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Introduction

What will | talk about?

The oco-eigenvalue equation:

Vul Z ou du d%u
i

A — el
max u’ OX; 0X; OX;0X;

AU
Arises as the Euler-Lagrange equation of the Rayleigh quotient
VUl ()

ull L (@)
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Introduction

The eigenvalue problem for the Laplacian

The problem is a highly nonlinear version of the eigenvalue
problem for the Laplacian:

/ VU

Q

/ uf?
Q

Au+Xu=0

Minimizers of

with v = 0 on 902

satisfy

where ) is the minimum.



Introduction to A o

A The infinity Laplacian

The infinity Laplacian

" Ou du d2u

._ 2
Au:=(Vu,DuvVu) = 8x, 8x, 8x,8x,

I

Solutions of
A u=0

are called co-harmonic functions.

Discovered by Gunnar Aronsson in the 60’s in connection to
Lipschitz extensions.
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Introduction to A o

Dirichlet’s principle

If u minimizes

/ |Vul|?, among functions coinciding on 99,
Q

then v is harmonic and

Au=0 inQ.
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Introduction to A o

Ap — The p-Laplacian

If up (p > 2) minimizes
/ |VulP, among functions coinciding on 99,
Q

then up is p-harmonic and

DpUp = div(|VUp|P2VUp) =0 inQ

E. Lindgren oo-Ground states in the plane



Introduction to A o

A, via the p-Laplacian

As p — o0
VUl o) = VUL~ (),

Apu = |VUlP2Au+ (p — 2)|VulP* At — Asu

Reasonable that u, — u where u minimizes
[Vul| =@y, among functions coinciding on 9
and solves A, u = 0in Q.

Aronsson 66. Bhattacharya, DiBenedetto and Manfredi 89.
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Introduction to A o

Lipschitz extensions and A,

Let Q be open and bounded, g : 92 — R be Lipschitz and

Asu=0 inQ
u=g on 092.

Then
sup UX) —uWl o 19(X) = 9]
X,y€Q Ix =y X,y €09 Ix =y
and

[VUll(@) < IVl (a0)

This was first proved by Aronsson for C? functions.
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Introduction to A o

Properties of the co-Laplace equation

@ Classical solutions is not a good notion of solutions. One
should use viscosity solutions.

@ Existence and uniqueness of solutions of the Dirichlet
problem on bounded domains, Aronsson 67, Jensen 93.

@ Solutions vs minimizers of ||Vu||, Aronsson 67,
Crandall-Evans-Gariepy 2001

@ Differentiability in any dimension, Evans-Smart 2011
@ C'-regularity in the plane, Savin-Evans 2008
® C? + Uxlyy — U3, # 0 = C>, Aronsson 67.
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Introduction to A o

Some oo-harmonic functions

@ Cones: |x — xp| for x # Xp

@ Aronsson’s function x3 — y3. It is merely C"'/3 which is
believed to be the optimal regularity of solutions.

@ Any C' solution of the eikonal equation |V u| =constant.

Note that ]
5Dl = (VU, V|Vul?).
@ The distance function to a set is co-harmonic wherever it is
C'.
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Introduction to A o

A warning!

The functional for A, is not additive (as the one for A) so we
ask that it is a minimizer on any subdomain, otherwise the set
of minimizers can be large.

Example: A stadium minus a point with boundary data

identically equal to one on the boundary of the stadium and 0 at
the removed point.
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Eigenvalue problem: from finite p to co

The eigenvalue problem for finite p

Friedrichs’s inequality (for p > 1 and Q bounded):
[ulle@) < ClIVUlp(e)
for smooth functions vanishing on 092.

The associated Rayleigh quotient:

/ VulP
Ap= inf 22

ueW) P(Q) / |ulP
Q

E. Lindgren oo-Ground states in the plane



Eigenvalue problem: from finite p to co

The eigenvalue equation for finite p

The eigenvalue equation:
Minimizers of

/ VulP
Q

[ e
Q

ApU + MplulP~2u =0

, ue WS”’(Q)

satisfy

Terminology: A ground state is a minimizer of the Rayleigh
quotient.
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Eigenvalue problem: from finite p to co

Known results

@ Ground states equivalent to solutions.

@ The ground state is unique up to a multiplicative constant.
Thelin (balls), Sakaguchi (convex domains), Anane
(C?>>-domains), Lindgvist (any).

@ The ground state is log-concave (convex domains).
(Sakaguchi generalized the Brascamp-Lieb Theorem)

@ The first eigenvalue is isolated and there is a well-defined
second eigenvalue.

@ Unknown if the eigenvalues are countable (p # 2).
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Eigenvalue problem: from finite p to co

Uniqueness proof

Proof for p = 2: (Belloni-Kawohl, 2002, general p):
Consider two extremals with u, v with

[ullz@) = IVIlz@) = 1.

1
— 5 ‘
/Wde:‘].
Q
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Eigenvalue problem: from finite p to co

Uniqueness cont

By the convexity of x — x?
1 u? Vu VAR AN
2_ 7 2 2 4 v vy
/WW' _Z/Q(U JrV)<u-2+v2 U@y >
]
< / IVul® + Vv,
2 Ja
so that
’
Ao < / Vw[? < / IVu|? + |VV[? < Ao
Q 2 Ja

The strict convexity of x — x? forces w = u = v.
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Eigenvalue problem: from finite p to co

The oo-eigenvalue problem

The Rayleigh quotient
1
PP Vu||pe
WAL R i R
ueWw, P(Q fQ ulP u Ul ()

The eigenvalue equation:

V| ouou Pu |
max 4 Ao u Zax, ox; oxiox; [ 0

AU

First studied by Juutinen, Lindqgvist, Manfredi.



Eigenvalue problem: from finite p to co

Some known results

1
@ \; — 1/R:= A\, where Ris the radius of the largest ball
that can be inscribed in €.

@ There are many more minimizers than solutions.

@ The first egenfunction is unique in a large class of domains
including the ball and stadiums, Yu. Unknown in general.

@ There is a counter example to uniqueness in a non-convex,
dumbbell shaped domain with at least three linearly
independent ground states. Hynd-Smart-Yu.

We call a non-negative solution of the equation (with A = 1/R)
a ground state.
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Eigenvalue problem: from finite p to co

Examples/non-examples

@ In a ball (or a stadium) the ground state is the distance
function.

@ In the square, the distance function is not a ground state,
however
v<u<d

where v is the co-harmonic function which is 1 at the
midpoint and zero on the boundary.
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The speed
Results

Variational ground states in convex domains

To state our results, we assume
@ O c R?is a convex polygon
@ uis a limit of p-eigenvalues (variational ground state)

Then (Yu and Sakaguchi):
@ Inuis concave
@ u is co-harmonic outside a closed set T with zero measure
@ the set of singular points of u is contained in T
@ |Vu| > AU outside T
@ on T we have “|Vu| = \oU”
@ u attains its max exactly on the set where the distance
function attains its max (the high ridge)

E. Lindgren oo-Ground states in the plane



The speed
Results

Streamlines for smooth oco-harmonic functions

A streamline o = «a(t), is a solution of

do

— = Vula(®).

If uis co-harmonic
d 2
E\Vu(a(t)ﬂ = 2Au(a(t)) = 0.

Hence,
|Vu(a(t))| = the speed = constant.

Requires second order derivatives! In general not true.
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The speed
Results

Main result

Let H be the high ridge. Streamlines starting at a corner are
called attracting streamlines and streamlines starting at the
point where |Vu| attains a max between two corners is called a
median. The convexity implies that the normal derivative

(= |Vul) is monotone along the half-edges corner-median.

Theorem 1: 7T lies in set of attracting streamlines. Streamlines
starting at other points cannot meet before joining an attracting
streamlines or H. Along such streamlines, the speed |Vu| is
constant.
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The speed
Results

Consquences

Cor 1: The arc of a streamline from the boundary to an
attracting streamline (or H) is either convex or concave. The
length of this arc is u/|Vu| at the hitting point. In particular, all
arcs with the first meeting point in T have unit length.

Cor 2: A median is a straight line segment until it joins some
attracting streamline (or H).
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The speed
Results

Example 1: The square

Let Q2 be a square and K the center. The attracting streamlines
are the four half-diagonals. All streamlines meet at a diagonal,
except the four segments along the coordinate axes.

108 06 04 02 0 02 04 06 08 1
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The speed
Results

Example 2: A truncated square
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The main theorem

Ideas and tools

The speed

The speed along a streamline «

‘ da(t)

0 = 1vuna()

is non-decreasing outside T.
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The main theorem

Ideas and tools

A fundamental inequality

Assume that D cc Q\ T and p > 2. Then

}{ VulP-2(Vu,n) ds < 0
oD

where n is the outer normal.

Idea: If for up, then the inequality follows from that

jf VuplP2(Vu, n) ds — / D pup dx <0,
oD D
since Apup < 0.

Consequence: The gradient is non-increasing along
streamlines as long as they do not meet.
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The main theorem

Ideas and tools

Consequence: the speed is sometimes non-increasing

Sketch of proof:
Assume that

@ the points x; and x» are on the same level curve u = a,

@ the points y; and y» both are on the higher level curve
u=>b>a,

@ ascending streamlines join xy with y; and x» with y» but do
not meet before.

Then
IVUllso iy < IVUlloo 575>

that is, the lower level curve has the larger gradient.
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The main theorem

Ideas and tools

The main idea

The idea is to exploit that the speed is non-decreasing and that
sometimes, when the streamlines do not meet, it is also
non-increasing, so that it is constant along suitable arcs of
streamlines.

Note also that since log u is concave, |Vu|/u is decreasing
along streamlines. So once a streamline hits the set T, the rest
of the streamline also lies in T.
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Open problems

Things | don’t know/thoughts:

@ When is a ground state co-harmonic also across the
attracting streamlines?

@ Can we prove uniqueness using this in some simple
cases?

@ General (smooth) convex sets?
@ We only use log-concavity, not that we have a limit of ups.
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Open problems

Thank you for listening!
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Open problems

Some references:

@ Extension of functions satisfying Lipschitz conditions, Aronsson
66.

@ On the partial differential equation U2ty + 2uy Uy Uy, + Uy, = 0,
Aronsson 67.

@ Nonunigueness of infinity ground states, 2013, Hynd-Smart-Yu.
The oo-Eigenvalue problem, 1999, Juutinen-Lindqgvist-Manfredi

@ Infinity-Harmonic Potentials and Their Streamlines, L.-Lindqvist
2019

@ The Gradient Flow of Infinity-Harmonic Potentials, joint,
L.-Lindqgvist 2020

@ On co-Ground States in the Plane, L.-Lindqvist 2021 (preprint)

@ Some properties of the Ground state of the infinity Laplacian,
2007, Yu.
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