Floquet drives, inhomogeneous CFT, and diffeomorphism representations

Per Moosavi

ETH Zurich

Archipelagic perspectives on mathematics, physics and perceptible spectra of reality

> Djurö, Sweden
> August 31, 2021

Based on joint works with K. Gawedzki, E. Langmann, and B. Lapierre

Motivation: Inhomogeneous spin chain

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

Quantum $X X Z$ spin chain: $\left[S_{j}^{\alpha}, S_{j^{\prime}}^{\beta}\right]=\mathrm{i} \delta_{j, j^{\prime}} \epsilon_{\alpha \beta \gamma} S_{j}^{\gamma}$ and

$$
H_{X X Z}=-\sum_{j=1}^{N} J_{j}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}-\Delta S_{j}^{z} S_{j+1}^{z}\right)-\sum_{j=1}^{N} h_{j} S_{j}^{z}
$$

with $|\Delta|<1$ and $h_{j} \propto J_{j}>0$ varying on scales $\gg a$ and $\ll L=N a$.

Inhomogeneous 1+1D CFT

Hamiltonian

$$
H=\int_{-L / 2}^{L / 2} \mathrm{~d} x v(x)\left[T_{+}(x)+T_{-}(x)\right]
$$

with a smooth position-dependent velocity $v(x)=v(x+L)>0$.

The operators $T_{ \pm}(x)=T_{ \pm}(x+L)$ satisfy

$$
\begin{aligned}
& {\left[T_{ \pm}(x), T_{ \pm}(y)\right]=\mp 2 \mathrm{i} \delta^{\prime}(x-y) T_{ \pm}(y) \pm \mathrm{i} \delta(x-y) T_{ \pm}^{\prime}(y) \pm \frac{c}{24 \pi} \mathrm{i} \delta^{\prime \prime \prime}(x-y),} \\
& {\left[T_{ \pm}(x), T_{\mp}(y)\right]=0 .}
\end{aligned}
$$

In Fourier space: Two commuting copies of the Virasoro algebra.

Energy-momentum tensor: $T_{+}=T_{--}, T_{-}=T_{++}$, and $T_{+-}=0=T_{-+}$.

Motivation: Floquet systems

Time crystals

Zhang et al., Nature (2017)

Choi et al., Nature (2017)

EM field in modulated cavity

Martin, Ann. Phys. (2019)

Driven inhomogeneous 1+1D CFT

Floquet setup: 2-step drive

with H_{1}, H_{2} inhomogeneous CFT Hamiltonians with $v_{1}(x) \neq v_{2}(x)$.
Floquet operator:

$$
U_{F}=\mathrm{e}^{-\mathrm{i} H_{1} t_{1}} \mathrm{e}^{-\mathrm{i} H_{2} t_{2}}
$$

with $t_{\text {cyc }}=\left|t_{1}\right|+\left|t_{2}\right|$.

Outline

\diamond Inhomogeneous conformal field theory
\diamond Main tools
\diamond Floquet time evolution
\diamond Phase diagrams and flow of energy and excitations
\diamond Entanglement entropy

Outline

\diamond Inhomogeneous conformal field theory

Main tools

Floquet time evolution

Phase diagrams and flow of energy and excitations

Entanglement entropy

Inhomogeneous 1+1D CFT

Hamiltonian

$$
H=\int_{-L / 2}^{L / 2} \mathrm{~d} x v(x)\left[T_{+}(x)+T_{-}(x)\right]
$$

with a smooth position-dependent velocity $v(x)=v(x+L)>0$.

The operators $T_{ \pm}(x)=T_{ \pm}(x+L)$ satisfy

$$
\begin{aligned}
& {\left[T_{ \pm}(x), T_{ \pm}(y)\right]=\mp 2 \mathrm{i} \delta^{\prime}(x-y) T_{ \pm}(y) \pm \mathrm{i} \delta(x-y) T_{ \pm}^{\prime}(y) \pm \frac{c}{24 \pi} \mathrm{i} \delta^{\prime \prime \prime}(x-y),} \\
& {\left[T_{ \pm}(x), T_{\mp}(y)\right]=0 .}
\end{aligned}
$$

In Fourier space: Two commuting copies of the Virasoro algebra.

Energy-momentum tensor: $T_{+}=T_{--}, T_{-}=T_{++}$, and $T_{+-}=0=T_{-+}$.

Example: Inhomogeneous Luttinger model

Inhomogeneous CFT with $c=1$ given by

$$
\begin{aligned}
H= & \int_{-L / 2}^{L / 2} \mathrm{~d} x v_{F}(x)\left[: \psi_{+}^{\dagger}(x)\left(-\mathrm{i} \partial_{x}\right) \psi_{+}(x):+: \psi_{-}^{\dagger}(x)\left(+\mathrm{i} \partial_{x}\right) \psi_{-}(x):\right] \\
& +\lambda \pi \int_{-L / 2}^{L / 2} \mathrm{~d} x v_{F}(x)\left[\rho_{+}(x)+\rho_{-}(x)\right]\left[\rho_{+}(x)+\rho_{-}(x)\right]-L \mathcal{E}_{0}
\end{aligned}
$$

with $\rho_{ \pm}(x)=: \psi_{ \pm}^{\dagger}(x) \psi_{ \pm}(x)$: and fermionic fields $\psi_{ \pm}^{(\dagger)}(x)$ satisfying

$$
\left\{\psi_{r}(x), \psi_{r^{\prime}}^{\dagger}(y)\right\}=\delta_{r, r^{\prime}} \delta(x-y), \quad\left\{\psi_{r}(x), \psi_{r^{\prime}}(y)\right\}=0 .
$$

After bosonization:

Example: Inhomogeneous Luttinger model

Inhomogeneous CFT with $c=1$ given by

$$
\begin{aligned}
H= & \int_{-L / 2}^{L / 2} \mathrm{~d} x v_{F}(x)\left[: \psi_{+}^{\dagger}(x)\left(-\mathrm{i} \partial_{x}\right) \psi_{+}(x):+: \psi_{-}^{\dagger}(x)\left(+\mathrm{i} \partial_{x}\right) \psi_{-}(x):\right] \\
& +\lambda \pi \int_{-L / 2}^{L / 2} \mathrm{~d} x v_{F}(x)\left[\rho_{+}(x)+\rho_{-}(x)\right]\left[\rho_{+}(x)+\rho_{-}(x)\right]-L \mathcal{E}_{0}
\end{aligned}
$$

with $\rho_{ \pm}(x)=: \psi_{ \pm}^{\dagger}(x) \psi_{ \pm}(x)$: and fermionic fields $\psi_{ \pm}^{(\dagger)}(x)$ satisfying

$$
\left\{\psi_{r}(x), \psi_{r^{\prime}}^{\dagger}(y)\right\}=\delta_{r, r^{\prime}} \delta(x-y), \quad\left\{\psi_{r}(x), \psi_{r^{\prime}}(y)\right\}=0
$$

After bosonization:

$$
T_{ \pm}(x)=\pi:\left[\frac{1+K}{2 \sqrt{K}} \rho_{ \pm}(x)+\frac{1-K}{2 \sqrt{K}} \rho_{\mp}(x)\right]^{2}:-\frac{\pi}{12 L^{2}}
$$

with $v(x)=v_{F}(x) \sqrt{1+2 \lambda}$ and $K=1 / \sqrt{1+2 \lambda}$. (Require $\lambda>-1 / 2$)

Example: Effective description of inhomogeneous spin chains

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

Quantum $X X Z$ spin chain: $\left[S_{j}^{\alpha}, S_{j^{\prime}}^{\beta}\right]=\mathrm{i} \delta_{j, j^{\prime}} \epsilon_{\alpha \beta \gamma} S_{j}^{\gamma}$ and

$$
H_{X X Z}=-\sum_{j=1}^{N} J_{j}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}-\Delta S_{j}^{z} S_{j+1}^{z}\right)-\sum_{j=1}^{N} h_{j} S_{j}^{z}
$$

with $|\Delta|<1$ and $h_{j} \propto J_{j}>0$ varying on scales $\gg a$ and $\ll L=N a$.

Example: Effective description of inhomogeneous spin chains

P.M., arXiv:1912.04821, accepted in Ann. Henri Poincaré

For concreteness, let

$$
J_{j}=\frac{v_{F}\left(x_{j}\right)+v_{F}\left(x_{j+1}\right)}{2 a \sin \left(a k_{F}\right)}>0
$$

with $v_{F}(x)$ a smooth function and $a k_{F}$ close to $\pi / 2$. Then as effective description we obtain an inhomogeneous local Luttinger model with

$$
v(x)=v_{F}(x) \sqrt{1+4 \Delta \sin \left(a k_{F}\right) / \pi}, \quad K=\frac{1}{\sqrt{1+4 \Delta \sin \left(a k_{F}\right) / \pi}}
$$

Outline

Inhomogeneous conformal field theory
\diamond Main tools

Floquet time evolution

Phase diagrams and flow of energy and excitations

Entanglement entropy

Diffeomorphism representations

Orientation-preserving diffeomorphisms

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \mathrm{~d} x^{\prime} \frac{v_{0}}{v\left(x^{\prime}\right)}, \quad \frac{1}{v_{0}}
\end{aligned}=\frac{1}{L} \int_{-L / 2}^{L / 2} \frac{\mathrm{~d} x^{\prime}}{v\left(x^{\prime}\right)} .
$$

Projective unitary representations given by

$$
U_{ \pm}(f)=I \mp \mathrm{i} \varepsilon \int_{-L / 2}^{L / 2} \mathrm{~d} x \zeta(x) T_{ \pm}(x)+o(\varepsilon)
$$

for infinitesimal $f(x)=x+\varepsilon \zeta(x)$. Adjoint action:

$$
\begin{aligned}
& U_{ \pm}(f) T_{ \pm}(x) U_{ \pm}(f)^{-1}=f^{\prime}(x)^{2} T_{ \pm}(f(x))-\frac{c}{24 \pi}\{f(x), x\}, \\
& U_{ \pm}(f) T_{\mp}(x) U_{ \pm}(f)^{-1}=T_{\mp}(x) .
\end{aligned}
$$

Virasoro-Bott group

Bott cocycle:

$$
\begin{gathered}
U_{ \pm}\left(f_{1}\right) U_{ \pm}\left(f_{2}\right)=\mathrm{e}^{ \pm \mathrm{i} c B\left(f_{1}, f_{2}\right) / 24 \pi} U_{ \pm}\left(f_{1} \circ f_{2}\right), \\
B\left(f_{1}, f_{2}\right)=\frac{1}{2} \int_{-L / 2}^{L / 2} \mathrm{~d} x\left[\log f_{2}^{\prime}(x)\right]^{\prime} \log \left[f_{1}^{\prime}\left(f_{2}(x)\right)\right] .
\end{gathered}
$$

Virasoro-Bott group: Central extension of $\widetilde{\operatorname{Diff}_{+}}\left(S^{1}\right)$ by $B\left(f_{1}, f_{2}\right)$.

Associated Lie algebra: Virasoro algebra. Two commuting copies:

$$
\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}^{ \pm}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}, \quad\left[L_{n}^{ \pm}, L_{m}^{\mp}\right]=0
$$

where

$$
T_{ \pm}(x)=\frac{2 \pi}{L^{2}} \sum_{n=-\infty}^{\infty} \mathrm{e}^{ \pm \frac{2 \pi \mathrm{i} n x}{L}}\left(L_{n}^{ \pm}-\frac{c}{24} \delta_{n, 0}\right) .
$$

E.g.: Khesin, Wendt, The Geometry of Infinite-Dimensional Groups (2009)

Time evolution of operators

For local observables

$$
\mathcal{O}(x ; t)=\mathrm{e}^{\mathrm{i} H t} \mathcal{O}(x) \mathrm{e}^{-\mathrm{i} H t}
$$

Generalized light-cone coordinates $x_{t}^{\mp}=x_{t}^{\mp}(x)$ given by

$$
x_{t}^{\mp}(x)=f^{-1}\left(f(x) \mp v_{0} t\right)
$$

using our $f \in \widetilde{\mathrm{Diff}_{+}}\left(S^{1}\right)$. Obtained by inserting $U_{ \pm}(f)^{-1} U_{ \pm}(f)$ above.
For Virasoro primary fields and the energy-momentum tensor:

$$
\begin{aligned}
\Phi(x ; t) & =\left[\frac{\partial x_{t}^{-}}{\partial x}\right]^{\Delta_{\Phi}^{+}}\left[\frac{\partial x_{t}^{+}}{\partial x}\right]^{\Delta_{\Phi}^{-}} \Phi\left(x_{t}^{-}, x_{t}^{+}\right), \\
T_{ \pm}(x ; t) & =\left[\frac{\partial x_{t}^{\mp}}{\partial x}\right]^{2} T_{ \pm}\left(x_{t}^{\mp}\right)-\frac{c}{24 \pi}\left\{x_{t}^{\mp}, x\right\} .
\end{aligned}
$$

Complementary approach

Inhomogeneous Tomonaga-Luttinger liquids

$$
H_{\mathrm{iTLL}}=\frac{1}{2} \int_{-L / 2}^{L / 2} \mathrm{~d} x\left(\frac{v(x)}{K(x)} \pi_{\phi}(x)^{2}+v(x) K(x)\left[\partial_{x} \phi(x)\right]^{2}\right)
$$

with $\left[\phi(x), \pi_{\phi}\left(x^{\prime}\right)\right]=\mathrm{i} \delta\left(x-x^{\prime}\right)$. Corresponds to Lagrangian density

$$
\mathcal{L}=\frac{v}{2} \sqrt{-h} K(x) h^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)
$$

in curved spacetime

$$
\mathrm{d} s^{2}=v(x)^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}=h_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu} \quad\left(x^{0}=v t, x^{1}=x\right) .
$$

Using Euclidean CFT:
Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)
Dubail, Stéphan, Calabrese, SciPost Phys. (2017)
Ruggiero, Brun, Dubail, SciPost Phys. (2019)
For $v(x) / K(x)=$ constant:
Gluza, P.M., Sotiriadis, arXiv:2104.07751

Outline

Inhomogeneous conformal field theory

Main tools

Floquet time evolution

Phase diagrams and flow of energy and excitations

Entanglement entropy

Driven inhomogeneous 1+1D CFT

Floquet setup: 2-step drive

with H_{1}, H_{2} inhomogeneous CFT Hamiltonians with $v_{1}(x) \neq v_{2}(x)$.
Floquet operator:

$$
U_{F}=\mathrm{e}^{-\mathrm{i} H_{1} t_{1}} \mathrm{e}^{-\mathrm{i} H_{2} t_{2}}
$$

with $t_{\text {cyc }}=\left|t_{1}\right|+\left|t_{2}\right|$.

Special case

Sine-square-deformed (SSD) CFT:

$$
H_{\mathrm{SSD}}=\frac{2 \pi v}{L}\left(L_{0}^{+}-\frac{L_{1}^{+}+L_{-1}^{+}}{2}+L_{0}^{-}-\frac{L_{1}^{-}+L_{-1}^{-}}{2}\right)
$$

Wen, Wu, arXiv:1805.00031
Fan, Gu, Vishwanath, Wen, Phys. Rev. X (2020)
Lapierre, Choo, Tauber, Tiwari, Neupert, Chitra, Phys. Rev. Research (2020)
Homogeneous CFT: $\quad H_{\text {homog. }}=\frac{2 \pi v}{L}\left(L_{0}^{+}+L_{0}^{-}\right)$.

Phase diagram:

$$
\widetilde{z}_{1}=\frac{a z+b}{c z+d}, \quad a=a\left(T_{0}, T_{1}\right), \text { etc. }
$$

$$
\widetilde{z}_{n}=\frac{\left(\gamma_{1}-\eta^{n} \gamma_{2}\right) z+\left(\eta^{n}-1\right) \gamma_{1} \gamma_{2}}{\left(1-\eta^{n}\right) z+\eta^{n} \gamma_{1}-\gamma_{2}}
$$

with

$$
\left\{\begin{array}{l}
\gamma_{1}=\gamma_{1}(a, b, c, d) \\
\gamma_{2}=\gamma_{2}(a, b, c, d) \\
\eta=\eta(a, b, c, d)
\end{array}\right.
$$

Möbius transformations:

General case

Hamiltonians

$$
H_{j}=\int_{-L / 2}^{L / 2} \mathrm{~d} x v_{j}(x)\left[T_{+}(x)+T_{-}(x)\right] \quad(j=1,2)
$$

with smooth L-periodic functions $v_{1}(x)>0$ and $v_{2}(x)>0$.

Lapierre, P.M., Phys. Rev. B (2021)
Special case of SSD CFT:

$$
v_{\mathrm{SSD}}(x)=2 v \cos ^{2}(\pi x / L)
$$

Geometric approach

Encode U_{F} into circle diffeomorphisms $f_{ \pm}(x)$ and study those. Yields a correspondence with classical dynamical systems on the circle.

Lapierre, P.M., Phys. Rev. B (2021)

2-step Floquet drive

For local observables

$$
\mathcal{O}(x ; t)=U_{F}^{-n} \mathcal{O}(x) U_{F}^{n}, \quad U_{F}=\mathrm{e}^{-\mathrm{i} H_{1} t_{1}} \mathrm{e}^{-\mathrm{i} H_{2} t_{2}}, \quad t=n t_{c y c}
$$

Orientation-preserving diffeomorphisms

$$
f_{j}(x)=\int_{0}^{x} \mathrm{~d} x^{\prime} \frac{v_{j, 0}}{v_{j}\left(x^{\prime}\right)}, \quad \frac{1}{v_{j, 0}}=\frac{1}{L} \int_{-L / 2}^{L / 2} \frac{\mathrm{~d} x}{v_{j}(x)}
$$

$\Longrightarrow f_{j} \in \widetilde{\mathrm{Diff}}_{+}\left(S^{1}\right)$. Insert $U_{ \pm}\left(f_{j}\right)^{-1} U_{ \pm}\left(f_{j}\right)$ around $\mathrm{e}^{\mp \mathrm{i} H_{j} t_{j}}$.
Consequence: Generalized light-cone coordinates $x_{t}^{\mp}(x)$ given by

$$
\begin{gathered}
x_{t+t_{\mathrm{cyc}}}^{\mp}(x)=f_{ \pm}\left(x_{t}^{\mp}(x)\right), \quad x_{0}^{\mp}(x)=x, \\
f_{ \pm}(x)=f_{2}^{-1}\left[f_{2}\left(f_{1}^{-1}\left[f_{1}(x) \mp v_{1,0} t_{1}\right]\right) \mp v_{2,0} t_{2}\right] .
\end{gathered}
$$

Time evolution of operators

Primary fields

$$
\Phi(x ; t)=\left[\frac{\partial x_{t}^{-}(x)}{\partial x}\right]^{\Delta^{+}}\left[\frac{\partial x_{t}^{+}(x)}{\partial x}\right]^{\Delta^{-}} \Phi\left(x_{t}^{-}(x), x_{t}^{+}(x)\right) .
$$

Components of the energy-momentum tensor

$$
T_{ \pm}(x ; t)=\left[\frac{\partial x_{t}^{\mp}(x)}{\partial x}\right]^{2} T_{ \pm}\left(x_{t}^{\mp}(x)\right)-\frac{c}{24 \pi}\left\{x_{t}^{\mp}(x), x\right\}
$$

Here $\partial x_{t}^{\mp}(x) / \partial x=\prod_{m=0}^{n-1} f_{ \pm}^{\prime}\left(x_{m t_{\text {cyc }}}^{\mp}(x)\right)$ for $n>0$.

Geometric approach to Floquet systems

Fixed points: Look for solutions x_{*}^{\mp} to

$$
x_{*}^{\mp}=f_{ \pm}\left(x_{*}^{\mp}\right)
$$

Tangent points: Critical values $x_{\mathrm{c}}^{\mp}=x_{*}^{\mp}$ that additionally satisfy

$$
1=f_{ \pm}^{\prime}\left(x_{\mathrm{c}}^{\mp}\right)
$$

Unstable $f_{ \pm}^{\prime}\left(x_{*}^{\mp}\right)>1$
Stable $f_{ \pm}^{\prime}\left(x_{*}^{\mp}\right)<1$

More generally: Periodic points

Periodic points of period $p \in \mathbb{Z}^{+}$:

$$
x_{* p}^{\mp}=f_{ \pm}^{p}\left(x_{* p}^{\mp}\right), \quad f_{ \pm}^{p}=\underbrace{f_{ \pm} \circ \ldots \circ f_{ \pm}}_{p \text { times }}
$$

Unstable: $f_{ \pm}^{p \prime}\left(x_{* p}^{\mp}\right)>1$. Stable: $f_{ \pm}^{p \prime}\left(x_{* p}^{\mp}\right)<1$. Critical: $f_{ \pm}^{p \prime}\left(x_{c p}^{\mp}\right)=1$.

Example of periodic points with period 2 :

Heating and non-heating phases

Suppose that x is a periodic point $x_{* p}^{\mp}$, then

$$
\frac{\partial x_{t}^{\mp}(x)}{\partial x}=f_{ \pm}^{p \prime}\left(x_{* p}^{\mp}\right)^{n / p}, \quad t=n t_{\mathrm{cyc}}, n / p \in \mathbb{Z}^{+}
$$

If $f_{ \pm}^{p \prime}\left(x_{* p}^{\mp}\right)>(<) 1$, this diverges (vanishes) exponentially as $t \rightarrow \infty$.

Energy density

$$
\mathcal{E}_{1}(x ; t)=v_{1}(x)\left[T_{+}(x ; t)+T_{-}(x ; t)\right]
$$

grows (decays) exponentially at unstable (stable) fixed points.

Heating rate

$$
\nu=\max _{p \in \mathbb{Z}^{+}, r= \pm, i \in\left\{1, \ldots, 2 N_{p}\right\}} \frac{2}{p t_{\mathrm{cyc}}} \log \left[f_{r}^{p \prime}\left(x_{* p, i}^{-r}\right)\right] .
$$

Outline

Inhomogeneous conformal field theory

Main tools

Floquet time evolution

\diamond Phase diagrams and flow of energy and excitations

Entanglement entropy

Example 1: gSSD CFT

Special case: $\quad v_{1}(x)=v_{1}$.
g SSD CFT: $\quad v_{2}(x)=v_{2} w(x / L)$ with

$$
w(\xi)=1+g\left[2 \cos ^{2}(\pi \xi)-1\right], \quad g \in[0,1) .
$$

Cf.: MacCormack, Liu, Nozaki, Ryu, J. Phys. A: Math. Theor. (2019)
Limiting cases: Homogeneous CFT: $g=0 \quad$ SSD CFT: $g \rightarrow 1^{-}$

Dimensionless variables: $\quad \xi=x / L, \quad \tau_{1}=v_{1} t_{1} / L, \quad \tau_{2}=v_{2} t_{2} / L$.

Example 1: Phase diagram for g SSD CFT

Phase transition lines:

$$
\begin{aligned}
& \tau_{2}=\frac{2 \arctan \left(\sqrt{(1-g) /(1+g)} \tan \left(\pi\left[1-\tau_{1}\right] / 2\right)\right)}{\pi \sqrt{1-g^{2}}} \\
& \tau_{2}=\frac{1}{\sqrt{1-g^{2}}}-\frac{2 \arctan \left(\sqrt{(1-g) /(1+g)} \tan \left(\pi \tau_{1} / 2\right)\right)}{\pi \sqrt{1-g^{2}}}
\end{aligned}
$$

Phase diagram:

Example 1: Phase diagram for g SSD CFT

Phase transition lines:

$$
\begin{aligned}
& \tau_{2}=\frac{2 \arctan \left(\sqrt{(1-g) /(1+g)} \tan \left(\pi\left[1-\tau_{1}\right] / 2\right)\right)}{\pi \sqrt{1-g^{2}}} \\
& \tau_{2}=\frac{1}{\sqrt{1-g^{2}}}-\frac{2 \arctan \left(\sqrt{(1-g) /(1+g)} \tan \left(\pi \tau_{1} / 2\right)\right)}{\pi \sqrt{1-g^{2}}}
\end{aligned}
$$

Phase diagram:

Example 2: Gaussian-deformed CFT

As before but with

$$
w(\xi)=A \exp \left(-(\xi / d)^{2}\right), \quad A, d \in \mathbb{R}^{+}
$$

Explicit formulas with erfi instead of arctan.
Phase diagram:

Gaussian-deformed CFT for $A=2, d=0.32$

Example 3: CFT deformed by $w(\xi)=a /[b+\sin (2 \pi k \xi)+\cos (2 \pi \xi)]$

For $a=6, b=3$, and $k=2$.

Example 3: Fixed points at $\left(\tau_{1}, \tau_{2}\right)=(0.10,0.45)$

$x_{t}^{-}(x)$-trajectories

$\left.\left.\log \left(\sum_{r= \pm}\left|\langle 0| \Phi_{r}^{\dagger}(x, t) \Phi_{r}\left(x_{0}, 0\right)\right| 0\right\rangle\right|^{2}\right)$

$x_{t}^{+}(x)$-trajectories

Energy density

Example 3: 2-periodic points at $\left(\tau_{1}, \tau_{2}\right)=(0.35,0.08)$

$x_{t}^{-}(x)$-trajectories

$\left.\left.\log \left(\sum_{r= \pm}\left|\langle 0| \Phi_{r}^{\dagger}(x, t) \Phi_{r}\left(x_{0}, 0\right)\right| 0\right\rangle\right|^{2}\right)$

$x_{t}^{+}(x)$-trajectories

Energy density

Outline

Inhomogeneous conformal field theory

Main tools

Floquet time evolution

Phase diagrams and flow of energy and excitations

Entanglement entropy

Entanglement entropy: Computation

Entanglement entropy of subsystem on $A=[x, y]$ with the rest:

$$
S_{A}(t)=\lim _{m \rightarrow 1} \frac{1}{1-m} \log \left(\operatorname{Tr}\left[\hat{\rho}_{A}(t)^{m}\right]\right)
$$

with $\hat{\rho}_{A}(t)=U_{F}^{n} \hat{\rho}_{A} U_{F}^{-n}, t=n t_{\text {cyc }}$, and $\hat{\rho}_{A}$ the reduced density matrix.
Using twist fields $\Phi_{m}(x ; t)$:

$$
S_{A}(t)=\lim _{m \rightarrow 1} \frac{1}{1-m} \log \left[\langle 0| \Phi_{m}(x ; t) \Phi_{m}(y ; t)|0\rangle\right]
$$

Conformal weights $\Delta_{m}^{ \pm}=(c / 24)(m-1 / m)$.

Rigorous results for entanglement entropy in quantum field theory.

Entanglement entropy: Results

Letting $x_{t}^{\mp}=x_{t}^{\mp}(x)$ and $y_{t}^{\mp}=x_{t}^{\mp}(y)$:

$$
\begin{aligned}
& S_{A}(t)=\frac{c}{12}\left[S_{+}(t)+S_{-}(t)\right], \\
& S_{ \pm}(t)=-\log \left[\frac{\partial x_{t}^{\mp}}{\partial x} \frac{\partial y_{t}^{\mp}}{\partial y}\left(\frac{ \pm \mathrm{i} \pi}{L \sin \left(\frac{\pi}{L}\left[x_{t}^{\mp}-y_{t}^{\mp} \pm \mathrm{i} 0^{+}\right]\right)}\right)^{2}\right] .
\end{aligned}
$$

Two cases:

If $t=0$, then $S_{A}(0)=(c / 3) \log [(L / \pi) \sin (\pi \ell / L)]$ for $\ell=x-y>0$.

Pattern of entanglement entropy

In Example 3:

Mutual information $I_{A ; B}(t)=S_{A}(t)+S_{B}(t)-S_{A \cup B}(t)$:
Only neighboring unstable periodic points share entanglement that grows linearly at late times \Longrightarrow entanglement entropy is "bipartite". ${ }^{1}$
${ }^{1}$ If the number of unstable points for each component is even.

Summary

\diamond Exact analytical results for general inhomogeneous conformal field theory using projective unitary representations of $\widetilde{\text { Diff }_{+}}\left(S^{1}\right)$.
\diamond Geometric approach to inhomogeneous Floquet systems.
\diamond Construct phase diagrams with heating/non-heating phases determined by presence/absence of periodic points.
\diamond Energy and excitations accumulate exponentially fast at unstable periodic points.
\diamond Kinks in entanglement entropy at unstable periodic points.
\diamond Only neighboring unstable periodic points share linearly growing entanglement entropy at late times.
\diamond Geometric approach is straightforward to apply to multi-step, random, chaotic, and quasi-periodic drives.

Thank you for your attention!

