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The problem

Consider the one-dimensional Schrödinger operator

LF,� = � d
2

dx2
� Fx+ �

X

n2Z
�(x� n) in L

2(R)

with F,� 2 R.

Question: How do spectral properties of LF,� depend on the parameters?

Some special cases:

• F = 0, � = 0 then � = [0,1) only ac (the Laplace operator)

• F 6= 0, � = 0 then � = R only ac (the Stark operator),

• F = 0, � 6= 0 then spectrum is only ac with band structure (the
Kronig–Penney model)

In general case few mathematically rigorous results exist.

Ao ’90, and independently Buslaev ’99, suggested that the nature of the
spectrum depends on number theoretic properties of F and the size of F/�2.

In Berezhkovskii–Ovchinnikov ’76 and Borysowicz ’97 the potential for number
theoretic dependence is missed.
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Main results

LF,� = � d
2

dx2
� Fx+ �

X

n2Z
�(x� n) with F > 0 and � 2 R

Theorem (Frank–L., ’21)

Fix F 2 ⇡
2Q+,� 2 R and write F = ⇡2

3
p
q with p, q 2 N. Then

�ac(LF,�) = R , �sc(LF,�) = ; , �pp(LF,�) ✓
n

⇡2

3q m+ � : m 2 Z
o
.

Remarks:
• By translation by 1 the spectrum of LF,� is F periodic so the possible

eigenvalues only depend on m through m mod p.

• The � is a critical case. If L = � d2

dx2 � Fx+ V then

I V 2 L
1 \H

�1/2(R/Z) =) �ac(L) = R (Galina Perelman ’03)
I V =

P
�
0(x� n) =) �ac(L) = ; (Avron–Exner–Last ’94, Exner ’95)

• We push techniques used by Perelman ’05 to prove related results.
• While the theorem assumes F 2 ⇡

2Q+ most of our work does not need
this assumption.

• When F 2 R+\⇡2Q+ one expects a transition from singular continuous to
pure point spectrum as �2

/F is increased.
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Main results

L
!
F,� = � d

2

dx2
� Fx+

X

n2Z
gn(!)�(x� n), with F > 0 and gn(!) independent

random variables, at least one having ac distribution and for all n

E![gn] = 0 , E![g
2
n] = �

2
, E![|gn|� ] < C for some � > 4.

Theorem (Frank–L., ’21)

Almost surely L
!
F,� defines a self-adjoint operator in L

2(R) with �(L!
F,�) = R.

Moreover, the spectrum is almost surely

• purely singular continuous if F > �
2
/2,

• only pure point if F < �
2
/2.

Remarks:

• Delyon–Simon–Souillard ’85 proved

(
F/�

2 small =) a.s. only pp

F/�
2 large =) a.s. continuous spectrum

• For � d2

dx2 �Fx+�W! (W! white noise) analogue result by Minami ’92
• Kiselev–Last–Simon ’97 considered ��+ gn(!)

(1+|n|)↵ in l
2(Z), analogue

result in critical case ↵ = 1/2.
• If F > �

2
/2, a.s. spectral measure vanishes on sets of Hausdor↵ dim. less

than 1� �2

2F (by techniques of Jitomirskaya–Last ’99 & ’00 and
Damanik–Killip–Lenz ’00).
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Reduction to ODE’s

By Gilbert–Pearson subordinacy theory and in the random case the theory of
rank-one perturbations (spectral averaging) proof is reduced to analysing
solutions of the ODE

� 00(x)� Fx (x) = E (x) in R \ Z
J (n) = 0 and J 

0(n) = gn (n) for n 2 Z .

where Ju(x) = lim
"!0+

⇥
u(x+ ")� u(x� ")

⇤
and gn = � or gn = gn(!).

Specifically:

1. Does there exist a solution of the equation subordinate at ±1?

2. If they exist, are the subordinate solutions square integrable?

Definition A non-trivial solution  is subordinate at +1 if for any lin. indep.
solution ⌘

lim
M!1

RM

0
| (x)|2 dx

RM

0
|⌘(x)|2 dx

= 0 .

Subordinacy at �1 is defined similarly.
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Main ODE results

Lemma (Both models)

For all E 2 R there exists a solution  of the eigenvalue equation subordinate
and square integrable at �1.

Proposition (Deterministic model)

For F 2 ⇡
2Q+, F = ⇡2

3
q
p , and E 2 R \ {⇡2

3pm+ � : m 2 Z} there exists no
solution of the eigenvalue equation subordinate at +1.

Proposition (Random model)

Let F > 0, E 2 R and gn be independent r.v.’s as before. Then

i) for every boundary condition at 0 the corresponding solution  of the
eigenvalue equation satisfies, almost surely,

Z M+1

M

| (x)|2 dx = M
� 1

2+ �2

4F +o(1) as M ! 1 .

ii) almost surely there exists a boundary condition at 0 such that the
corresponding solution  of the eigenvalue equation satisfies

Z M+1

M

| (x)|2 dx = M
� 1

2� �2

4F +o(1) as M ! 1 .
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Relative Prüfer coordinates

Define the reference solution

⇣(x) =
⇣

⇡

F 1/3

⌘1/2⇣
iAi(�F

1/3(x+ E/F )) + Bi(�F
1/3(x+ E/F ))

⌘

which satisfies

�⇣00(x)� Fx⇣(x) = E⇣(x) and {⇣, ⇣̄}(x) 6= 0.

Lemma

There exists real-valued and increasing � 2 C
1(R) such that

⇣(x) =
e
i�(x)

p
�0(x)

,

�(x) =
2
p
F

3
x
3/2 +

Ep
F
x
1/2 +

⇡

2
+O(x�1/2) ,

and the asymptotic expansion can be di↵erentiated.

The Kronig–Penney model in a constant electric field S. Larson 7/15
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Relative Prüfer coordinates, complex set-up

Let  be a real-valued solution of the eigenvalue equation then there exists
uniquely determined {↵(n)}n2Z ⇢ C \ {0} such that

 (x) = ↵(n)⇣(x) + ↵(n)⇣(x) for x 2 (n� 1, n] .

Lemma

Set U(n) =
gn

�0(n)
, then

✓
↵(n+ 1)
↵(n+ 1)

◆
= An

✓
↵(n)
↵(n)

◆
with An = 1+

U(n)
2i

✓
1 e

�2i�(n)

�e
2i�(n) �1

◆
.

Furthermore, Z n

n�1

| (x)|2 dx ⇠ |↵(n)|2

n1/2
.

Remarks:

1) Same structure as equations appearing for OPUC, An 2 SU(1, 1).
2) The non-linear phase � di↵ers from more classical case.

3) U(n) ⇠ n
�1/2 matches critical decay rate in Kiselev–Last–Simon ’97.
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Relative Prüfer coordinates

Define the Prüfer Radius and angle R, ⌘ : N ! R by

↵(n) =
R(n)
2i

e
i⌘(n) and let ✓(n) = �(n) + ⌘(n) ,

with ⌘(1) 2 (�⇡,⇡] and ⌘(n+ 1)� ⌘(n) 2 (�⇡,⇡].

Lemma

Then

R(n+ 1)2 = R(n)2
h
1 + U(n) sin(2✓(n)) + U(n)2 sin2(✓(n))

i
,

cot(⌘(n+ 1) + �(n)) = cot(⌘(n) + �(n)) + U(n) .

Since U(n) = gn
�0(n) ⇠ n

�1/2 ! 0 (almost surely),
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log
⇣
R(n+ 1)
R(n)

⌘
=

U(n)
2

sin(2✓(n)) +
U(n)2

8
+

U(n)2

8

h
cos(4✓(n))� 1

2
cos(2✓(n))

i

+O(|U(n)|3)
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Repeated use of the equations yield

log
⇣
R(N + 1)

R(1)

⌘
=

1
2

NX

n=1

U(n) sin(2✓(n)) +
1
8

NX

n=1

U(n)2

+
1
8

NX

n=1

U(n)2
h
cos(4✓(n))� 1

2
cos(2✓(n))

i
+O(1)

⌘(N + 1)� ⌘(1) = �1
2

NX

n=1

U(n) +
1
2

NX

n=1

U(n) cos(2✓(n))

+
1
4

NX

n=1

U(n)2
h
sin(2✓(n))� 1

2
sin(4✓(n))

i
+O(1)
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1
4

NX

n=1

U(n)2
h
sin(2✓(n))� 1

2
sin(4✓(n))

i
+O(1)

Need to understand exponential sums of the form

X

a<nb

⇣
gn

�0(n)

⌘m
e
iµ✓(n) with

8
><

>:

m = 1, 2 ,

µ = 2, 4 ,

gn ⌘ � or gn indep. r.v.’s

Heuristically: ✓ = � + ⌘ can be treated as a small perturbation of �.
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The random model gn(!) indep. r.v.’s with E![gn] = 0, E![g
2
n] = �

2.

Claim: for any R(1), ⌘(1) almost surely

log
⇣
R(N + 1)

R(1)

⌘
=

�
2

8F
log(N)(1 + o(1))

Following closely Kiselev–Last–Simon ’97

NX

n=1

gn(!)
2

�0(n)2
=

NX

n=1

gn(!)
2

�0(n)2
e
iµ✓(n) =
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NX

n=1

gn(!)
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2
NX

n=1

1
�0(n)2

+
NX

n=1

gn(!)
2 � �

2

�0(n)2
| {z }

E[ · ]=0, E[(·)2]. 1
n2

a.s.
=

�
2

F
log(N) +O(1) ,

NX

n=1
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�
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gn(!)
2

�0(n)2
e
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2
NX

n=1

e
iµ✓(n)

�0(n)2

| {z }
van der Corput

+
NX

n=1

gn(!)
2 � �

2

�0(n)2
e
iµ✓(n)

| {z }
E[ · ]=0, E[(·)2]. 1

n2

a.s.
= O(1) ,

NX

n=1

gn(!)
�0(n)

e
i2✓(n) =
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The random model gn(!) indep. r.v.’s with E![gn] = 0, E![g
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2.
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log
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R(1)

⌘
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�
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8F
log(N)(1 + o(1))

Following closely Kiselev–Last–Simon ’97

NX

n=1

gn(!)
2

�0(n)2
= �

2
NX

n=1

1
�0(n)2

+
NX

n=1

gn(!)
2 � �
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Remarks:
• Abstract SU(1, 1) machinery implies existence of subordinate solution.
• Only the last estimate does not work for deterministic model.
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The deterministic model

Problem: In general we are not able to accurately compute asymptotics of

NX

n=1

e
i2�(n)

�0(n)
as N ! 1.

Recall: �(x) =
2
p
F

3
x
3/2 +

Ep
F
x
1/2 +

⇡

2
+O(x�1/2) .

However we can understand partial sums of lengths larger than O(1)
=) we can coarse grain our equations.

• Strong cancellations unless �0(x) close to ⇡Z.
• Define Xl by �

0(Xl) = ⇡l,

�
0(x) =

p
Fx

1/2 +O(x�1/2) =) Xl =
⇡
2

F
l
2 +O(1),

natural scale is given by x ⇠ ⇡2

F l
2.

• By combination of Poisson summation formula and the method of
stationary phase we can accurately compute

X

n2Il

e
2i�(n)

�0(n)
with Il =

�
⇡2

F

�
l � 1

2

�2
,
⇡2

F

�
l + 1

2

�2⇤
.
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Theorem (Frank–L., ’21)

Fix F > 0, E 2 R,� 2 R, and set Il =
�
⇡2

F (l � 1
2 )

2
,

⇡2

F (l + 1
2 )

2
⇤
.

Let  be a real-valued solution of the eigenvalue equation, then there exist
R,⇤ : N ! R such that for x 2 Il

 (x) = R(l)
e
i⇤(l)�i�

p
dxe/F

⇣(x)� e
�i⇤(l)+i�

p
dxe/F

⇣(x)
2i

+O

⇣R(l)|⇣(x)|p
l

⌘
.

Moreover, R,⇤ satisfy

log
⇣R(l + 1)

R(l)

⌘
=
� sin(2⇥(l))p

2Fl
+

�
2

4Fl

h
1 + cos(4⇥(l))

i
+O(l�5/4) ,

⇤(l + 1)� ⇤(l) =
� cos(2⇥(l))p

2Fl
+O(l�3/4) ,

where

⇥(l) = �(l) + ⇤(l) and �(l) = � ⇡
3

3F
l
3 +

⇡

F
(E � �)l +

5⇡
8

,

Remarks:
• |⇣(x)| ⇠ l

�1/2 on Il.
• Main term in representation of  solves equation between integers.
• Higher order terms in ⇤ equation are known but complicated.
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The deterministic model, the rational case

Question: What makes F 2 ⇡
2Q special?

Write F = ⇡2

3
p
q and compute change of R,⇤ when from l = pk to

l = p(k + 1).

p(k+1)�1X

l=pk

e
2i�(l)+2i⇤(l)

p
l

⇡ e
2i�(pk)+2i⇤(pk)

p
pk

p�1X

j=0

e
2i(�(pk+j)��(pk))

Key observation: For k 2 N, j = 0, . . . , p� 1,

�(pk) = �⇡qp2k3

| {z }
2⇡Z

+
⇡p

F
(E � �)k +

5⇡
8| {z }

linear!

�(pk + j)� �(pk) = �3⇡qkj2 � 3pqk2
j| {z }

2⇡Z

�⇡q
p
j
3 +

⇡

F
(E � �)j

| {z }
independent of k

=) A new e↵ective problem with linear phase!
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Summary and conclusion

We considered

� d
2

dx2
� Fx+

X

n2Z
gn�(x� n) in L

2(R) .

• For gn ⌘ � and F 2 ⇡
2Q we prove that the spectrum is pure ac away

from an explicit set of possible eigenvalues.

• For gn independent random variables with E[gn] = 0,E[g2n] = �
2 we prove

transition from pp to sc spectrum as F/�2 increases.

• Using relative Prüfer coordinates the problem is reduced to a discrete
system resembling the OPUC setting which is analysed using exponential
sum estimates.

• It remains an open problem what happens when F /2 ⇡
2Q in first model

and when F/�
2 = 1/2 in second.

Thank you for your attention!
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