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Non-hermitian Hamiltonians

Hermitian Hamiltonians
I In quantum mechanics we have an axiom that says that the

Hamiltonian, H is hermitian

H = H†

I Energies are real.
I The eigenvectors are a complete basis of the Hilbert space.

Non-hermitian Hamiltonians
What happens if we remove the condition that the Hamiltonian must
be hermitian?
I Ei ∈ C
I H |ψi〉 = Ei |ψi〉, the eigenvectors is not necessarily orthogonal.
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The real world is hermitian, so why consider non-
hermitian quantum mechanics?

Why consider something so silly?
I Effective description for open systems

I A lot of recent experiments
I Enginer systems?

I It is interesting from both a mathematics and physics perspective
I What concepts changes when H 6= H†

I What is still the same?
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Biorthogonal quantum mechanics

Before we start looking at topological phases, we need a a way
around the problem that the eigenvectors don’t form a basis

Left eigenvectors and right eigenvectors
I H

∣∣ψR
i

〉
= Ei

∣∣ψR
i

〉
I H†

∣∣ψL
i

〉
= E∗i

∣∣ψL
i

〉
⇔
〈
ψL
i

∣∣H =
〈
ψL
i

∣∣Ei

Biorthogonalization 〈
ψL

i

∣∣ψR
j
〉

= δij

Can be used to diagonalize operators

M =
∑

λi
∣∣ψR

i

〉 〈
ψL
i

∣∣
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General about topological phases and restric-
tions

Symmetry protected topological phases
I Two gapped states of matter are in the same topological phase of

matter if you can continously deform the Hamiltonian from one to
the other without closing the energygap or break the symmetry.

I Study systems that are in the groundstate (zero temperature)
I We have an energygap between the groundstate and the first

excited state
I This makes the system more stable

I Topological invariants that differentiates phases
I What the invariant is depends on the symmetries and dimension of

the system
I Phase-transitions when the energygap closes
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SPT

Topological insulator
I Boring bulk

I Just an insulator?
I But they are topologically different

I Interesting things happens if we have a boundary
I Bulk-boundary correspondence
I "zero-modes at the boundary"

Some restrictions
I Fermionic systems
I Non-interacting systems (not necessary)
I Translational invariance (not necessary)
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Hermitian SSH model

H = t0
∑

m

(|m,B〉 〈m,A|+ h.c.) + t1
∑

m

(|m + 1,A〉 〈m,B|+ h.c.)

I Translation symmetry→ momentum space (Blochs theorem)

H(k) =

(
0 t0 + t1e−ik

t0 + t1eik 0

)
= (t0 + t1) cos(k)σx + t1 sin(k)σy , k ∈ S1
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Hermitian SSH model 2

H(k) =

(
0 t0 + t1e−ik

t0 + t1eik 0

)
⇒ E±(k) = ±|t0 + t1e−ik |

I Two energy bands with an energy gap E+ − E−
I This model has two different phases

Lukas Rødland |



9

AZ-symmetry classes 1

Definition (Particle-hole symmetry(PHS))
A Hamiltonian H has PHS if there exist a unitary C such that

C H∗(k) C-1 = −H(−k)

Definition (Chiral symmetry(CS))
A Hamiltonian H has CS if there exist a unitary Γ such that

Γ H(k) Γ-1 = −H(k)

Definition (Time reversal (TRS))
A Hamiltonian H has TRS if there exist a unitary T such that

T H∗(k) T -1 = +H(−k)
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AZ-symmetry classes 2
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AZ-symmetry classes 3
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Hermitian SSH model 3

The SSH model is in the BDI class

H(k) =

(
0 t0 + t1e−ik

t0 + t1eik 0

)
I Z Topological number
I We have to extend the model to get higher winding numbers
I Chiral symmetry Γ = σz
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Hermitian SSH model 4

More generally for a 1D system with chial symmetry
Γ = σz

H(k) =

(
0 q(k)

q†(k) 0

)

I w =
∫ dk

2πq−1∂k q ∈ Z
I If the system has a boundary it will have w zero modes at the

edge
I Bulk-boundary correspondence
I Everything is still fine with more bands
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K-theory classification

Table of classification How did we get to the classification we saw
earlier?

Main idea without any details
1. Kitaev 2009
2. K-theory give you information to differentiate vector bundles
3. Construct vector bundles of eigenstates over Brillouin torus.
4. Symmetry constraints
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Some natural questions bout non-hermitian
topological phases

I What do we mean by an energy-gap when the energies are
complex?

I AZ-symmetry classes?
I Classification of topological phases
I Bulk-boundary correspondence?

Lukas Rødland |



16

Symmetries in non-hermitian topological phases
1

H 6= H† ⇒ H∗ 6= HT

T± H∗(k) T -1
± =± H(−k), T± T±∗ = ±1

C± HT (k) C-1± =± H(−k), C± C±∗ = ±1

Γ H†(k) Γ−1 =− H(k), Γ2 = 1

S H(k)S−1 =− H(k), S2 = 1
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Symmetries in non-hermitian topological phases
2

What happens to time reversal?
I The hermitian Time reversal symmetry, T H∗(k) T -1 = H(−k),

has two non-hermitian counterparts
1. T + H∗(k) T −1

+ = H(−k) called TRS
2. C+ HT (k) C−1

+ = H(−k) called TRS†

I This gives us a lot more symmetry classes
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Symmetries in non-hermitian topological phases
3

Figure: 10 Altland-Zirnbauer classes to 38 Bernard-LeClair classes. From
Kawabata et al. 2019
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Symmetries in non-hermitian topological phases
3

Where are the other classes?

1. The chiral symmetry, Γ, also splits into two different kinds of
symmetries. The other kind is not shown here is called Sub
lattice symmetry.

2. It was long believed that there were actually 42 classes.Bernard
and LeClair 2002

3. Kawabata et al. 2019 showed that there were some
overcounting.
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Hermitian energy gap
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Line-gap and point-gap
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General idea for classifying

Hermitization
I Map the system to a hermitian system in a "good" way

I Then we can use the classification from hermitian systems directly
I We have to distinguish between point-gap and line gap

What do we mean by classifying nh topological phases?
I A littlebit unclear
I Don’t change symmetry class
I Don’t close gap
I Should not matter if you add more bands far away from the gap
I don’t change "topological" properties
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Two theorems 1

Theorem (Hermitian flattening for line gaps)
If a non-Hermitian Hamiltonian H(k) has a line gap in the real
(imaginary) part of its complex spectrum [real (imaginary) gap], it can
be continuously deformed into a Hermitian (an anti-Hermitian) matrix
while keeping the line gap and its symmetry
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Two theorems 2

I We send the system to a hermitian system with the same
classification
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Two theorems 3

Theorem (unitary flattening for point gaps)
If a non-Hermitian Hamiltonian H(k) has a point gap, it can be
continuously deformed into a unitary matrix U(k) while keeping the
point gap and its symmetry.

Remark
The classification for point gaps is therefor equivalent with the
classification of unitary matrices with the right symmetries.
For the actual classification one uses the flattened Hermitian
hamiltonian

H̃(k) :=

(
0 U(k)

U†(k) 0

)
.
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Two theorems 4
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Two theorems 5

H̃(k) :=

(
0 U(k)

U†(k) 0

)
.

The hermitization of the point gap has an extra chiral
symmetry

I ΣH̃(k)Σ = −H̃(k) with Σ =

(
1 0
0 −1

)

I Hermitian systems in odd dimensions with a chiral symmetry has
a well defined winding number.

w2n+1 =
n!

(2πi)n+1(2n + 1)!

∫
BZ

tr(U−1dU)2n+1 ∈ Z
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Two theorems 6

1D

w1 =

∫
S1

dk
2πi

tr
(

H−1 dH
dk

)

1D, 1 band
I For 1 band it tells us how the band winds around origo.

w1 =

∫
S1

dk
2πi

∂k lnE(k)
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Non-hermitian SSH 1

Different hopping in different directions

H(k) =

(
0 t0 + (t1 + γ)e−ik

t0 + (t1 − γ)eik 0

)
=(t0 + t1) cos(k)σx + (t1 sin(k)− iγ)σy , k ∈ S1

I Gap closings at E+ = E−, that is, t1 = ±(t0 ± γ)

I Symmetry class, AI with SLS
I Z for line gap
I Z⊕ Z for point gap
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Non-hermitian SSH 2
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Non-hermitian SSH 3

Why an extra Z for point gap?
I Point gap hermitization:

H̃(k) :=

(
0 H(k)

H†(k) 0

)
=

0 0 0 t0 + (t1 + γ)e−ik

0 0 t0 + (t1 − γ)eik 0
0 t0 + (t1 − γ)e−ik 0 0

t0 + (t1 + γ)eik 0 0 0


I Two different chiral symmetries, Σ = 1⊗ σz and S = σz ⊗ 1
I This gives us two different winding numbers
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What is the non-hermitian skin effect?

A non-hermitian phenomena
I States pile up at the boundary for OBC
I Breaks Bulk-boundary correspondence

I Topological invariant no longer tell you the number of edge modes
I The SSH model has the skin effect for both line gap and point

gap
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Topological origin of the skin effect in one slide

Point gap⇔ skin effect
I Okuma et al. 2020
I Zhang, Yang, and Fang 2020
I Why do we have skin effect even when we have a line gap?

I We have regions with different winding numbers!
I For obc the regions with non-zero winding number will be filled

up with states
I These states are skin statesLukas Rødland |
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Other classification schemes

Some potential issues
I To simple to divide systems with an energy gap into point gap or

line gap
I Does the classification make sense when talking about the

reference energies that are relevant for the skin effect?

Homotopy based approaches
I There has been some recent work trying to study the topology of

the bands more directly
I Li and Mong 2021
I Wojcik et al. 2020
I Hu and Zhao 2021
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Braids classifying 1D non-hermitian systems

1D systems w.o. symmetry are just braids? Hu and Zhao
2021
I Set of n bands, Ei (k) ∈ C
I Bands do not touch, Ei (k) 6= Ej (k)

I Braids in C× S1

I Phase transition when bands "touch"
I Consequence: The classification is just equivalent to the

classification of knots
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SSH braids in three different phases
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Some issues with homotopy based classifica-
tions

I Only systems without symmetries
I Unclear how to generalize to symmetry protected phases

I Sensitive to the number of bands
I Bands far away from the energy gap cannot cross each other
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Anomaly and qft picture of SPT and non-
hermitian systems
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