Introduction Introduction to Δ_{∞} Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems

∞ -Ground states in the plane

Erik Lindgren (Uppsala University)

based on joint work with Peter Lindqvist

Archipelagic perspectives on mathematics, physics

and perceptible spectra of reality

August, 2021

Introduction	
Introduction to Δ_{∞}	
Eigenvalue problem: from finite p to ∞	
Results	
Ideas and tools	
Open problems	

Outline

- Introduction
- 2 Introduction to Δ_{∞}
- 3 Eigenvalue problem: from finite p to ∞
- 4 Results
 - The speed
- 5 Ideas and tools
 - The main theorem
- Open problems

Introduction Introduction to Δ∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems What will I talk about?

The ∞ -eigenvalue equation:

$$\max\left\{\lambda - \frac{|\nabla u|}{u}, \underbrace{\sum_{i,j} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j}}_{\Delta_{\infty} u}\right\} = 0$$

Arises as the Euler-Lagrange equation of the Rayleigh quotient

$$\frac{\|\nabla u\|_{L^{\infty}(\Omega)}}{\|u\|_{L^{\infty}(\Omega)}}$$

The problem is a highly nonlinear version of the eigenvalue problem for the Laplacian:

Minimizers of

$$\frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} |u|^2}, \quad \text{with } u = 0 \text{ on } \partial\Omega$$

satisfy

$$\Delta u + \lambda u = \mathbf{0}$$

where λ is the minimum.

 $\Delta_\infty: The infinity Laplacian$

The infinity Laplacian

$$\Delta_{\infty} u := \langle \nabla u, D^2 u \, \nabla u \rangle = \sum_{i,j=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j}$$

Solutions of

$$\Delta_{\infty} u = 0$$

are called ∞ -harmonic functions.

Discovered by Gunnar Aronsson in the 60's in connection to Lipschitz extensions.

Introduction Introduction to Δ∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems Dirichlet's principle

If *u* minimizes

$$\int_{\Omega} |\nabla u|^2, \text{ among functions coinciding on } \partial \Omega,$$

then u is harmonic and

 $\Delta u = 0$ in Ω .

 $\Delta_{p} - The p-Laplacian$

If u_p ($p \ge 2$) minimizes

$$\int_{\Omega} |\nabla u|^{p}, \text{ among functions coinciding on } \partial\Omega,$$

then u_p is *p*-harmonic and

$$\Delta_{
ho} u_{
ho} = {
m div}(|
abla u_{
ho}|^{
ho-2}
abla u_{
ho}) = 0 \quad {
m in} \; \Omega$$

Introduction Introduction to Δ_{∞} Eigenvalue problem: from finite *p* to ∞ Results Ideas and tools Open problems

Δ_{∞} via the *p*-Laplacian

As $p \to \infty$ $\|\nabla u\|_{L^p(\Omega)} \to \|\nabla u\|_{L^\infty(\Omega)},$ $\Delta_p u = |\nabla u|^{p-2} \Delta u + (p-2)|\nabla u|^{p-4} \Delta_\infty u \to \Delta_\infty u$

Reasonable that $u_p \rightarrow u$ where u minimizes

 $\|\nabla u\|_{L^{\infty}(\Omega)}$, among functions coinciding on $\partial \Omega$

and solves $\Delta_{\infty} u = 0$ in Ω .

Aronsson 66. Bhattacharya, DiBenedetto and Manfredi 89.

$$\begin{array}{c} & \\ \text{Introduction} \\ \text{Introduction to } \Delta_{\infty} \\ \\ \text{Eigenvalue problem: from finite } p \text{ to } \infty \\ \\ \text{Results} \\ \text{Ideas and tools} \\ \\ \text{Open problems} \end{array}$$

Let Ω be open and bounded, $g:\partial\Omega
ightarrow \mathbb{R}$ be Lipschitz and

$$egin{cases} \Delta_\infty u = 0 & ext{in } \Omega \ u = g & ext{on } \partial \Omega. \end{cases}$$

Then

$$\sup_{x,y\in\Omega}\frac{|u(x)-u(y)|}{|x-y|} = \sup_{x,y\in\partial\Omega}\frac{|g(x)-g(y)|}{|x-y|}$$

and

$$\|\nabla u\|_{L^{\infty}(\Omega)} \leq \|\nabla g\|_{L^{\infty}(\partial\Omega)}$$

This was first proved by Aronsson for C^2 functions.

- Classical solutions is not a good notion of solutions. One should use viscosity solutions.
- Existence and uniqueness of solutions of the Dirichlet problem on bounded domains, Aronsson 67, Jensen 93.
- Solutions vs minimizers of ||∇u||, Aronsson 67, Crandall-Evans-Gariepy 2001
- Differentiability in any dimension, Evans-Smart 2011
- $C^{1,\alpha}$ -regularity in the plane, Savin-Evans 2008

•
$$C^2 + u_{xx}u_{yy} - u_{xy}^2 \neq 0 \Rightarrow C^{\infty}$$
, Aronsson 67.

Introduction Introduction to Δ_∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems

Some ∞ -harmonic functions

• Cones: $|x - x_0|$ for $x \neq x_0$

- Aronsson's function $x^{\frac{4}{3}} y^{\frac{4}{3}}$. It is merely $C^{1,1/3}$ which is believed to be the optimal regularity of solutions.
- Any C^1 solution of the eikonal equation $|\nabla u| = \text{constant}$. Note that

$$\frac{1}{2}\Delta_{\infty}u = \langle \nabla u, \nabla |\nabla u|^2 \rangle.$$

• The distance function to a set is ∞ -harmonic wherever it is C^1 .

The functional for Δ_{∞} is not additive (as the one for Δ) so we ask that it is a minimizer on any subdomain, otherwise the set of minimizers can be large.

Example: A stadium minus a point with boundary data identically equal to one on the boundary of the stadium and 0 at the removed point.

Friedrichs's inequality (for p > 1 and Ω bounded):

 $\|u\|_{L^p(\Omega)} \leq C \|\nabla u\|_{L^p(\Omega)}$

for smooth functions vanishing on $\partial \Omega$.

The associated Rayleigh quotient:

$$\lambda_{p} = \inf_{u \in W_{0}^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^{p}}{\int_{\Omega} |u|^{p}}$$

Introduction Introduction to Δ_∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems

The eigenvalue equation for finite *p*

The eigenvalue equation:

Minimizers of

$$\frac{\int_{\Omega} |\nabla u|^{p}}{\int_{\Omega} |u|^{p}}, \quad u \in W_{0}^{1,p}(\Omega)$$

satisfy

$$\Delta_p u + \lambda_p |u|^{p-2} u = 0$$

Terminology: A *ground state* is a minimizer of the Rayleigh quotient.

- Ground states equivalent to solutions.
- The ground state is unique up to a multiplicative constant. Thelin (balls), Sakaguchi (convex domains), Anane (C^{2,α}-domains), Lindqvist (any).
- The ground state is log-concave (convex domains). (Sakaguchi generalized the Brascamp-Lieb Theorem)
- The first eigenvalue is isolated and there is a well-defined second eigenvalue.
- **Unknown** if the eigenvalues are countable ($p \neq 2$).

Proof for p = 2: (Belloni-Kawohl, 2002, general p): Consider two extremals with u, v with

$$||u||_{L^2(\Omega)} = ||v||_{L^2(\Omega)} = 1.$$

Put

$$w = \left(\frac{u^2 + v^2}{2}\right)^{\frac{1}{2}}$$

Then

$$\int_{\Omega} w^2 dx = 1.$$

By the convexity of $x \mapsto x^2$

$$\begin{split} \int |\nabla w|^2 &= \frac{1}{2} \int_{\Omega} (u^2 + v^2) \left(\frac{u^2}{u^2 + v^2} \frac{\nabla u}{u} + \frac{v^2}{u^2 + v^2} \frac{\nabla v}{v} \right)^2 \\ &\leq \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |\nabla v|^2, \end{split}$$

so that

$$\lambda_2 \leq \int_{\Omega} |\nabla w|^2 \leq \frac{1}{2} \int_{\Omega} |\nabla u|^2 + |\nabla v|^2 \leq \lambda_2.$$

The strict convexity of $x \mapsto x^2$ forces w = u = v.

Introduction Introduction to Δ_∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems

The ∞ -eigenvalue problem

The Rayleigh quotient

$$\left(\inf_{u\in W_0^{1,\rho}(\Omega)}\frac{\int_{\Omega}|\nabla u|^{\rho}}{\int_{\Omega}|u|^{\rho}}\right)^{\frac{1}{\rho}}\to \inf_{u}\frac{\|\nabla u\|_{L^{\infty}(\Omega)}}{\|u\|_{L^{\infty}(\Omega)}}:=\lambda_{\infty}$$

The eigenvalue equation:

$$\max\left\{\lambda_{\infty} - \frac{|\nabla u|}{u}, \underbrace{\sum_{i,j} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j}}_{\Delta_{\infty} u}\right\} = 0$$

First studied by Juutinen, Lindqvist, Manfredi.

- $\lambda_p^{\frac{1}{p}} \to 1/R := \lambda_{\infty}$, where *R* is the radius of the largest ball that can be inscribed in Ω .
- There are many more minimizers than solutions.
- The first egenfunction is unique in a large class of domains including the ball and stadiums, Yu. Unknown in general.
- There is a counter example to uniqueness in a non-convex, dumbbell shaped domain with at least three linearly independent ground states. Hynd-Smart-Yu.

We call a non-negative solution of the equation (with $\lambda = 1/R$) a ground state.

- In a ball (or a stadium) the ground state is the distance function.
- In the square, the distance function is *not* a ground state, however

$$v \le u \le d$$

where v is the ∞ -harmonic function which is 1 at the midpoint and zero on the boundary.

To state our results, we assume

- $\Omega \subset \mathbb{R}^2$ is a convex polygon
- *u* is a limit of *p*-eigenvalues (*variational* ground state)

Then (Yu and Sakaguchi):

- In u is concave
- u is ∞ -harmonic outside a closed set Υ with zero measure
- the set of singular points of u is contained in Υ
- $|\nabla u| > \lambda_{\infty} u$ outside Υ
- on Υ we have " $|\nabla u| = \lambda_{\infty} u$ "
- *u* attains its max exactly on the set where the distance function attains its max (the high ridge)

A streamline $\alpha = \alpha(t)$, is a solution of

$$\frac{d\alpha}{dt} = \nabla u(\alpha(t)).$$

If u is ∞ -harmonic

$$\frac{d}{dt}|\nabla u(\alpha(t))|^2 = 2\Delta_{\infty}u(\alpha(t)) = 0.$$

Hence,

$$|\nabla u(\alpha(t))| =$$
 the speed = constant.

Requires second order derivatives! In general not true.

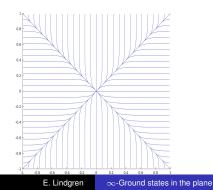
Let *H* be the *high ridge*. Streamlines starting at a corner are called *attracting* streamlines and streamlines starting at the point where $|\nabla u|$ attains a max between two corners is called a *median*. The convexity implies that the normal derivative $(= |\nabla u|)$ is monotone along the half-edges corner-median.

Theorem 1: Υ lies in set of attracting streamlines. Streamlines starting at other points cannot meet before joining an attracting streamlines or *H*. Along such streamlines, the speed $|\nabla u|$ is constant.

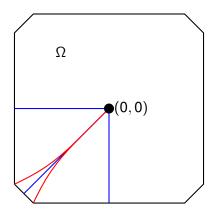
Cor 1: The arc of a streamline from the boundary to an attracting streamline (or *H*) is either convex or concave. The length of this arc is $u/|\nabla u|$ at the hitting point. In particular, all arcs with the first meeting point in Υ have unit length.

Cor 2: A median is a straight line segment until it joins some attracting streamline (or *H*).

Let Ω be a square and K the center. The attracting streamlines are the four half-diagonals. All streamlines meet at a diagonal, except the four segments along the coordinate axes.



Introduction Introduction to ∆∞ Eigenvalue problem: from finite p to ∞ Results Ideas and tools Open problems Example 2: A truncated square



The speed along a streamline α

$$\left|\frac{d\alpha(t)}{dt}\right| = |\nabla u_{\infty}(\alpha(t))|$$

is non-decreasing outside Υ .

Assume that $D \subset \subset \Omega \setminus \Upsilon$ and p > 2. Then

$$\oint_{\partial D} |\nabla u|^{p-2} \langle \nabla u, \mathbf{n} \rangle \, ds \, \leq \, 0$$

where **n** is the outer normal.

Idea: If for u_p , then the inequality follows from that

$$\oint_{\partial D} |
abla u_{
ho}|^{p-2} \langle
abla u, \mathbf{n}
angle \, ds = \int_{D} \Delta_{
ho} u_{
ho} \, dx \leq 0,$$

since $\Delta_{\rho}u_{\rho} \leq 0$.

Consequence: The gradient is non-increasing along streamlines as long as they do not meet.

Sketch of proof:

Assume that

- the points x_1 and x_2 are on the same level curve u = a,
- the points y_1 and y_2 both are on the higher level curve u = b > a,
- ascending streamlines join x₁ with y₁ and x₂ with y₂ but do not meet before.

Then

$$\|\nabla u\|_{\infty,\overline{y_1y_2}} \leq \|\nabla u\|_{\infty,\overline{x_1x_2}},$$

that is, the lower level curve has the larger gradient.

The idea is to exploit that the speed is non-decreasing and that sometimes, when the streamlines do not meet, it is also non-increasing, so that it is constant along suitable arcs of streamlines.

Note also that since $\log u$ is concave, $|\nabla u|/u$ is decreasing along streamlines. So once a streamline hits the set Υ , the rest of the streamline also lies in Υ .

- When is a ground state ∞-harmonic also across the attracting streamlines?
- Can we prove uniqueness using this in some simple cases?
- General (smooth) convex sets?
- We only use *log*-concavity, not that we have a limit of $u_p s$.

Introduction	
Introduction to Δ_{∞}	
Eigenvalue problem: from finite p to ∞	
Results	
Ideas and tools	
Open problems	

Thank you for listening!

Some references:

- Extension of functions satisfying Lipschitz conditions, Aronsson 66.
- On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Aronsson 67.
- Nonuniqueness of infinity ground states, 2013, Hynd-Smart-Yu.
- The ∞ -Eigenvalue problem, 1999, Juutinen-Lindqvist-Manfredi
- Infinity-Harmonic Potentials and Their Streamlines, L.-Lindqvist 2019
- The Gradient Flow of Infinity-Harmonic Potentials, joint, L.-Lindqvist 2020
- On ∞ -Ground States in the Plane, L.-Lindqvist 2021 (preprint)
- Some properties of the Ground state of the infinity Laplacian, 2007, Yu.