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Motivation: Inhomogeneous spin chain
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P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

Quantum XXZ spin chain: [Sαj , S
β
j′ ] = iδj ,j′εαβγS

γ
j and

HXXZ = −
N∑
j=1

Jj

(
Sxj S

x
j+1 + Syj S

y
j+1 −∆SzjS

z
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)
−

N∑
j=1

hjS
z
j

with |∆| < 1 and hj ∝ Jj > 0 varying on scales � a and � L = Na.
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Inhomogeneous 1+1D CFT

Hamiltonian

H =

∫ L/2

−L/2
dx v(x)

[
T+(x) + T−(x)

]
with a smooth position-dependent velocity v(x) = v(x+ L) > 0.

The operators T±(x) = T±(x+ L) satisfy[
T±(x), T±(y)

]
= ∓2iδ′(x− y)T±(y)± iδ(x− y)T ′±(y)± c

24π
iδ′′′(x− y),[

T±(x), T∓(y)
]

= 0.

In Fourier space: Two commuting copies of the Virasoro algebra.

Energy-momentum tensor: T+ = T−−, T− = T++, and T+− = 0 = T−+.
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Motivation: Floquet systems

Time crystals EM field in modulated cavity
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Observation of a discrete time crystal
J. Zhang1, P. W. Hess1, A. Kyprianidis1, P. Becker1, A. Lee1, J. Smith1, G. Pagano1, I.-D. Potirniche2, A. C. Potter3, A. Vishwanath2,4, 
N. Y. Yao2 & C. Monroe1,5

Spontaneous symmetry breaking is a fundamental concept in 
many areas of physics, including cosmology, particle physics 
and condensed matter1. An example is the breaking of spatial 
translational symmetry, which underlies the formation of crystals 
and the phase transition from liquid to solid. Using the analogy of 
crystals in space, the breaking of translational symmetry in time and 
the emergence of a ‘time crystal’ was recently proposed2,3, but was 
later shown to be forbidden in thermal equilibrium4–6. However, 
non-equilibrium Floquet systems, which are subject to a periodic 
drive, can exhibit persistent time correlations at an emergent 
subharmonic frequency7–10. This new phase of matter has been 
dubbed a ‘discrete time crystal’10. Here we present the experimental 
observation of a discrete time crystal, in an interacting spin chain 
of trapped atomic ions. We apply a periodic Hamiltonian to the 
system under many-body localization conditions, and observe 
a subharmonic temporal response that is robust to external 
perturbations. The observation of such a time crystal opens the door 
to the study of systems with long-range spatio-temporal correlations 
and novel phases of matter that emerge under intrinsically non-
equilibrium conditions7.

For any symmetry in a Hamiltonian system, its spontaneous breaking 
in the ground state leads to a phase transition11. The broken symmetry 
itself can assume many different forms. For example, the breaking of 
spin-rotational symmetry leads to a phase transition from paramag-
netism to ferromagnetism when the temperature is brought below the 
Curie point. The breaking of spatial symmetry leads to the formation 
of crystals, where the continuous translational symmetry of space is 
replaced by a discrete one.

We now pose an analogous question: can the translational symmetry 
of time be broken? The proposal of such a ‘time crystal’2 for time-
independent Hamiltonians has led to much discussion12, with the 
conclusion that such structures cannot exist in the ground state or 
any thermal equilibrium state of a quantum mechanical system4–6.  
A simple intuitive explanation is that quantum equilibrium states have 
time-independent observables by construction; thus, time transla-
tional symmetry can only be spontaneously broken in non-equilibrium 
systems7–10. In particular, the dynamics of periodically driven Floquet 
systems possesses a discrete time translational symmetry governed by 
the drive period. This symmetry can be further broken into ‘super-
lattice’ structures where physical observables exhibit a period larger 
than that of the drive13. Such a response is analogous to commensurate 
charge density waves that break the discrete translational symmetry 
of their underlying lattice1. The robust subharmonic synchronization 
of the many-body Floquet system is the essence of the discrete time 
crystal (DTC) phase7–10. In a DTC, the underlying Floquet drive should 
generally be accompanied by strong disorder, leading to many-body 
localization14 and thereby preventing the quantum system from absorb-
ing the drive energy and heating to infinite temperatures15–17. We note 
that under certain conditions, time crystal dynamics can persist for 
rather long times even in the absence of localization before ultimately 
being destroyed by thermalization18.

Here we report the direct observation of discrete time translational 
symmetry breaking and DTC formation in a spin chain of trapped 
atomic ions, under the influence of a periodic Floquet many-body 
localization (MBL) Hamiltonian. We experimentally implement a 
quantum many-body Hamiltonian with long-range Ising interac-
tions and disordered local effective fields, using optical control tech-
niques19,20. Following the evolution through many Floquet periods, we 
measure the temporal correlations of the spin magnetization dynamics.

A DTC requires the ability to control the interplay between three key 
ingredients: strong drive, interactions and disorder. These are reflected 
in the applied Floquet Hamiltonian H, consisting of the following three 
successive pieces with overall period T =​ t1 +​ t2 +​ t3 (see Fig. 1) (ħ =​ 1):
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Here, σγ
i  (γ =​ x, y, z) is the Pauli matrix acting on the ith spin, g is the 

Rabi frequency with small perturbation ε, 2gt1 =​ π​, Jij is the coupling 
strength between spins i and j, and Di is a site-dependent disordered 
potential sampled from a uniform random distribution with  
Di ∈​ [0, W].

To implement the Floquet Hamiltonian, each of the effective spin-1/2 
particles in the chain is encoded in the = = 〉/ F mS 0, 0F

2
1 2  and 

= = 〉F m1, 0F  hyperfine ‘clock’ states of a 171Yb+ ion, denoted ↓〉z and 
↑〉z and separated by 12.642831 GHz (F and mF denote the hyperfine 
and Zeeman quantum numbers, respectively). We store a chain of  
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Figure 1 | Floquet evolution of a spin chain. Three Hamiltonians are 
applied sequentially in time: a global spin rotation of nearly π​ (H1), long-
range Ising interactions (H2), and strong disorder (H3) (left). The system 
evolves for 100 Floquet periods of this sequence (right). On the left, circles 
with arrows denote spins (that is, ions 1 to 10), where the red colour 
denotes initial magnetization. Curved coloured lines between spins denote 
the spin–spin interactions, and the black trace illustrates the applied 
disorder.
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Fig. 1. (a) World lines of waves and mirrors in a 1D cavity with modulated length. As the electromagnetic wave propagates
in the cavity, the vector potential is transported along the null lines, only changing sign upon reflection from mirrors. A
field configuration at any reference time (horizontal dashed line) thus maps onto a field configuration at any other time
by following the null lines. (b) A linear cavity of length z(t) can be ‘‘unfolded’’ into a ring of twice the circumference,
2z(t), with only one direction of propagation. What used to be a right moving wave (‘‘right mover’’) at point x ∈ (0, z(t))
maps onto a point x in the ring, while the left mover at the same point maps onto point −x, with the same direction of
propagation along the ring .

depending on whether a deviation from the fixed point, δ, grows or decays. To linear order, δn =

f ′(x0)δn−1. Thus, stable fixed points have |f ′(x0)| < 1; for |f ′(x0)| > 1 they are unstable. There can
also be higher (than 1) period fixed points, defined as x0 = f (p)(x0) [for instance, f (2)(x) = f (f (x))].
There are necessarily at least p of those, since if x0 is a period p fixed point, so is f (x0). As we will
see, the period p fixed points emerge when the cavity is driven near the pth resonance mode of
the cavity. The stable fixed points correspond to the (stroboscopic) points where the cavity energy
is becoming infinitely concentrated in the long time limit (‘‘black holes’’), and the unstable fixed
points to the points from which the energy is being repelled (‘‘white holes’’). It is important to
note, that the map is static only stroboscopically, starting from some seed time (or, equivalently,
mirror oscillation phase). Observed over continuous time, the fixed points actually travel inside the
cavity at the speed of light tracing out fixed-point trajectories.

3.2. Fixed points and their evolutions with parameters

The simplest example of a situation that has fixed points is a 1D cavity driven at the lowest
frequency resonance, e.g.,

z(t) = L0 + A sinΩt

with L0 = cT/2 = πc/Ω . (2L0 will denote the distance light travels during the period of modulation;
will use L to denote the average cavity length, that can be different from L0.) Then, trajectories that
encounter the moving wall at the ‘‘neutral’’ position, z(t) = L0 (which happens in this specific
example at times t = nT/2, n integer), will keep coming back to the mirror after the mirror period
T . Observed stroboscopically, they correspond to fixed-points. There are two distinct trajectories
of this kind: one with ż(t) > 0 at the time of the encounter (t = nT ), and the other with
ż(t) < 0 (encounters at t = (n + 1/2)T ), that produce negative and positive Doppler shift
for the cavity light, respectively. The Doppler shift of the frequency or wavelength describes the
contraction or expansion of the incoming wave (e.g., internode distance). Therefore, there is direct
correspondence between the sign of the Doppler shift on the fixed-point trajectory and the stability
of the corresponding fixed point: positive frequency shift corresponds to stable fixed points, and vice
versa.

The fixed points persist also away from the perfect resonance conditions, for any smooth function
z(t) with period T as long as min z(t) < L0 < max z(t). Geometrically, the fixed points trajectories

Zhang et al., Nature (2017) Martin, Ann. Phys. (2019)
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cause the oscillations to decay, after approximately 50 periods. 
Although such temporal oscillations nominally break discrete 
time-translation symmetry, their physical origin is trivial. To see this, 
we note that for sufficiently strong microwave driving, Ω /�W J r,x ij 0

3, 
the dynamics during τ1 are governed by an effective polarization-
conserving Hamiltonian17, Ω≈∑ +∑ /( )H S J r S Si x i

x
ij ij ij i

x
j
x

eff
3 . During 

τ2, the evolution can be approximated as a global spin rotation 
θ≈ − ∑θR i Sexp( )y i i

y  . When θ =​ π​, this pulse simply flips the sign of the 

x̂ polarization during each Floquet cycle, resulting in the ν =​ 1/2 peak. 
However, this 2T-periodic response originates from the fine tuning of 
θ and should not be robust against perturbations. Indeed, a systematic 
change in the average rotation angle to θ =​ 1.034π​ causes the 
2T-periodicity to completely disappear, resulting in a modulated, 
decaying signal with two incommensurate Fourier peaks at 
ν =​ 1/2 ±​ (θ −​ π​)/(2π​) (Fig. 1c). Remarkably, we find that a rigid 
2T-periodic response is restored when interactions are enhanced by 
increasing τ1 to 989 ns, suggesting that the ν =​ 1/2 peak is stabilized by 
interactions. In this case, we observe a sharp peak in the spectrum at 
ν =​ 1/2 and the oscillations in P(nT) continue beyond n ≈​ 100 (Fig. 1d), 
indicating a persistent subharmonic temporal response.

The robustness of this apparent periodic order is further explored in 
Fig. 2. With an interaction time τ1 =​ 790 ns and θ =​ 1.034π​, the 
polarization exhibits an initial decay followed by persistent oscillations 
over the entire time window of our experimental observations (Fig. 2a). 
We perform a Fourier transform on subsections of the time trace with 
a sweeping window of size of m =​ 20 (Fig. 2a) and extract the intensity 
of the ν =​ 1/2 peak as a function of the sweep position, nsweep (Fig. 2b). 
The intensity of the ν =​ 1/2 peak clearly exhibits two distinct decay 
timescales. At short times, we observe a rapid initial decay that 
corresponds to non-universal dephasing dynamics, whereas at late 
times we observe a slow decay. Only near the phase boundary 
(θ =​ 1.086π​) is the lifetime substantially decreased. We fit the slow 
decay to an exponential to extract a lifetime for the periodic order.  
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Figure 1 | Experimental set-up and observation of discrete time-
crystalline order. a, Nitrogen–vacancy centres (blue spheres) in a 
nanobeam fabricated from black diamond are illuminated by a focused 
green laser beam and irradiated by a microwave source. Spins are prepared 
in the | = 〉+ | =− 〉 /m m( 0 1 ) 2s s  state using a microwave −π​/2 pulse along 
the ŷ axis. Subsequently, within one Floquet cycle, the spins evolve under a 
dipolar interaction and microwave field Ωx aligned along the  
x̂ axis for duration τ1, immediately followed by a global microwave θ pulse 
along the ŷ axis. After n repetitions of the Floquet cycle, the spin 
polarization along the x̂ axis is read out. We choose τ1 to be an integer 
multiple of 2π​/Ωx to minimize accidental dynamical decoupling14.  
b–d, Representative time traces of the normalized spin polarization P(nT) 
measured at even (green) and odd (blue) integer multiples of T, and 
respective Fourier spectra S v( ) 2 for different values of the interaction time 
τ1 and θ: τ1 =​ 92 ns, θ =​ π​ (b); τ1 =​ 92 ns, θ =​ 1.034π​ (c); and τ1 =​ 989 ns, 
θ =​ 1.034π​ (d). Dashed lines in c indicate ν =​ 1/2 ±​ (θ −​ π​)/(2π​). Data are 
averaged over more than 2 ×​ 104 measurements.
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Figure 2 | Long-time behaviour of discrete time-crystalline order.  
a, Representative time trace of the normalized spin polarization P(nT) in 
the crystalline phase (τ1 =​ 790 ns and θ =​ 1.034π​). The time-dependent 
intensity of the ν =​ 1/2 peak (inset) is extracted from a short-time Fourier 
transformation with a time window of length m =​ 20 shifted from the 
origin by nsweep. b, Peak height at ν =​ 1/2 as a function of nsweep for different 
pulse imperfections at τ1 =​ 790 ns. Lines indicate fits to the data using  
a phenomenological double-exponential function. The noise floor 
corresponds to 0.017, which is extracted from the mean value plus the 
standard deviation of ν∑ν S( ) 2, excluding the ν =​ 1/2 peak. c, Extracted 
lifetime of the time-crystalline order as a function of the interaction  
time τ1, for θ =​ 1.034π​. The shaded region indicates the spin lifetime 

= ± μρT 60 2 s1  (extracted from a stretched exponential28) due to coupling 
with the external environment. d, Extracted decay rate of the time-
crystalline order (in Floquet units) as a function of θ for different 
interaction times: τ1 =​ 385 ns (circles), 586 ns (squares) and 788 ns 
(triangles). Only very weak dependence on θ −​ π​ is observed within the 
DTC phase, contrary to a dephasing model (Methods). In c and d, the 
vertical error bars display the statistical error (s.d.) from the fit and empty 
symbols mark data near the time-crystalline phase boundary.
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Driven inhomogeneous 1+1D CFT

Floquet setup: 2-step drive

t1 t2 t1 t2 t1 t2 t1

H1

H2

H1

H2

H1

H2

H1

t

with H1, H2 inhomogeneous CFT Hamiltonians with v1(x) 6= v2(x).

Floquet operator:
UF = e−iH1t1e−iH2t2

with tcyc = |t1|+ |t2|.
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Inhomogeneous 1+1D CFT

Hamiltonian

H =

∫ L/2

−L/2
dx v(x)

[
T+(x) + T−(x)

]
with a smooth position-dependent velocity v(x) = v(x+ L) > 0.

The operators T±(x) = T±(x+ L) satisfy[
T±(x), T±(y)

]
= ∓2iδ′(x− y)T±(y)± iδ(x− y)T ′±(y)± c

24π
iδ′′′(x− y),[

T±(x), T∓(y)
]

= 0.

In Fourier space: Two commuting copies of the Virasoro algebra.

Energy-momentum tensor: T+ = T−−, T− = T++, and T+− = 0 = T−+.
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Example: Inhomogeneous Luttinger model

Inhomogeneous CFT with c = 1 given by

H =

∫ L/2

−L/2
dx vF (x)

[
:ψ†+(x) (−i∂x)ψ+(x): + :ψ†−(x) (+i∂x)ψ−(x):

]
+ λπ

∫ L/2

−L/2
dx vF (x)

[
ρ+(x) + ρ−(x)

][
ρ+(x) + ρ−(x)

]
− LE0

with ρ±(x) = :ψ†±(x)ψ±(x): and fermionic fields ψ(†)
± (x) satisfying{

ψr (x), ψ†r′(y)
}

= δr,r′δ(x− y),
{
ψr (x), ψr′(y)

}
= 0.

After bosonization:

T±(x) = π :

[
1 +K

2
√
K
ρ±(x) +

1−K
2
√
K
ρ∓(x)

]2

: − π

12L2

with v(x) = vF (x)
√

1 + 2λ and K = 1/
√

1 + 2λ. (Require λ > −1/2)
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Example: Effective description of inhomogeneous spin chains

L/2−L/2 L/2−L/2 L/2−L/2

v(x)

. . x

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

Quantum XXZ spin chain: [Sαj , S
β
j′ ] = iδj ,j′εαβγS

γ
j and

HXXZ = −
N∑
j=1

Jj

(
Sxj S

x
j+1 + Syj S

y
j+1 −∆SzjS

z
j+1

)
−

N∑
j=1

hjS
z
j

with |∆| < 1 and hj ∝ Jj > 0 varying on scales � a and � L = Na.
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Example: Effective description of inhomogeneous spin chains

L/2−L/2 L/2−L/2 L/2−L/2

v(x)

. . x

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

For concreteness, let

Jj =
vF (xj) + vF (xj+1)

2a sin(akF )
> 0

with vF (x) a smooth function and akF close to π/2. Then as effective
description we obtain an inhomogeneous local Luttinger model with

v(x) = vF (x)
√

1 + 4∆ sin(akF )/π, K =
1√

1 + 4∆ sin(akF )/π
.
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Diffeomorphism representations

Orientation-preserving diffeomorphisms

f(x) =

∫ x

0
dx′

v0

v(x′)
,

1

v0
=

1

L

∫ L/2

−L/2

dx′

v(x′)

=⇒ f(x+ L) = f(x) + L and f ′(x) > 0 =⇒ f ∈ D̃iff+(S1).
Gawędzki, Langmann, P.M., J. Stat. Phys. (2018)

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

Projective unitary representations given by

U±(f) = I ∓ iε

∫ L/2

−L/2
dx ζ(x)T±(x) + o(ε)

for infinitesimal f(x) = x+ εζ(x). Adjoint action:

U±(f)T±(x)U±(f)−1 = f ′(x)2T±(f(x))− c

24π
{f(x), x},

U±(f)T∓(x)U±(f)−1 = T∓(x).
Goodman, Wallach, J. Func. Anal. (1985)
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Virasoro-Bott group

Bott cocycle:

U±(f1)U±(f2) = e±icB(f1,f2)/24πU±(f1 ◦ f2),

B(f1, f2) =
1

2

∫ L/2

−L/2
dx [log f ′2(x)]′ log[f ′1(f2(x))].

Virasoro-Bott group: Central extension of D̃iff+(S1) by B(f1, f2).

Associated Lie algebra: Virasoro algebra. Two commuting copies:[
L±n , L

±
m

]
= (n−m)L±n+m +

c

12
(n3 − n)δn+m,0,

[
L±n , L

∓
m

]
= 0,

where

T±(x) =
2π

L2

∞∑
n=−∞

e±
2πinx
L

(
L±n −

c

24
δn,0

)
.

E.g.: Khesin, Wendt, The Geometry of Infinite-Dimensional Groups (2009)
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Time evolution of operators

For local observables

O(x; t) = eiHtO(x)e−iHt.

Generalized light-cone coordinates x∓t = x∓t (x) given by

x∓t (x) = f−1(f(x)∓ v0t)

using our f ∈ D̃iff+(S1). Obtained by inserting U±(f)−1U±(f) above.

For Virasoro primary fields and the energy-momentum tensor:

Φ(x; t) =

[
∂x−t
∂x

]∆+
Φ
[
∂x+

t

∂x

]∆−Φ
Φ(x−t , x

+
t ),

T±(x; t) =

[
∂x∓t
∂x

]2

T±(x∓t )− c

24π

{
x∓t , x

}
.
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Complementary approach

Inhomogeneous Tomonaga-Luttinger liquids

HiTLL =
1

2

∫ L/2

−L/2
dx

(
v(x)

K(x)
πφ(x)2 + v(x)K(x)[∂xφ(x)]2

)
with [φ(x), πφ(x′)] = iδ(x− x′). Corresponds to Lagrangian density

L =
v

2

√
−hK(x)hµν(∂µφ)(∂νφ)

in curved spacetime

ds2 = v(x)2dt2 − dx2 = hµνdxµdxν (x0 = vt, x1 = x).

Using Euclidean CFT: Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)
Dubail, Stéphan, Calabrese, SciPost Phys. (2017)

Ruggiero, Brun, Dubail, SciPost Phys. (2019)

For v(x)/K(x) = constant: Gluza, P.M., Sotiriadis, arXiv:2104.07751
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Driven inhomogeneous 1+1D CFT

Floquet setup: 2-step drive

t1 t2 t1 t2 t1 t2 t1

H1

H2

H1

H2

H1

H2

H1

t

with H1, H2 inhomogeneous CFT Hamiltonians with v1(x) 6= v2(x).

Floquet operator:
UF = e−iH1t1e−iH2t2

with tcyc = |t1|+ |t2|.
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Special case

Sine-square-deformed (SSD) CFT:

HSSD =
2πv

L

(
L+

0 −
L+

1 + L+
−1

2
+ L−0 −

L−1 + L−−1

2

)
.

Wen, Wu, arXiv:1805.00031
Fan, Gu, Vishwanath, Wen, Phys. Rev. X (2020)

Lapierre, Choo, Tauber, Tiwari, Neupert, Chitra, Phys. Rev. Research (2020)

Homogeneous CFT: Hhomog. =
2πv

L

(
L+

0 + L−0
)
.

Phase diagram: Möbius transformations:BASTIEN LAPIERRE et al. PHYSICAL REVIEW RESEARCH 2, 023085 (2020)

FIG. 1. (a) Uniform and SSD Hamiltonian. (b) Floquet drive
alternating between the two. (c) Phase diagram (color bars in log
scale). The heating phase is characterized by a Hawking temperature
�H, a signature of emergent black holes in the effective dynamics,
whose spacetime is illustrated in (d). The nonheating phase is charac-
terized by a pseudoperiodicity TE , with effective spacetime illustrated
in (e). The phase diagram is T0

L periodic.

We denote by H0 the homogeneous CFT where f ≡ 1, with
energy density T00, and by HSSD the SSD theory where f (x) =
2 sin2( πx

L ). We consider a two-step drive protocol, where
HF(t ) alternates between HSSD (duration T1) and H0 (duration
T0) as depicted in Figs. 1(a) and 1(b). The uniform theory
H0 typically describes the low-energy behavior of a quantum
chain at criticality and is characterized by a central charge c.

The lattice counterpart we explicitly consider is the XXZ
spin- 1

2 chain,

H = J
L−1∑
j=1

f j
(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

)
. (2)

The Floquet drive HF(t ) alternates between the the uni-
form case, H0 with f j ≡ 1, and the SSD, HSSD where f j =
2 sin2( π j

L ). For f j ≡ 1 and |�| � 1, the spin chain is critical
and the low-energy theory is a Luttinger liquid described by a
compactified free boson with c = 1. In what follows, we will
demonstrate that the general nonequilibrium exactly solvable
CFT dynamics of HF(t ) precisely captures the main features
of the driven XXZ model HF(t ) that we study numerically.

To probe the dynamics we focus on the unequal-time
two-point function of the driven CFT HF(t ), F (x, t ; x0, 0) ≡
〈φ(x, t )φ(x0, 0)〉, where φ is any primary field (with con-
formal weight h) of the uniform theory H0 [15]. Though
the full time evolution including micromotion can be eval-
uated, we focus on the stroboscopic evolution, where t =
n(T0 + T1), n ∈ N. As boundary conditions do not qualita-
tively affect the ensuing results, we use periodic boundary
conditions for computational simplicity. Expectation values
are computed in the ground state |0〉 of the uniform theory. In
terms of the Virasoro generators Ln and Ln, in the Euclidean
framework with imaginary time τ , H0 = L0 + L0, and cru-
cially, HSSD = L0 − 1

2 (L1 + L−1) + L0 − 1
2 (L1 + L−1). Such

a Hamiltonian is equivalent to a uniform H0 up to an

asymptotic SL(2,R) transformation [7,16,17]. Consequently,
time evolution e−τHSSD is a simple dilation up to a coordinate
change. Mapping the coordinates w = τ + ix on the cylinder
to the complex plane spanned by z = e2πw/L, the coordinate
change for a 1-cycle time evolution is explicitly given by

z̃1 =
(
1 + πτ1

L

)
e

πτ0
L z − πτ1

L e− πτ0
L

πτ1
L e

πτ0
L z + (1 − πτ1

L

)
e− πτ0

L

=:
az + b

cz + d
. (3)

Similarly, the time evolution after n cycles is simply given by
the composition of 1-cycle evolution z̃n(z) = (z̃1 ◦ ... ◦ z̃1)(z).
Due to the algebraic properties of the Möbius transformation
it is possible to get a closed form for such a transformation,
which is also a Möbius transformation:

z̃n = (γ1 − ηnγ2)z + (ηn − 1)γ1γ2

(1 − ηn)z + γ1ηn − γ2
, (4)

where n is the number of drive cycles, η is the so-called
multiplier of the 1-cycle Möbius transformation (3), and γ1, γ2

are the fixed points of this transformation. These are complex
parameters that depend on T0

L and T1
L , explicitly given by

γ1 = a − d −
√

(a − d )2 + 4bc

2c
,

γ2 = a − d +
√

(a − d )2 + 4bc

2c
,

η = a + d +
√

(a − d )2 + 4bc

a + d −
√

(a − d )2 + 4bc
. (5)

F (x, t ; x0, 0) can be directly computed in the transformed
coordinates, leading to the final result:

〈φ(x, t )φ(x0, 0)〉 =
[(

2π

L

)4
∂ z̃n

∂z

∂ ¯̃zn

∂ z̄

]h〈
φ
(
z̃n, ¯̃zn

)
φ
(
z̃0, ¯̃z0

)〉
,

(6)

where the two-point function on the right-hand side corre-
sponds to the one evaluated in the uniform CFT, namely
〈φ(z̃n, ¯̃zn)φ(z̃0, ¯̃z0)〉 = (z̃n − z̃0)−2h(¯̃zn − ¯̃z0)−2h. Remarkably,
the nontrivial Floquet dynamics is fully encoded in Möbius
transformation z̃n [8]. This result is valid for a generic CFT.
The central charge enters only via the conformal dimensions
of the operators in the correlation function. Moreover, al-
though Eq. (6) captures the stroboscopic dynamics of HF(t ),
it is well defined not only at discrete but at all continuous
times—a fact that we will exploit below. We now discuss the
two distinct regimes of behavior classified by the parameter
η: (i) a heating phase for η ∈ R+, and (ii) a nonheating
phase with η ∈ C, |η| = 1, with η = 1 signaling the transition
between the two. Equivalently, the phases are classified by the
different types of 1-cycle Möbius transformation (3): elliptic
for the nonheating phase, hyperbolic for the heating phase,
and parabolic at the phase transition [8]. The corresponding
phase diagram is given in Fig. 1(c).

III. EMERGENT SPACETIME PERSPECTIVE
ON HEATING

The two-point function at different times F (x, t ; x0, 0)
enables one to access the light-cone propagation of the gapless

023085-2

z̃1 =
az + b

cz + d
, a = a(T0, T1), etc.

z̃n =
(γ1 − ηnγ2)z + (ηn − 1)γ1γ2

(1− ηn)z + ηnγ1 − γ2
with

γ1 = γ1(a, b, c, d)

γ2 = γ2(a, b, c, d)

η = η(a, b, c, d)

.
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General case

Hamiltonians

Hj =

∫ L/2

−L/2
dx vj(x)

[
T+(x) + T−(x)

]
(j = 1, 2)

with smooth L-periodic functions v1(x) > 0 and v2(x) > 0.

t1 t2 t1 t2 t1 t2 t1

H1

H2

H1

H2

H1

H2

H1

t

L/2−L/2

x
v1(x)
v2(x)

Lapierre, P.M., Phys. Rev. B (2021)

Special case of SSD CFT:

vSSD(x) = 2v cos2(πx/L).
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Geometric approach

Encode UF into circle diffeomorphisms f±(x) and study those. Yields a
correspondence with classical dynamical systems on the circle.

Lapierre, P.M., Phys. Rev. B (2021)

15 / 30



2-step Floquet drive

For local observables

O(x; t) = U−nF O(x)UnF , UF = e−iH1t1e−iH2t2 , t = ntcyc.

Orientation-preserving diffeomorphisms

fj(x) =

∫ x

0

dx′
vj,0
vj(x′)

,
1

vj,0
=

1

L

∫ L/2

−L/2

dx

vj(x)

=⇒ fj ∈ D̃iff+(S1). Insert U±(fj)
−1U±(fj) around e∓iHjtj .

Consequence: Generalized light-cone coordinates x∓t (x) given by

x∓t+tcyc(x) = f±(x∓t (x)), x∓0 (x) = x,

f±(x) = f−1
2

[
f2

(
f−1

1 [f1(x)∓ v1,0t1]
)
∓ v2,0t2

]
.
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Time evolution of operators

Primary fields

Φ(x; t) =

[
∂x−t (x)

∂x

]∆+[
∂x+

t (x)

∂x

]∆−

Φ(x−t (x), x+
t (x)).

Components of the energy-momentum tensor

T±(x; t) =

[
∂x∓t (x)

∂x

]2

T±(x∓t (x))− c

24π

{
x∓t (x), x

}
.

Here ∂x∓t (x)/∂x =
∏n−1
m=0 f

′
±(x∓mtcyc(x)) for n > 0.
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Geometric approach to Floquet systems

Fixed points: Look for solutions x∓∗ to

x∓∗ = f±(x∓∗ ).

Tangent points: Critical values x∓c = x∓∗ that additionally satisfy

1 = f ′±(x∓c ).

−0.5 −0.25 0.25 0.5

−0.5

−0.25

0.25

0.5

x/L

y/L

Unstable f ′±(x∓∗ ) > 1

Stable f ′±(x∓∗ ) < 1
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More generally: Periodic points

Periodic points of period p ∈ Z+:

x∓∗p = fp±(x∓∗p), fp± = f± ◦ . . . ◦ f±︸ ︷︷ ︸
p times

.

Unstable: fp ′± (x∓∗p) > 1. Stable: fp ′± (x∓∗p) < 1. Critical: fp ′± (x∓cp) = 1.

Example of
periodic points
with period 2: �1.5 �1 �0.5 0.5 1 1.5

�1.5

�1

�0.5

0.5

1

1.5

⇠

f+(L⇠)/L

1
2

34

5
6 7

8
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Heating and non-heating phases

Suppose that x is a periodic point x∓∗p, then

∂x∓t (x)

∂x
= fp ′± (x∓∗p)

n/p, t = ntcyc, n/p ∈ Z+.

If fp ′± (x∓∗p) >(<)1, this diverges (vanishes) exponentially as t→∞.

Energy density

E1(x; t) = v1(x)
[
T+(x; t) + T−(x; t)

]
grows (decays) exponentially at unstable (stable) fixed points.

Heating rate

ν = max
p∈Z+, r=±, i∈{1,...,2Np}

2

ptcyc
log
[
fp ′r (x−r∗p,i)

]
.
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Example 1: gSSD CFT

Special case: v1(x) = v1.

gSSD CFT: v2(x) = v2w(x/L) with

w(ξ) = 1 + g[2 cos2(πξ)− 1], g ∈ [0, 1).

Cf.: MacCormack, Liu, Nozaki, Ryu, J. Phys. A: Math. Theor. (2019)

Limiting cases: Homogeneous CFT: g = 0 SSD CFT: g → 1−

Dimensionless variables: ξ = x/L, τ1 = v1t1/L, τ2 = v2t2/L.
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Example 1: Phase diagram for gSSD CFT

Phase transition lines:

τ2 =
2 arctan

(√
(1− g)/(1 + g) tan(π[1− τ1]/2)

)
π
√

1− g2
,

τ2 =
1√

1− g2
−

2 arctan
(√

(1− g)/(1 + g) tan(πτ1/2)
)

π
√

1− g2
.

Phase diagram:

0.5 1 1.5 2

0.5

1

1.5

0

0 τ1

τ2

gSSD CFT for g = 0.6
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Example 1: Phase diagram for gSSD CFT

Phase transition lines:

τ2 =
2 arctan

(√
(1− g)/(1 + g) tan(π[1− τ1]/2)

)
π
√

1− g2
,

τ2 =
1√

1− g2
−

2 arctan
(√

(1− g)/(1 + g) tan(πτ1/2)
)

π
√

1− g2
.

Phase diagram:

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

0

0 τ1

τ2

SSD CFT (g → 1−)
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Example 2: Gaussian-deformed CFT

As before but with

w(ξ) = A exp
(
−(ξ/d)2

)
, A, d ∈ R+.

Explicit formulas with erfi instead of arctan.

Phase diagram:

0.5 1 1.5 2

0.5

1

1.5

2

0

0 τ1

τ2

Gaussian-deformed CFT for A = 2, d = 0.32
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Example 3: CFT deformed by w(ξ) = a/[b+ sin(2πkξ) + cos(2πξ)]

0.5 1

0.25

0.5

0

0 τ1

τ2

0.5 1

0.25

0.5

0

0 τ1

τ2

0.5 1

0.25

0.5

0

0 ⌧1

⌧2

0

1

2

0.150.20

0.25

0.300.35

0.25 0.5 0.75 1

0.5

1

1.5

2

2.5

0

0 τ1

νtcyc

For a = 6, b = 3, and k = 2.
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Example 3: Fixed points at (τ1, τ2) = (0.10, 0.45)

−L/2 −L/4 L/4 L/2

5

10

15

20

25

30

0

x

t/tcyc

x−t (x)-trajectories

−L/2 −L/4 L/4 L/2

5

10

15

20

25

30

0

x

t/tcyc

x+t (x)-trajectories

−L/2 −L/4 L/4 L/2

5

10

15

20

25

30

0

x

t/tcyc

log
(∑

r=± |〈0|Φ
†
r(x, t)Φr(x0, 0)|0〉|2

)
−L/2 −L/4 L/4 L/2

−20

−15

−10

−5

5

10

15

20

25

x

log
[
〈E(x; t)〉/〈E(x; 0)〉

]

Energy density
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Example 3: 2-periodic points at (τ1, τ2) = (0.35, 0.08)

−L/2 −L/4 L/4 L/2

5

10

15

0

x

t/tcyc

x−t (x)-trajectories

−L/2 −L/4 L/4 L/2

5

10

15

0

x

t/tcyc

x+t (x)-trajectories

−L/2 −L/4 L/4 L/2

5

10

15

0

x

t/tcyc

log
(∑

r=± |〈0|Φ
†
r(x, t)Φr(x0, 0)|0〉|2

)
−L/2 −L/4 L/4 L/2

−20

−15

−10

−5

5

10

15

20

25

x

log
[
〈E(x; t)〉/〈E(x; 0)〉

]

Energy density
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Entanglement entropy: Computation

Entanglement entropy of subsystem on A = [x, y] with the rest:

SA(t) = lim
m→1

1

1−m log
(

Tr
[
ρ̂A(t)m

])
with ρ̂A(t) = UnF ρ̂AU

−n
F , t = ntcyc, and ρ̂A the reduced density matrix.

Using twist fields Φm(x; t):

SA(t) = lim
m→1

1

1−m log
[
〈0|Φm(x; t)Φm(y; t)|0〉

]
.

Conformal weights ∆±m = (c/24)(m− 1/m).
Cardy, Castro-Alvaredo, Doyon, J. Stat. Phys. (2008)

Calabrese, Cardy, J. Stat. Mech. (2016)

Rigorous results for entanglement entropy in quantum field theory.
Longo, Xu, Adv. Math. (2018); Commun. Math. Phys. (2021)
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Entanglement entropy: Results

Letting x∓t = x∓t (x) and y∓t = x∓t (y):

SA(t) =
c

12

[
S+(t) + S−(t)

]
,

S±(t) = − log

[
∂x∓t
∂x

∂y∓t
∂y

( ±iπ

L sin
(
π
L [x∓t − y∓t ± i0+]

))2
]
.

Two cases:

A

x y
x−
∗p,A

x−
∗p

y−∗p

A

x

y

x−
∗p,A

S+(t) ∼ t for large t S+(t) ∼ constant for large t

If t = 0, then SA(0) = (c/3) log
[
(L/π) sin

(
π`/L

)]
for ` = x− y > 0.
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Pattern of entanglement entropy

In Example 3:

8

[37] there are, in general, kinks in the entanglement en-
tropy induced by the unstable periodic points. Note that

such transitions within the heating phase are local and
do not affect global properties such as the heating rate.

(i) (⌧1, ⌧2) = (0.10, 0.45) (ii) (⌧1, ⌧2) = (0.35, 0.08)

�L/2 �L/4 L/4 L/2

�1

1

2

3

4

x

S[�L/2,x](t)/c

�L/2 �L/4 L/4 L/2

�1

1

2

3

4

x

S[�L/2,x](t)/c

t/tcyc = 0

t/tcyc = 3

t/tcyc = 10

t/tcyc = 18

�L/2 �L/4 L/4 L/2

�1

1

2

3

4

x

S[�L/2,x](t)/c

Figure 7. Plots of the entanglement entropy S[�L/2,x](t) given by (17), setting L = 50, for the case in Fig. 3 at (i) (⌧1, ⌧2) =
(0.10, 0.45) and (ii) (⌧1, ⌧2) = (0.35, 0.08). See the caption to Fig. 5 for further details.

VI. MUTUAL INFORMATION

To understand the entanglement-entropy pattern, we
study the mutual information IA;B(t) = SA(t) + SB(t)�
SA[B(t) for two intervals A = [x1, x2] and B = [x3, x4].
One can show that IA;B(t) evolves non-trivially in time
if and only if A and B contain at least one unstable peri-
odic point each, separated by a single stable point (with
respect to the same component). As in Sec. V, for sim-
plicity, and without loss of generality, we consider only
the contributions from the right-moving component.

More specifically, in Appendix E, we compute IA;B(t)
for the following two cases, illustrated in Fig. 8:

(a) Suppose that A and B are neighbors, i.e., that
there is only one stable periodic point, denoted x̃�

p,⇤,AB ,
between them, see Fig. 8(a). It follows that x̃�

t (x2) and
x̃�

t (x3) flow to x̃�
p,⇤,AB , while x̃�

t (x1) and x̃�
t (x4) flow to

two other different stable periodic points, denoted x̃�
p,⇤,1

and x̃�
p,⇤,4, respectively. In this case, we show that the

leading contribution to IA;B(t) from the right-moving
component is

� c

6

log[f 0
p,+(x̃�

p,⇤,AB)]

ptcyc
t. (20)

I.e., it grows linearly in time with a rate given by the
stable periodic point between A and B.

(b) Suppose that A and B are not neighbors, i.e., there
is not only a single stable periodic point separating them,
see Fig. 8(b). (Such a situation can only occur if there
are at least four unstable periodic points for each compo-
nent.) In this case, all x̃�

t (xj) (j = 1, 2, 3, 4) flow to four
different stable periodic points. We show that this leads
to a cancelation between SA[B(t) and SA(t)+SB(t) such
that the contribution from the right-moving component

to IA;B(t) does not change with time for large t.

A

x1 x2
x̃�

p,⇤,A

x̃�
p,⇤,1

x̃�
p,⇤,AB

B

x3

x4

x̃�
p,⇤,B

x̃�
p,⇤,4

(a)

A

x1 x2
x̃�

p,⇤,A

x̃�
p,⇤,1

x̃�
p,⇤,2

B

x̃�
p,⇤,B

x3
x4

x̃�
p,⇤,4

x̃�
p,⇤,3

(b)

Figure 8. Illustrations of the two cases (a) and (b) described
in the text for the mutual information IA;B(t) in the heating
phase. See the caption to Fig. 6 for further details.

Mutual information IA;B(t) = SA(t) + SB(t)− SA∪B(t):
Only neighboring unstable periodic points share entanglement that
grows linearly at late times =⇒ entanglement entropy is “bipartite”.1

1If the number of unstable points for each component is even.
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Summary



� Exact analytical results for general inhomogeneous conformal field
theory using projective unitary representations of D̃iff+(S1).

� Geometric approach to inhomogeneous Floquet systems.

� Construct phase diagrams with heating/non-heating phases
determined by presence/absence of periodic points.

� Energy and excitations accumulate exponentially fast at unstable
periodic points.

� Kinks in entanglement entropy at unstable periodic points.

� Only neighboring unstable periodic points share linearly growing
entanglement entropy at late times.

� Geometric approach is straightforward to apply to multi-step,
random, chaotic, and quasi-periodic drives.
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Thank you for your attention!
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