On the spectrum of the Kronig-Penney model in a constant electric field

Simon Larson
Caltech \& University of Gothenburg
joint work with
Rupert L. Frank, Caltech \& LMU Munich

Djurö, August 2021

The problem

Consider the one-dimensional Schrödinger operator

$$
L_{F, \lambda}=-\frac{d^{2}}{d x^{2}}-F x+\lambda \sum_{n \in \mathbb{Z}} \delta(x-n) \quad \text { in } L^{2}(\mathbb{R})
$$

with $F, \lambda \in \mathbb{R}$.
Question: How do spectral properties of $L_{F, \lambda}$ depend on the parameters?

The problem

Consider the one-dimensional Schrödinger operator

$$
L_{F, \lambda}=-\frac{d^{2}}{d x^{2}}-F x+\lambda \sum_{n \in \mathbb{Z}} \delta(x-n) \quad \text { in } L^{2}(\mathbb{R})
$$

with $F, \lambda \in \mathbb{R}$.

Question: How do spectral properties of $L_{F, \lambda}$ depend on the parameters?
Some special cases:

- $F=0, \lambda=0$ then $\sigma=[0, \infty)$ only ac (the Laplace operator)
- $F \neq 0, \lambda=0$ then $\sigma=\mathbb{R}$ only ac (the Stark operator),
- $F=0, \lambda \neq 0$ then spectrum is only ac with band structure (the Kronig-Penney model)

In general case few mathematically rigorous results exist.
Ao '90, and independently Buslaev '99, suggested that the nature of the spectrum depends on number theoretic properties of F and the size of F / λ^{2}. In Berezhkovskii-Ovchinnikov '76 and Borysowicz '97 the potential for number theoretic dependence is missed.

Main results

$$
L_{F, \lambda}=-\frac{d^{2}}{d x^{2}}-F x+\lambda \sum_{n \in \mathbb{Z}} \delta(x-n) \text { with } F>0 \text { and } \lambda \in \mathbb{R}
$$

Theorem (Frank-L., '21)

Fix $F \in \pi^{2} \mathbb{Q}_{+}, \lambda \in \mathbb{R}$ and write $F=\frac{\pi^{2}}{3} \frac{p}{q}$ with $p, q \in \mathbb{N}$. Then

$$
\sigma_{a c}\left(L_{F, \lambda}\right)=\mathbb{R}, \quad \sigma_{s c}\left(L_{F, \lambda}\right)=\emptyset, \quad \sigma_{p p}\left(L_{F, \lambda}\right) \subseteq\left\{\frac{\pi^{2}}{3 q} m+\lambda: m \in \mathbb{Z}\right\} .
$$

Main results

$$
L_{F, \lambda}=-\frac{d^{2}}{d x^{2}}-F x+\lambda \sum_{n \in \mathbb{Z}} \delta(x-n) \text { with } F>0 \text { and } \lambda \in \mathbb{R}
$$

Theorem (Frank-L., '21)

Fix $F \in \pi^{2} \mathbb{Q}_{+}, \lambda \in \mathbb{R}$ and write $F=\frac{\pi^{2}}{3} \frac{p}{q}$ with $p, q \in \mathbb{N}$. Then

$$
\sigma_{a c}\left(L_{F, \lambda}\right)=\mathbb{R}, \quad \sigma_{s c}\left(L_{F, \lambda}\right)=\emptyset, \quad \sigma_{p p}\left(L_{F, \lambda}\right) \subseteq\left\{\frac{\pi^{2}}{3 q} m+\lambda: m \in \mathbb{Z}\right\}
$$

Remarks:

- By translation by 1 the spectrum of $L_{F, \lambda}$ is F periodic so the possible eigenvalues only depend on m through $m \bmod p$.
- The δ is a critical case. If $L=-\frac{d^{2}}{d x^{2}}-F x+V$ then
- $V \in L^{1} \cap H^{-1 / 2}(\mathbb{R} / \mathbb{Z}) \Longrightarrow \sigma_{a c}(L)=\mathbb{R} \quad$ (Galina Perelman '03)
- $V=\sum \delta^{\prime}(x-n) \Longrightarrow \sigma_{a c}(L)=\emptyset \quad$ (Avron-Exner-Last '94, Exner '95)
- We push techniques used by Perelman '05 to prove related results.
- While the theorem assumes $F \in \pi^{2} \mathbb{Q}_{+}$most of our work does not need this assumption.
- When $F \in \mathbb{R}_{+} \backslash \pi^{2} \mathbb{Q}$ + one expects a transition from singular continuous to pure point spectrum as λ^{2} / F is increased.

Main results

$L_{F, \lambda}^{\omega}=-\frac{d^{2}}{d x^{2}}-F x+\sum_{n \in \mathbb{Z}} g_{n}(\omega) \delta(x-n)$, with $F>0$ and $g_{n}(\omega)$ independent random variables, at least one having ac distribution and for all n

$$
\mathbb{E}_{\omega}\left[g_{n}\right]=0, \quad \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}, \quad \mathbb{E}_{\omega}\left[\left|g_{n}\right|^{\beta}\right]<C \quad \text { for some } \beta>4
$$

Theorem (Frank-L., '21)

Almost surely $L_{F, \lambda}^{\omega}$ defines a self-adjoint operator in $L^{2}(\mathbb{R})$ with $\sigma\left(L_{F, \lambda}^{\omega}\right)=\mathbb{R}$. Moreover, the spectrum is almost surely

- purely singular continuous if $F>\lambda^{2} / 2$,
- only pure point if $F<\lambda^{2} / 2$.

Main results

$L_{F, \lambda}^{\omega}=-\frac{d^{2}}{d x^{2}}-F x+\sum_{n \in \mathbb{Z}} g_{n}(\omega) \delta(x-n)$, with $F>0$ and $g_{n}(\omega)$ independent random variables, at least one having ac distribution and for all n

$$
\mathbb{E}_{\omega}\left[g_{n}\right]=0, \quad \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}, \quad \mathbb{E}_{\omega}\left[\left|g_{n}\right|^{\beta}\right]<C \quad \text { for some } \beta>4
$$

Theorem (Frank-L., '21)

Almost surely $L_{F, \lambda}^{\omega}$ defines a self-adjoint operator in $L^{2}(\mathbb{R})$ with $\sigma\left(L_{F, \lambda}^{\omega}\right)=\mathbb{R}$. Moreover, the spectrum is almost surely

- purely singular continuous if $F>\lambda^{2} / 2$,
- only pure point if $F<\lambda^{2} / 2$.

Remarks:

- Delyon-Simon-Souillard '85 proved $\left\{\begin{array}{l}F / \lambda^{2} \text { small } \Longrightarrow \text { a.s. only pp } \\ F / \lambda^{2} \text { large } \Longrightarrow \text { a.s. continuous spectrum }\end{array}\right.$
- For $-\frac{d^{2}}{d x^{2}}-F x+\lambda W_{\omega}$ (W_{ω} white noise) analogue result by Minami '92
- Kiselev-Last-Simon '97 considered $-\Delta+\frac{g_{n}(\omega)}{(1+|n|)^{\alpha}}$ in $l^{2}(\mathbb{Z})$, analogue result in critical case $\alpha=1 / 2$.
- If $F>\lambda^{2} / 2$, a.s. spectral measure vanishes on sets of Hausdorff dim. less than $1-\frac{\lambda^{2}}{2 F}$ (by techniques of Jitomirskaya-Last ' 99 \& '00 and Damanik-Killip-Lenz '00).

Reduction to ODE's

By Gilbert-Pearson subordinacy theory and in the random case the theory of rank-one perturbations (spectral averaging) proof is reduced to analysing solutions of the ODE

$$
\begin{aligned}
-\psi^{\prime \prime}(x) & -F x \psi(x)=E \psi(x) \quad \text { in } \mathbb{R} \backslash \mathbb{Z} \\
J \psi(n) & =0 \quad \text { and } \quad J \psi^{\prime}(n)=g_{n} \psi(n) \quad \text { for } n \in \mathbb{Z}
\end{aligned}
$$

where $J u(x)=\lim _{\varepsilon \rightarrow 0^{+}}[u(x+\varepsilon)-u(x-\varepsilon)]$ and $g_{n}=\lambda$ or $g_{n}=g_{n}(\omega)$.

Reduction to ODE's

By Gilbert-Pearson subordinacy theory and in the random case the theory of rank-one perturbations (spectral averaging) proof is reduced to analysing solutions of the ODE

$$
\begin{aligned}
-\psi^{\prime \prime}(x) & -F x \psi(x)=E \psi(x) \quad \text { in } \mathbb{R} \backslash \mathbb{Z} \\
J \psi(n) & =0 \quad \text { and } \quad J \psi^{\prime}(n)=g_{n} \psi(n) \quad \text { for } n \in \mathbb{Z}
\end{aligned}
$$

where $J u(x)=\lim _{\varepsilon \rightarrow 0^{+}}[u(x+\varepsilon)-u(x-\varepsilon)]$ and $g_{n}=\lambda$ or $g_{n}=g_{n}(\omega)$.
Specifically:

1. Does there exist a solution of the equation subordinate at $\pm \infty$?
2. If they exist, are the subordinate solutions square integrable?

Definition A non-trivial solution ψ is subordinate at $+\infty$ if for any lin. indep. solution η

$$
\lim _{M \rightarrow \infty} \frac{\int_{0}^{M}|\psi(x)|^{2} d x}{\int_{0}^{M}|\eta(x)|^{2} d x}=0
$$

Subordinacy at $-\infty$ is defined similarly.

Main ODE results

Lemma (Both models)

For all $E \in \mathbb{R}$ there exists a solution ψ of the eigenvalue equation subordinate and square integrable at $-\infty$.

Main ODE results

Lemma (Both models)

For all $E \in \mathbb{R}$ there exists a solution ψ of the eigenvalue equation subordinate and square integrable at $-\infty$.

Proposition (Deterministic model)

For $F \in \pi^{2} \mathbb{Q}_{+}, F=\frac{\pi^{2}}{3} \frac{q}{p}$, and $E \in \mathbb{R} \backslash\left\{\frac{\pi^{2}}{3 p} m+\lambda: m \in \mathbb{Z}\right\}$ there exists no solution of the eigenvalue equation subordinate at $+\infty$.

Main ODE results

Lemma (Both models)

For all $E \in \mathbb{R}$ there exists a solution ψ of the eigenvalue equation subordinate and square integrable at $-\infty$.

Proposition (Deterministic model)

For $F \in \pi^{2} \mathbb{Q}_{+}, F=\frac{\pi^{2}}{3} \frac{q}{p}$, and $E \in \mathbb{R} \backslash\left\{\frac{\pi^{2}}{3 p} m+\lambda: m \in \mathbb{Z}\right\}$ there exists no solution of the eigenvalue equation subordinate at $+\infty$.

Proposition (Random model)

Let $F>0, E \in \mathbb{R}$ and g_{n} be independent r.v.'s as before. Then
i) for every boundary condition at 0 the corresponding solution ψ of the eigenvalue equation satisfies, almost surely,

$$
\int_{M}^{M+1}|\psi(x)|^{2} d x=M^{-\frac{1}{2}+\frac{\lambda^{2}}{4 F}+o(1)} \quad \text { as } M \rightarrow \infty
$$

ii) almost surely there exists a boundary condition at 0 such that the corresponding solution ψ of the eigenvalue equation satisfies

$$
\int_{M}^{M+1}|\psi(x)|^{2} d x=M^{-\frac{1}{2}-\frac{\lambda^{2}}{4 F}+o(1)} \quad \text { as } M \rightarrow \infty
$$

Relative Prüfer coordinates

Define the reference solution

$$
\zeta(x)=\left(\frac{\pi}{F^{1 / 3}}\right)^{1 / 2}\left(i \operatorname{Ai}\left(-F^{1 / 3}(x+E / F)\right)+\operatorname{Bi}\left(-F^{1 / 3}(x+E / F)\right)\right)
$$

which satisfies

$$
-\zeta^{\prime \prime}(x)-F x \zeta(x)=E \zeta(x) \quad \text { and } \quad\{\zeta, \bar{\zeta}\}(x) \neq 0
$$

Relative Prüfer coordinates

Define the reference solution

$$
\zeta(x)=\left(\frac{\pi}{F^{1 / 3}}\right)^{1 / 2}\left(i \operatorname{Ai}\left(-F^{1 / 3}(x+E / F)\right)+\operatorname{Bi}\left(-F^{1 / 3}(x+E / F)\right)\right)
$$

which satisfies

$$
-\zeta^{\prime \prime}(x)-F x \zeta(x)=E \zeta(x) \quad \text { and } \quad\{\zeta, \bar{\zeta}\}(x) \neq 0
$$

Lemma

There exists real-valued and increasing $\gamma \in C^{\infty}(\mathbb{R})$ such that

$$
\begin{aligned}
\zeta(x) & =\frac{e^{i \gamma(x)}}{\sqrt{\gamma^{\prime}(x)}} \\
\gamma(x) & =\frac{2 \sqrt{F}}{3} x^{3 / 2}+\frac{E}{\sqrt{F}} x^{1 / 2}+\frac{\pi}{2}+O\left(x^{-1 / 2}\right)
\end{aligned}
$$

and the asymptotic expansion can be differentiated.

Relative Prüfer coordinates, complex set-up

Let ψ be a real-valued solution of the eigenvalue equation then there exists uniquely determined $\{\alpha(n)\}_{n \in \mathbb{Z}} \subset \mathbb{C} \backslash\{0\}$ such that

$$
\psi(x)=\alpha(n) \zeta(x)+\bar{\alpha}(n) \bar{\zeta}(x) \quad \text { for } x \in(n-1, n] .
$$

Relative Prüfer coordinates, complex set-up

Let ψ be a real-valued solution of the eigenvalue equation then there exists uniquely determined $\{\alpha(n)\}_{n \in \mathbb{Z}} \subset \mathbb{C} \backslash\{0\}$ such that

$$
\psi(x)=\alpha(n) \zeta(x)+\bar{\alpha}(n) \bar{\zeta}(x) \quad \text { for } x \in(n-1, n] .
$$

Lemma

Set $U(n)=\frac{g_{n}}{\gamma^{\prime}(n)}$, then

$$
\binom{\alpha(n+1)}{\bar{\alpha}(n+1)}=A_{n}\binom{\alpha(n)}{\bar{\alpha}(n)} \quad \text { with } A_{n}=\mathbb{1}+\frac{U(n)}{2 i}\left(\begin{array}{cc}
1 & e^{-2 i \gamma(n)} \\
-e^{2 i \gamma(n)} & -1
\end{array}\right) .
$$

Furthermore,

$$
\int_{n-1}^{n}|\psi(x)|^{2} d x \sim \frac{|\alpha(n)|^{2}}{n^{1 / 2}}
$$

Remarks:

1) Same structure as equations appearing for $\operatorname{OPUC}, A_{n} \in \mathbb{S U}(1,1)$.
2) The non-linear phase γ differs from more classical case.
3) $U(n) \sim n^{-1 / 2}$ matches critical decay rate in Kiselev-Last-Simon '97.

Relative Prüfer coordinates

Define the Prüfer Radius and angle $R, \eta: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
\alpha(n)=\frac{R(n)}{2 i} e^{i \eta(n)} \quad \text { and let } \quad \theta(n)=\gamma(n)+\eta(n),
$$

with $\eta(1) \in(-\pi, \pi]$ and $\eta(n+1)-\eta(n) \in(-\pi, \pi]$.

Relative Prüfer coordinates

Define the Prüfer Radius and angle $R, \eta: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
\alpha(n)=\frac{R(n)}{2 i} e^{i \eta(n)} \quad \text { and let } \quad \theta(n)=\gamma(n)+\eta(n)
$$

with $\eta(1) \in(-\pi, \pi]$ and $\eta(n+1)-\eta(n) \in(-\pi, \pi]$.

Lemma

Then

$$
\begin{aligned}
& R(n+1)^{2}=R(n)^{2}\left[1+U(n) \sin (2 \theta(n))+U(n)^{2} \sin ^{2}(\theta(n))\right] \\
& \cot (\eta(n+1)+\gamma(n))=\cot (\eta(n)+\gamma(n))+U(n)
\end{aligned}
$$

Relative Prüfer coordinates

Define the Prüfer Radius and angle $R, \eta: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
\alpha(n)=\frac{R(n)}{2 i} e^{i \eta(n)} \quad \text { and let } \quad \theta(n)=\gamma(n)+\eta(n)
$$

with $\eta(1) \in(-\pi, \pi]$ and $\eta(n+1)-\eta(n) \in(-\pi, \pi]$.

Lemma

Then

$$
\begin{aligned}
& R(n+1)^{2}=R(n)^{2}\left[1+U(n) \sin (2 \theta(n))+U(n)^{2} \sin ^{2}(\theta(n))\right] \\
& \cot (\eta(n+1)+\gamma(n))=\cot (\eta(n)+\gamma(n))+U(n)
\end{aligned}
$$

Since $U(n)=\frac{g_{n}}{\gamma^{\prime}(n)} \sim n^{-1 / 2} \rightarrow 0$ (almost surely),

$$
\begin{aligned}
\log \left(\frac{R(n+1)}{R(n)}\right)= & \frac{U(n)}{2} \sin (2 \theta(n))+\frac{U(n)^{2}}{8}+\frac{U(n)^{2}}{8}\left[\cos (4 \theta(n))-\frac{1}{2} \cos (2 \theta(n))\right] \\
& +O\left(|U(n)|^{3}\right)
\end{aligned}
$$

Repeated use of the equations yield

$$
\begin{aligned}
\log \left(\frac{R(N+1)}{R(1)}\right)= & \frac{1}{2} \sum_{n=1}^{N} U(n) \sin (2 \theta(n))+\frac{1}{8} \sum_{n=1}^{N} U(n)^{2} \\
& +\frac{1}{8} \sum_{n=1}^{N} U(n)^{2}\left[\cos (4 \theta(n))-\frac{1}{2} \cos (2 \theta(n))\right]+O(1) \\
\eta(N+1)-\eta(1)= & -\frac{1}{2} \sum_{n=1}^{N} U(n)+\frac{1}{2} \sum_{n=1}^{N} U(n) \cos (2 \theta(n)) \\
& +\frac{1}{4} \sum_{n=1}^{N} U(n)^{2}\left[\sin (2 \theta(n))-\frac{1}{2} \sin (4 \theta(n))\right]+O(1)
\end{aligned}
$$

Repeated use of the equations yield

$$
\begin{aligned}
\log \left(\frac{R(N+1)}{R(1)}\right)= & \frac{1}{2} \sum_{n=1}^{N} U(n) \sin (2 \theta(n))+\frac{1}{8} \sum_{n=1}^{N} U(n)^{2} \\
& +\frac{1}{8} \sum_{n=1}^{N} U(n)^{2}\left[\cos (4 \theta(n))-\frac{1}{2} \cos (2 \theta(n))\right]+O(1) \\
\eta(N+1)-\eta(1)= & -\frac{1}{2} \sum_{n=1}^{N} U(n)+\frac{1}{2} \sum_{n=1}^{N} U(n) \cos (2 \theta(n)) \\
& +\frac{1}{4} \sum_{n=1}^{N} U(n)^{2}\left[\sin (2 \theta(n))-\frac{1}{2} \sin (4 \theta(n))\right]+O(1)
\end{aligned}
$$

Repeated use of the equations yield

$$
\begin{aligned}
\log \left(\frac{R(N+1)}{R(1)}\right)= & \frac{1}{2} \sum_{n=1}^{N} U(n) \sin (2 \theta(n))+\frac{1}{8} \sum_{n=1}^{N} U(n)^{2} \\
& +\frac{1}{8} \sum_{n=1}^{N} U(n)^{2}\left[\cos (4 \theta(n))-\frac{1}{2} \cos (2 \theta(n))\right]+O(1) \\
\eta(N+1)-\eta(1)= & -\frac{1}{2} \sum_{n=1}^{N} U(n)+\frac{1}{2} \sum_{n=1}^{N} U(n) \cos (2 \theta(n)) \\
& +\frac{1}{4} \sum_{n=1}^{N} U(n)^{2}\left[\sin (2 \theta(n))-\frac{1}{2} \sin (4 \theta(n))\right]+O(1)
\end{aligned}
$$

Need to understand exponential sums of the form

$$
\sum_{a<n \leq b}\left(\frac{g_{n}}{\gamma^{\prime}(n)}\right)^{m} e^{i \mu \theta(n)} \quad \text { with }\left\{\begin{array}{l}
m=1,2 \\
\mu=2,4 \\
g_{n} \equiv \lambda \text { or } g_{n} \text { indep. r.v.'s }
\end{array}\right.
$$

Heuristically: $\theta=\gamma+\eta$ can be treated as a small perturbation of γ.

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

Following closely Kiselev-Last-Simon '97

$$
\sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}}=
$$

$\sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}=$
$\sum_{n=1}^{N} \frac{g_{n}(\omega)}{\gamma^{\prime}(n)} e^{i 2 \theta(n)}=$

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

Following closely Kiselev-Last-Simon '97

$$
\sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}}=\lambda^{2} \sum_{n=1}^{N} \frac{1}{\gamma^{\prime}(n)^{2}}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}}}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \stackrel{\text { a.s. }}{=} \frac{\lambda^{2}}{F} \log (N)+O(1)
$$

$$
\begin{gathered}
\sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}= \\
\sum_{n=1}^{N} \frac{g_{n}(\omega)}{\gamma^{\prime}(n)} e^{i 2 \theta(n)}=
\end{gathered}
$$

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

Following closely Kiselev-Last-Simon '97

$$
\begin{aligned}
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}}=\lambda^{2} \sum_{n=1}^{N} \frac{1}{\gamma^{\prime}(n)^{2}}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}}}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \stackrel{\text { a.s. }}{=} \frac{\lambda^{2}}{F} \log (N)+O(1), \\
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}=\lambda^{2} \underbrace{\sum_{n=1}^{N} \frac{e^{i \mu \theta(n)}}{\gamma^{\prime}(n)^{2}}}_{\text {van der Corput }}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \stackrel{\text { a.s. }}{=} O(1) \\
& \sum_{n=1}^{N} \frac{g_{n}(\omega)}{\gamma^{\prime}(n)} e^{i 2 \theta(n)}=
\end{aligned}
$$

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

Following closely Kiselev-Last-Simon '97

$$
\begin{aligned}
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}}=\lambda^{2} \sum_{n=1}^{N} \frac{1}{\gamma^{\prime}(n)^{2}}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}}}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \stackrel{\text { a.s. }}{=} \frac{\lambda^{2}}{F} \log (N)+O(1), \\
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}=\lambda^{2} \underbrace{\sum_{n=1}^{N} \frac{e^{i \mu \theta(n)}}{\gamma^{\prime}(n)^{2}}}_{\text {van der Corput }}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)} \stackrel{\text { a.s. }}{=} O(1),}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \\
& \sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)}{\gamma^{\prime}(n)} e^{i 2 \theta(n)} \stackrel{\text { a.s. }}{=} o\left(\log (N)^{1 / 2+\varepsilon}\right) \quad \text { for all } \varepsilon>0}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n}}
\end{aligned}
$$

The random model $\quad g_{n}(\omega)$ indep. r.v.'s with $\mathbb{E}_{\omega}\left[g_{n}\right]=0, \mathbb{E}_{\omega}\left[g_{n}^{2}\right]=\lambda^{2}$.
Claim: for any $R(1), \eta(1)$ almost surely

$$
\log \left(\frac{R(N+1)}{R(1)}\right)=\frac{\lambda^{2}}{8 F} \log (N)(1+o(1))
$$

Following closely Kiselev-Last-Simon '97

$$
\begin{aligned}
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}}=\lambda^{2} \sum_{n=1}^{N} \frac{1}{\gamma^{\prime}(n)^{2}}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}}}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \stackrel{\text { a.s. }}{=} \frac{\lambda^{2}}{F} \log (N)+O(1), \\
& \sum_{n=1}^{N} \frac{g_{n}(\omega)^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)}=\lambda^{2} \underbrace{\sum_{n=1}^{N} \frac{e^{i \mu \theta(n)}}{\gamma^{\prime}(n)^{2}}}_{\text {van der Corput }}+\sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)^{2}-\lambda^{2}}{\gamma^{\prime}(n)^{2}} e^{i \mu \theta(n)} \stackrel{\text { a.s. }}{=} O(1)}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \lesssim \frac{1}{n^{2}}} \\
& \sum_{n=1}^{N} \underbrace{\frac{g_{n}(\omega)}{\gamma^{\prime}(n)} e^{i 2 \theta(n)} \stackrel{\text { a.s. }}{=} o\left(\log (N)^{1 / 2+\varepsilon}\right) \quad \text { for all } \varepsilon>0}_{\mathbb{E}[\cdot]=0, \mathbb{E}\left[(\cdot)^{2}\right] \leq \frac{1}{n}}
\end{aligned}
$$

Remarks:

- Abstract $\mathbb{S U}(1,1)$ machinery implies existence of subordinate solution.
- Only the last estimate does not work for deterministic model.

The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

$$
\sum_{n=1}^{N} \frac{e^{i 2 \gamma(n)}}{\gamma^{\prime}(n)} \quad \text { as } N \rightarrow \infty
$$

Recall: $\gamma(x)=\frac{2 \sqrt{F}}{3} x^{3 / 2}+\frac{E}{\sqrt{F}} x^{1 / 2}+\frac{\pi}{2}+O\left(x^{-1 / 2}\right)$.

The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

$$
\sum_{n=1}^{N} \frac{e^{i 2 \gamma(n)}}{\gamma^{\prime}(n)} \quad \text { as } N \rightarrow \infty
$$

Recall: $\gamma(x)=\frac{2 \sqrt{F}}{3} x^{3 / 2}+\frac{E}{\sqrt{F}} x^{1 / 2}+\frac{\pi}{2}+O\left(x^{-1 / 2}\right)$.
However we can understand partial sums of lengths larger than $O(1)$ \Longrightarrow we can coarse grain our equations.

The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

$$
\sum_{n=1}^{N} \frac{e^{i 2 \gamma(n)}}{\gamma^{\prime}(n)} \quad \text { as } N \rightarrow \infty
$$

Recall: $\gamma(x)=\frac{2 \sqrt{F}}{3} x^{3 / 2}+\frac{E}{\sqrt{F}} x^{1 / 2}+\frac{\pi}{2}+O\left(x^{-1 / 2}\right)$.
However we can understand partial sums of lengths larger than $O(1)$
\Longrightarrow we can coarse grain our equations.

- Strong cancellations unless $\gamma^{\prime}(x)$ close to $\pi \mathbb{Z}$.
- Define X_{l} by $\gamma^{\prime}\left(X_{l}\right)=\pi l$,

$$
\gamma^{\prime}(x)=\sqrt{F} x^{1 / 2}+O\left(x^{-1 / 2}\right) \quad \Longrightarrow \quad X_{l}=\frac{\pi^{2}}{F} l^{2}+O(1)
$$

natural scale is given by $x \sim \frac{\pi^{2}}{F} l^{2}$.

- By combination of Poisson summation formula and the method of stationary phase we can accurately compute

$$
\sum_{n \in I_{l}} \frac{e^{2 i \gamma(n)}}{\gamma^{\prime}(n)} \quad \text { with } I_{l}=\left(\frac{\pi^{2}}{F}\left(l-\frac{1}{2}\right)^{2}, \frac{\pi^{2}}{F}\left(l+\frac{1}{2}\right)^{2}\right]
$$

Theorem (Frank-L., '21)

Fix $F>0, E \in \mathbb{R}, \lambda \in \mathbb{R}$, and set $I_{l}=\left(\frac{\pi^{2}}{F}\left(l-\frac{1}{2}\right)^{2}, \frac{\pi^{2}}{F}\left(l+\frac{1}{2}\right)^{2}\right]$.
Let ψ be a real-valued solution of the eigenvalue equation, then there exist $\mathcal{R}, \Lambda: \mathbb{N} \rightarrow \mathbb{R}$ such that for $x \in I_{l}$

$$
\psi(x)=\mathcal{R}(l) \frac{e^{i \Lambda(l)-i \lambda \sqrt{\lceil x\rceil / F}} \zeta(x)-e^{-i \Lambda(l)+i \lambda \sqrt{\lceil x\rceil / F}} \bar{\zeta}(x)}{2 i}+O\left(\frac{\mathcal{R}(l)|\zeta(x)|}{\sqrt{l}}\right)
$$

Moreover, \mathcal{R}, Λ satisfy

$$
\begin{aligned}
& \log \left(\frac{\mathcal{R}(l+1)}{\mathcal{R}(l)}\right)=\frac{\lambda \sin (2 \Theta(l))}{\sqrt{2 F l}}+\frac{\lambda^{2}}{4 F l}[1+\cos (4 \Theta(l))]+O\left(l^{-5 / 4}\right), \\
& \Lambda(l+1)-\Lambda(l)=\frac{\lambda \cos (2 \Theta(l))}{\sqrt{2 F l}}+O\left(l^{-3 / 4}\right),
\end{aligned}
$$

where

$$
\Theta(l)=\Gamma(l)+\Lambda(l) \quad \text { and } \quad \Gamma(l)=-\frac{\pi^{3}}{3 F} l^{3}+\frac{\pi}{F}(E-\lambda) l+\frac{5 \pi}{8},
$$

Remarks:

- $|\zeta(x)| \sim l^{-1 / 2}$ on I_{l}.
- Main term in representation of ψ solves equation between integers.
- Higher order terms in Λ equation are known but complicated.

The deterministic model, the rational case
Question: What makes $F \in \pi^{2} \mathbb{Q}$ special?

The deterministic model, the rational case

Question: What makes $F \in \pi^{2} \mathbb{Q}$ special?
Write $F=\frac{\pi^{2}}{3} \frac{p}{q}$ and compute change of \mathcal{R}, Λ when from $l=p k$ to $l=p(k+1)$.

$$
\sum_{l=p k}^{p(k+1)-1} \frac{e^{2 i \Gamma(l)+2 i \Lambda(l)}}{\sqrt{l}} \approx \frac{e^{2 i \Gamma(p k)+2 i \Lambda(p k)}}{\sqrt{p k}} \sum_{j=0}^{p-1} e^{2 i(\Gamma(p k+j)-\Gamma(p k))}
$$

The deterministic model, the rational case

Question: What makes $F \in \pi^{2} \mathbb{Q}$ special?
Write $F=\frac{\pi^{2}}{3} \frac{p}{q}$ and compute change of \mathcal{R}, Λ when from $l=p k$ to $l=p(k+1)$.

$$
\sum_{l=p k}^{p(k+1)-1} \frac{e^{2 i \Gamma(l)+2 i \Lambda(l)}}{\sqrt{l}} \approx \frac{e^{2 i \Gamma(p k)+2 i \Lambda(p k)}}{\sqrt{p k}} \sum_{j=0}^{p-1} e^{2 i(\Gamma(p k+j)-\Gamma(p k))}
$$

Key observation: For $k \in \mathbb{N}, j=0, \ldots, p-1$,

$$
\begin{aligned}
& \Gamma(p k)=\underbrace{-\pi q p^{2} k^{3}}_{\in \pi \mathbb{Z}}+\underbrace{\frac{\pi p}{F}(E-\lambda) k+\frac{5 \pi}{8}}_{\text {linear! }} \\
& \Gamma(p k+j)-\Gamma(p k)=\underbrace{-3 \pi q k j^{2}-3 p q k^{2} j}_{\in \pi \mathbb{Z}} \underbrace{-\frac{\pi q}{p} j^{3}+\frac{\pi}{F}(E-\lambda) j}_{\text {independent of } k}
\end{aligned}
$$

\Longrightarrow A new effective problem with linear phase!

Summary and conclusion

We considered

$$
-\frac{d^{2}}{d x^{2}}-F x+\sum_{n \in \mathbb{Z}} g_{n} \delta(x-n) \quad \text { in } L^{2}(\mathbb{R}) .
$$

- For $g_{n} \equiv \lambda$ and $F \in \pi^{2} \mathbb{Q}$ we prove that the spectrum is pure ac away from an explicit set of possible eigenvalues.
- For g_{n} independent random variables with $\mathbb{E}\left[g_{n}\right]=0, \mathbb{E}\left[g_{n}^{2}\right]=\lambda^{2}$ we prove transition from pp to sc spectrum as F / λ^{2} increases.
- Using relative Prüfer coordinates the problem is reduced to a discrete system resembling the OPUC setting which is analysed using exponential sum estimates.
- It remains an open problem what happens when $F \notin \pi^{2} \mathbb{Q}$ in first model and when $F / \lambda^{2}=1 / 2$ in second.

Summary and conclusion

We considered

$$
-\frac{d^{2}}{d x^{2}}-F x+\sum_{n \in \mathbb{Z}} g_{n} \delta(x-n) \quad \text { in } L^{2}(\mathbb{R}) .
$$

- For $g_{n} \equiv \lambda$ and $F \in \pi^{2} \mathbb{Q}$ we prove that the spectrum is pure ac away from an explicit set of possible eigenvalues.
- For g_{n} independent random variables with $\mathbb{E}\left[g_{n}\right]=0, \mathbb{E}\left[g_{n}^{2}\right]=\lambda^{2}$ we prove transition from pp to sc spectrum as F / λ^{2} increases.
- Using relative Prüfer coordinates the problem is reduced to a discrete system resembling the OPUC setting which is analysed using exponential sum estimates.
- It remains an open problem what happens when $F \notin \pi^{2} \mathbb{Q}$ in first model and when $F / \lambda^{2}=1 / 2$ in second.

Thank you for your attention!

