

• Constructed one dimensional interacting QFTs of anyons and controlled their
correlation functions

• Showed that ODLRO possible in the weaker form of mesoscopic
condensation in the AL model

• Showed that the AS model has a mass generation and hence exhibits
screening regardless of the statistics parameter

Perspectives:

• How does the boson-anyon correspondence compare with with other
approaches to anyons?

• Study other statistics-dependent properties, i.e., stability of matter

• Is it possible to interpret anyons as “creation/annihilation operators” on a
suitable Hilbert space?

Thank you!
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