STOCKHOLM UNIVERSITY
 DEPARTMENT OF MATHEMATICS

Mitja Nedic
Hypercomplex analysis
CLIFFORD ALGEBRAS PROJECT

Contents

1. Quaternionic analysis 3
2. Dirac operators 6
References 8

1. Quaternionic analysis

The division ring of quaternions is denoted by \mathbb{H} and is equal to

$$
\mathbb{H}=\{t+x \mathfrak{i}+y \mathfrak{j}+z \mathfrak{k} \mid t, x, y, z \in \mathbb{R}\}
$$

where $\mathfrak{i}^{2}=\mathfrak{j}^{2}=\mathfrak{k}^{2}=-1$ and $\mathfrak{i} \mathfrak{j}=\mathfrak{k}, \mathfrak{j} \mathfrak{k}=\mathfrak{i}, \mathfrak{k} \mathfrak{i}=\mathfrak{j}$. Quternionic analysis is then the study of functions $f: U \rightarrow V$ where $U, V \subseteq \mathbb{H}$. Quternions inherit the topological notions of continuity from Euclidean space since $\mathbb{H} \cong \mathbb{R}^{4}$ as \mathbb{R}-vector spaces. We can therefore begin our study of quaternionic analysis with the definition of a quaternionic derivative [3].

Definition 1.1. A function $f: U \rightarrow V$ where $U, V \subseteq \mathbb{H}$ has a left quaternionic derivative at a point $w_{0} \in U$ if the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} h^{-1}\left(f\left(w_{0}+h\right)-f\left(w_{0}\right)\right) \tag{1}
\end{equation*}
$$

exists. Similarly we say that f has a right quaternionic derivative at a point $w_{0} \in U$ if the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left(f\left(w_{0}+h\right)-f\left(w_{0}\right)\right) h^{-1} \tag{2}
\end{equation*}
$$

exists.
The following examples show that this definition is in fact to restrictive to be of any practical use.

Example 1.2. Let us consider the function $f: \mathbb{H} \rightarrow \mathbb{H}$ defined as $f(w)=w^{2}$. We then calculate that
$h^{-1}(f(w+h)-f(w))=h^{-1}\left((w+h)^{2}-w^{2}\right)=h^{-1}\left(w h+h w+h^{2}\right)=h^{-1} w h+w+h$.
It is now easy to see that the limit (1) does not exist for our function f. We first choose $h=h_{0}$ where $h_{0} \in \mathbb{R}$. Limit (1) then becomes

$$
\lim _{h_{0} \rightarrow 0}\left(h_{0}^{-1} w h_{0}+w+h_{0}\right)=\lim _{h_{0} \rightarrow 0}\left(2 w+h_{0}\right)=2 w .
$$

We now choose $h=h_{0} \mathfrak{i}$ where $h_{0} \in \mathbb{R}$. Limit (1) then becomes

$$
\lim _{h_{0} \rightarrow 0}\left(\left(h_{0} \mathfrak{i}\right)^{-1} w h_{0} \mathfrak{i}+w+h_{0} \mathfrak{i}\right)=\lim _{h_{0} \rightarrow 0}\left(\mathfrak{i}^{-1} w \mathfrak{i}+w+h_{0} \mathfrak{i}\right)=\mathfrak{i}^{-1} w \mathfrak{i}+w .
$$

These two limits are of course not the same for a generic $w \in \mathbb{H}$.
An analogous calculation shows that limit (2) also does not exist. Therefore f has neither a left nor a right quaternionic derivative.

Example 1.3. Let us consider the function $f: \mathbb{H} \rightarrow \mathbb{H}$ defined as $f(w)=a+b w$ where $a, b \in \mathbb{H}$ fixed. We then calculate that

$$
h^{-1}(f(w+h)-f(w))=h^{-1}(a+b(w+h)-a-b w)=h^{-1} b h .
$$

Thus limit (1) will not exits unless $b \in Z(\mathbb{H})=\mathbb{R}$ where $Z(\mathbb{H})$ denotes the centre of \mathbb{H}. On the other hand, we calculate that

$$
(f(w+h)-f(w)) h^{-1}=(a+b(w+h)-a-b w) h^{-1}=b .
$$

Thus limit (2) always exists. The function f thus has a right quaternionic derivative and also has a left quaternionic derivative in the special case when $b \in \mathbb{R}$.

Example 1.4. In analogy to the previous example one can show that $f: \mathbb{H} \rightarrow \mathbb{H}$ defined as $f(w)=a+w b$ where $a, b \in \mathbb{H}$ fixed, always has a left quaternionic derivative and also has a right quaternoinic derivative in the special case when $b \in \mathbb{R}$.

On has in fact the following theorem [4].
Theorem 1.5. Let $f: U \rightarrow \mathbb{H}$ where $U \subseteq \mathbb{H}$ is a connected open set. Then f has a left quaternionic derivative at every point in U if and only if f has the form

$$
f(w)=a+w b
$$

for some $a, b \in \mathbb{H}$.
These examples show that quaternionic polynomials in general are not differentiable. Suppose then that we would like to find a definition of analyticity such that quaternionic polynomials would become analytic. To do so we first note that natural monomial functions of a quaternionic variable of degree r are of the form

$$
w \mapsto a_{0} w a_{1} \ldots a_{r-1} w a_{r}
$$

where $a_{0}, a_{1}, \ldots, a_{r} \in \mathbb{H}$. The elementary monomials can be considered to be those with $a_{0}, a_{1}, \ldots, a_{r} \in\{1, \mathfrak{i}, \mathfrak{j}, \mathfrak{k}\}$. However, if one writes $w=t+x \mathfrak{i}+y \mathfrak{j}+z \mathfrak{k}$ we then have

$$
\begin{aligned}
t & =\frac{1}{4}(w-\mathfrak{i} w \mathfrak{i}-\mathfrak{j} w \mathfrak{j}-\mathfrak{k} w \mathfrak{k}), \\
x & =\frac{1}{4 \mathfrak{i}}(w-\mathfrak{i} w \mathfrak{i}+\mathfrak{j} w \mathfrak{j}+\mathfrak{k} w \mathfrak{k}), \\
y & =\frac{1}{4 \mathfrak{j}}(w+\mathfrak{i} w \mathfrak{i}-\mathfrak{j} w \mathfrak{j}+\mathfrak{k} w \mathfrak{k}), \\
z & =\frac{1}{4 \mathfrak{k}}(w+\mathfrak{i} w \mathfrak{i}+\mathfrak{j} w \mathfrak{j}-\mathfrak{k} w \mathfrak{k}) .
\end{aligned}
$$

Thus a definition which would make all quaternionic polynomials analytic would also make all polynomials in four variables analytic (in a quaternionic sense), something which we do not want.

In search of a better definition of a derivative we recall from elementary complex analysis the Cauchy-Riemann operators (also called the Wirtinger derivatives) that are defined as

$$
\partial=\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\mathfrak{i} \frac{\partial}{\partial y}\right) \quad \text { and } \quad \bar{\partial}=\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\mathfrak{i} \frac{\partial}{\partial y}\right)
$$

where the $z=x+\mathfrak{i} y$ are the coordinates on \mathbb{C}. An analogous definition for \mathbb{H} is the following [3].

Definition 1.6. A function $f: U \rightarrow V$ where $U, V \subseteq \mathbb{H}$ is called left regular on U if

$$
\begin{equation*}
D_{L} f=\frac{\partial f}{\partial t}+\mathfrak{i} \frac{\partial f}{\partial x}+\mathfrak{j} \frac{\partial f}{\partial y}+\mathfrak{k} \frac{\partial f}{\partial z}=0 . \tag{3}
\end{equation*}
$$

Similarly f is called right regular on U if

$$
\begin{equation*}
D_{R} f=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \mathfrak{i}+\frac{\partial f}{\partial y} \mathfrak{j}+\frac{\partial f}{\partial z} \mathfrak{k}=0 . \tag{4}
\end{equation*}
$$

A function f is called simply regular if it is both left- and right-regular.
The operators D_{L} and D_{R} are sometimes called the Fueter operators and equation (3) (or (4)) is sometimes called the left (or right) Cauchy-Riemann-Fueter equation.

We continue with an example the shows that we indeed have non-trivial functions that are left (or right) regular contrary to definition 1.1 where even certain linear functions fail to have a left (or right) quaternionic derivative.
Example 1.7. Consider the function $f: \mathbb{H} \rightarrow \mathbb{H}$ defined by $f(w)=w$. Then f is neither left nor right regular since

$$
\left(D_{L} f\right)(w)=-2 \quad \text { and } \quad\left(D_{R} f\right)(w)=-2 .
$$

Example 1.8. Consider the function $f: \mathbb{H} \rightarrow \mathbb{H}$ defined by

$$
f(w)=\frac{\bar{w}}{|w|^{4}}=\frac{t-x \mathfrak{i}-y \mathfrak{j}-z \mathfrak{k}}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{2}} .
$$

Then f is both left and right regular on \mathbb{H} to show this we first calculate that

$$
\begin{aligned}
\frac{\partial f}{\partial t}(w) & =\frac{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)-4 t(t-x \mathfrak{i}-y \mathfrak{j}-z \mathfrak{k})}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}, \\
\frac{\partial f}{\partial x}(w) & =\frac{-\mathfrak{i}\left(t^{2}+x^{2}+y^{2}+z^{2}\right)-4 x(t-x \mathfrak{i}-y \mathfrak{j}-z \mathfrak{k})}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}, \\
\frac{\partial f}{\partial y}(w) & =\frac{-\mathfrak{j}\left(t^{2}+x^{2}+y^{2}+z^{2}\right)-4 y(t-x \mathfrak{i}-y \mathfrak{j}-z \mathfrak{k})}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}, \\
\frac{\partial f}{\partial z}(w) & =\frac{-\mathfrak{k}\left(t^{2}+x^{2}+y^{2}+z^{2}\right)-4 z(t-x \mathfrak{i}-y \mathfrak{j}-z \mathfrak{k})}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}} .
\end{aligned}
$$

It is now trivial to check that

$$
\left(D_{L} f\right)(w)=\left(D_{R} f\right)(w)=0
$$

for all $w \in \mathbb{H} \backslash\{0\}$.
Definition 1.9. The conjugate Fueter operators are defined as

$$
\begin{equation*}
\bar{D}_{L}=\frac{\partial}{\partial t}-\mathfrak{i} \frac{\partial}{\partial x}-\mathfrak{j} \frac{\partial}{\partial y}-\mathfrak{k} \frac{\partial}{\partial z} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{D}_{R}=\frac{\partial}{\partial t}-\frac{\partial}{\partial x} \mathfrak{i}-\frac{\partial}{\partial y} \mathfrak{j}-\frac{\partial}{\partial z} \mathfrak{k} . \tag{6}
\end{equation*}
$$

We recall now that the Cauchy-Riemann operators factorize the Laplacian on \mathbb{R}^{2} in the sense that $\partial \bar{\partial}=\bar{\partial} \partial=\frac{1}{4} \triangle$. Similarly the Fueter operators and their conjugates factorize the Laplacian on \mathbb{R}^{4} in the sense that

$$
D_{L} \bar{D}_{L}=\bar{D}_{L} D_{L}=D_{R} \bar{D}_{R}=\bar{D}_{R} D_{R}=\triangle .
$$

One also has a quaternionic version of Cauchy's theorem as follows [4].
Theorem 1.10. Suppose f is regular in an open set U. Let w_{0} be a point in U, and let C be a rectifiable 3-chain which is homologous, in the singular homology of $U \backslash\left\{w_{0}\right\}$, to a differentiable 3-chain whose image is ∂B for some ball $B \subseteq U$. Then

$$
\frac{1}{2 \pi^{2}} \int_{C} \frac{\left(w-w_{0}\right)^{-1}}{\left|w-w_{0}\right|^{2}} D w f(w)=n f\left(w_{0}\right)
$$

where n is the wrapping number of C about w_{0}.
The details are available in [4]. On can then also generalize other theorems form complex analysis that depend only on Cauchy's formula, such as the maximum principle, Morera's theorem and Liouville's theorem [4].

2. Dirac operators

Dirac operator are generalized Cauchy-Riemann operators. More precisely, we have the following construction [3].

Let $C l=C l(V, q)$ be the Clifford algebra associated with a real non-degenerated quadratic vector space (V, q). The space $\mathcal{C}^{\infty}(U, C l)$ of smooth $C l$-valued functions on an open set $U \subseteq V$ is a Cl -module under pointwise multiplication. By identifying V with a subspace of $C l$ we can regard any $X \in V$ as an element in $C l$ and hence a multiplier on $\mathcal{C}^{\infty}(U, C l)$. On the other hand, each $X \in V$ gives rise to a vector field ∂_{X} acting on $\mathcal{C}^{\infty}(U, C l)$. The action of this vector field is usually defined as

$$
\partial_{X} f(v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f(v+t X), \quad v \in U
$$

It then holds that

$$
\partial_{\alpha X+\beta Y}=\alpha \partial_{X}+\beta \partial_{Y}, \quad \alpha, \beta \in \mathbb{R}, \quad X, Y \in V
$$

and

$$
\partial_{X}(a f+b g)=a \partial_{X} f+b \partial_{X} g, \quad a, b \in \mathbb{R}, f, g \in \mathcal{C}^{\infty}(U, C l), X \in V
$$

Let now $\left\{e_{i}\right\}_{i=1}^{n}$ be a normalized basis for V and denote by ∂_{i} the vector field corresponding to e_{i}. We then have the following definition [3].

Definition 2.1. The Dirac operator D associated with the real non-degenerated quadratic vector space (V, q) is the first order differential operator

$$
\begin{equation*}
D=\sum_{i=1}^{n} q\left(e_{i}\right) e_{i} \partial_{i} \tag{7}
\end{equation*}
$$

acting on $\mathcal{C}^{\infty}(U, C l)$. The coefficients of D are the generators of $C l(V, q)$ acting by pointwise multiplication on $\mathcal{C}^{\infty}(U, C l)$. The Laplace operator \triangle is the second order constant-coefficient differential operator

$$
\begin{equation*}
\triangle=\sum_{i=1}^{n} q\left(e_{i}\right) \partial_{i}^{2} \tag{8}
\end{equation*}
$$

acting on $\mathcal{C}^{\infty}(U, C l)$.
It follows immediately from the definition of D that

$$
\begin{equation*}
D^{2}=\left(\sum_{i=1}^{n} q\left(e_{1}\right) e_{1} \partial_{i}\right)^{2}=\sum_{i=1}^{n} q\left(e_{i}\right)^{2} e_{i}^{2} \partial_{i}^{2}=\sum_{i=1}^{n} q\left(e_{i}\right) \partial_{i}^{2}=\triangle . \tag{9}
\end{equation*}
$$

Although the definition of both D and \triangle depends on a choice of a basis of $C l$ the following proposition shows the definitions are in fact independent of the particular choice of a basis [3].
Proposition 2.2. Let $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{f_{i}\right\}_{i=1}^{n}$ be two normalized bases of V such that $q\left(e_{i}\right)=q\left(f_{i}\right)$ for all $i=1,2, \ldots, n$ and let ∂_{i} be the vector field associated to e_{i} and $\widetilde{\partial}_{i}$ the vector field associated to f_{i}. Then

$$
\sum_{i=1}^{n} q\left(e_{i}\right) e_{i} \partial_{i}=\sum_{i=1}^{n} q\left(f_{i}\right) f_{i} \widetilde{\partial}_{i}, \quad \sum_{i=1}^{n} q\left(e_{i}\right) \partial_{i}^{2}=\sum_{i=1}^{n} q\left(f_{i}\right) \widetilde{\partial}_{i}^{2} .
$$

Proof. Let $A \in O(V, q)$ be such that $f_{i}=A e_{i}$ for all i. Let $A=\left\{a_{j, k}\right\}_{j, k=1}^{n}$. Then

$$
f_{i}=\sum_{j=1}^{n} a_{i, j} e_{j}, \quad \sum_{i=1}^{n} q\left(f_{i}\right) a_{i, j} a_{i, k}=q\left(e_{j}\right) \delta_{j, k} \quad \text { and } \quad \widetilde{\partial}_{i}=\sum_{k=1}^{n} a_{i, k} \partial_{k}
$$

where the middle identity follows from the fact that $A \in O(V, q)$. Thus

$$
\sum_{i=1}^{n} q\left(f_{i}\right) f_{i} \widetilde{\partial}_{i}=\sum_{j, k=1}^{n}\left(\sum_{i=1}^{n} q\left(f_{i}\right) a_{i, j} a_{i, k}\right) e_{j} \partial_{k}=\sum_{j=1}^{n} q\left(e_{j}\right) e_{j} \partial_{j}
$$

and

$$
\sum_{i=1} q\left(f_{i}\right) \widetilde{\partial}_{i}^{2}=\sum_{j, k=1}^{n}\left(\sum_{i=1}^{n} q\left(f_{i}\right) a_{i, j} a_{i, k}\right) \partial_{j} \partial_{k}=\sum_{j=1}^{n} q\left(e_{j}\right) \partial_{j}^{2} .
$$

This completes the proof.
Let now $\left\{e_{\vec{i}}\right\}_{\vec{i}}$ be a basis for $C l$ where the multi-index \vec{i} satisfies $0 \leq|\vec{i}|<n$ and $\vec{i}=\left(i_{1}, i_{2}, \ldots, i_{k}\right), k=|\vec{i}|$. We then have the following proposition [3].
Proposition 2.3. If $f=\sum_{\vec{i}} f_{\vec{i}} e_{\vec{i}}$ is a solution of $D f=0$ in $\mathcal{C}^{\infty}(U, C l)$ with each $f_{\vec{i}}$ real-valued then $\triangle f_{\vec{i}}=0$.

Proof. Using (9) we get that

$$
0=D 0=D^{2} f=\triangle f=\sum_{\vec{i}}\left(\triangle f_{\vec{i}}\right) e_{\vec{i}} .
$$

Since $\left\{e_{\vec{i}}\right\}_{\vec{i}}$ be a basis for $C l$ it must hold that $\triangle f_{\vec{i}}=0$.
We now consider how the Dirac and Laplace operator act from the left or the right. Since the Laplace operator has scalar coefficients we have that

$$
\triangle f=f \triangle
$$

The Dirac operator on the other hand has coefficients that are non-scalar elements of $C l$. Therefore we have to distinguish between left and right action. Suppose we have a function $f \in \mathcal{C}^{\infty}(U, C l)$. As in Proposition 2.3 we can then write

$$
f(x)=\sum_{\vec{i}} f_{\vec{i}}(x) e_{\vec{i}}, \quad x \in U,
$$

where the "coordinate" functions are scalar valued. We then have

$$
D f=\sum_{j=1}^{n} \sum_{\vec{i}} q\left(e_{j}\right) e_{j} e_{\vec{i}} \partial_{j} f_{\vec{i}} \quad \text { and } \quad f D=\sum_{j=1}^{n} \sum_{\vec{i}} q\left(e_{j}\right) e_{\vec{i}} e_{j} \partial_{j} f_{\vec{i}} .
$$

We thus have the following definition [1].
Definition 2.4. A function $f \in \mathcal{C}^{\infty}(U, C l)$ is called left-monogenic if $D f=0$ and right-monogenic if $f D=0$. A function is called monogenic if it is both left- and right-monogenic.

Sometimes the terms used are left- and right- Clifford analytic [3].
We finish by returning to the case of quaternions.

Example 2.5. In Example 1.8 we showed that the function $f(w)=\frac{\bar{w}}{|w|^{4}}$ is regular. By proposition 2.3 its coordinate functions are harmonic. We will now check this via a direct computation. Let

$$
f_{1}(t, x, y, z)=\frac{t}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{2}} .
$$

We then have

$$
\begin{aligned}
\frac{\partial^{2} f_{1}}{\partial t^{2}}(t, x, y, z) & =\frac{\partial}{\partial t}\left(\frac{-3 t^{2}+x^{2}+y^{2}+z^{2}}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}\right)=\frac{-12 t\left(-t^{2}+x^{2}+y^{2}+z^{2}\right)}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{4}}, \\
\frac{\partial^{2} f_{1}}{\partial x^{2}}(t, x, y, z) & =\frac{\partial}{\partial x}\left(\frac{-4 t x}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}\right)=\frac{-4 t\left(t^{2}-5 x^{2}+y^{2}+z^{2}\right)}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{4}} \\
\frac{\partial^{2} f_{1}}{\partial y^{2}}(t, x, y, z) & =\frac{\partial}{\partial y}\left(\frac{-4 t y}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}\right)=\frac{-4 t\left(t^{2}+x^{2}-5 y^{2}+z^{2}\right)}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{4}} \\
\frac{\partial^{2} f_{1}}{\partial z^{2}}(t, x, y, z) & =\frac{\partial}{\partial z}\left(\frac{-4 t z}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{3}}\right)=\frac{-4 t\left(t^{2}+x^{2}+y^{2}-5 z^{2}\right)}{\left(t^{2}+x^{2}+y^{2}+z^{2}\right)^{4}}
\end{aligned}
$$

It is now trivial to see that we indeed have $\triangle f_{1}=0$. Similar calculations can be done for the other coordinate functions.

References

[1] F. Brackx, R. Delange and F. Sommen, Clifford analysis, Research Notes in Mathematics, 76. Pitman (Advanced Publishing Program), Boston, MA, 1982.
[2] S. Georgiev, J. P. Morais and W. Sprossig, Real quaternionic calculus handbook, Birkhaüser/Springer, Basel, 2014.
[3] J. E. Gilbert and M. A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge studies in advanced mathematics 24, Cambridge University Press, Cambridge, 1991.
[4] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199-224.

