
STOCKHOLM UNIVERSITY
DEPARTMENT OF MATHEMATICS

Mitja Nedic

Hypercomplex analysis

CLIFFORD ALGEBRAS PROJECT

Stockholm, 2016



Contents

1. Quaternionic analysis 3
2. Dirac operators 6
References 8

2



1. Quaternionic analysis

The division ring of quaternions is denoted by H and is equal to

H = {t+ x i + y j + z k | t, x, y, z ∈ R}

where i2 = j2 = k2 = −1 and i j = k, j k = i, k i = j. Quternionic analysis is
then the study of functions f : U → V where U, V ⊆ H. Quternions inherit the
topological notions of continuity from Euclidean space since H ∼= R4 as R-vector
spaces. We can therefore begin our study of quaternionic analysis with the definition
of a quaternionic derivative [3].

Definition 1.1. A function f : U → V where U, V ⊆ H has a left quaternionic
derivative at a point w0 ∈ U if the limit

(1) lim
h→0

h−1(f(w0 + h)− f(w0))

exists. Similarly we say that f has a right quaternionic derivative at a point w0 ∈ U
if the limit

(2) lim
h→0

(f(w0 + h)− f(w0))h
−1

exists.

The following examples show that this definition is in fact to restrictive to be of
any practical use.

Example 1.2. Let us consider the function f : H → H defined as f(w) = w2. We
then calculate that

h−1(f(w+h)− f(w)) = h−1((w+h)2−w2) = h−1(wh+hw+h2) = h−1wh+w+h.

It is now easy to see that the limit (1) does not exist for our function f . We first
choose h = h0 where h0 ∈ R. Limit (1) then becomes

lim
h0→0

(h−10 wh0 + w + h0) = lim
h0→0

(2w + h0) = 2w.

We now choose h = h0i where h0 ∈ R. Limit (1) then becomes

lim
h0→0

((h0i)
−1wh0i + w + h0i) = lim

h0→0
(i−1wi + w + h0i) = i−1wi + w.

These two limits are of course not the same for a generic w ∈ H.
An analogous calculation shows that limit (2) also does not exist. Therefore f

has neither a left nor a right quaternionic derivative.

Example 1.3. Let us consider the function f : H → H defined as f(w) = a + bw
where a, b ∈ H fixed. We then calculate that

h−1(f(w + h)− f(w)) = h−1(a+ b(w + h)− a− bw) = h−1bh.

Thus limit (1) will not exits unless b ∈ Z(H) = R where Z(H) denotes the centre of
H. On the other hand, we calculate that

(f(w + h)− f(w))h−1 = (a+ b(w + h)− a− bw)h−1 = b.

Thus limit (2) always exists. The function f thus has a right quaternionic derivative
and also has a left quaternionic derivative in the special case when b ∈ R.
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Example 1.4. In analogy to the previous example one can show that f : H → H
defined as f(w) = a + wb where a, b ∈ H fixed, always has a left quaternionic
derivative and also has a right quaternoinic derivative in the special case when
b ∈ R.

On has in fact the following theorem [4].

Theorem 1.5. Let f : U → H where U ⊆ H is a connected open set. Then f has a
left quaternionic derivative at every point in U if and only if f has the form

f(w) = a+ wb

for some a, b ∈ H.

These examples show that quaternionic polynomials in general are not differen-
tiable. Suppose then that we would like to find a definition of analyticity such that
quaternionic polynomials would become analytic. To do so we first note that natural
monomial functions of a quaternionic variable of degree r are of the form

w 7→ a0wa1 . . . ar−1war

where a0, a1, . . . , ar ∈ H. The elementary monomials can be considered to be those
with a0, a1, . . . , ar ∈ {1, i, j, k}. However, if one writes w = t+ x i + y j + z k we then
have

t = 1
4
(w − i w i− j w j− k w k),

x = 1
4i

(w − i w i + j w j + k w k),

y = 1
4j

(w + i w i− j w j + k w k),

z = 1
4k

(w + i w i + j w j− k w k).

Thus a definition which would make all quaternionic polynomials analytic would also
make all polynomials in four variables analytic (in a quaternionic sense), something
which we do not want.

In search of a better definition of a derivative we recall from elementary complex
analysis the Cauchy-Riemann operators (also called the Wirtinger derivatives) that
are defined as

∂ =
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
and ∂ =

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
where the z = x+ i y are the coordinates on C. An analogous definition for H is the
following [3].

Definition 1.6. A function f : U → V where U, V ⊆ H is called left regular on U if

(3) DLf =
∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 0.

Similarly f is called right regular on U if

(4) DRf =
∂f

∂t
+
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k = 0.

A function f is called simply regular if it is both left- and right-regular.

The operators DL and DR are sometimes called the Fueter operators and equation
(3) (or (4)) is sometimes called the left (or right) Cauchy-Riemann-Fueter equation.
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We continue with an example the shows that we indeed have non-trivial functions
that are left (or right) regular contrary to definition 1.1 where even certain linear
functions fail to have a left (or right) quaternionic derivative.

Example 1.7. Consider the function f : H → H defined by f(w) = w. Then f is
neither left nor right regular since

(DLf)(w) = −2 and (DRf)(w) = −2.

Example 1.8. Consider the function f : H→ H defined by

f(w) =
w

|w|4
=

t− x i− y j− z k
(t2 + x2 + y2 + z2)2

.

Then f is both left and right regular on H to show this we first calculate that

∂f

∂t
(w) =

(t2 + x2 + y2 + z2)− 4t(t− x i− y j− z k)
(t2 + x2 + y2 + z2)3

,

∂f

∂x
(w) =

−i(t2 + x2 + y2 + z2)− 4x(t− x i− y j− z k)
(t2 + x2 + y2 + z2)3

,

∂f

∂y
(w) =

−j(t2 + x2 + y2 + z2)− 4y(t− x i− y j− z k)
(t2 + x2 + y2 + z2)3

,

∂f

∂z
(w) =

−k(t2 + x2 + y2 + z2)− 4z(t− x i− y j− z k)
(t2 + x2 + y2 + z2)3

.

It is now trivial to check that

(DLf)(w) = (DRf)(w) = 0

for all w ∈ H \ {0}.
Definition 1.9. The conjugate Fueter operators are defined as

(5) DL =
∂

∂t
− i

∂

∂x
− j

∂

∂y
− k

∂

∂z

and

(6) DR =
∂

∂t
− ∂

∂x
i− ∂

∂y
j− ∂

∂z
k.

We recall now that the Cauchy-Riemann operators factorize the Laplacian on R2

in the sense that ∂∂ = ∂∂ = 1
4
4. Similarly the Fueter operators and their conjugates

factorize the Laplacian on R4 in the sense that

DLDL = DLDL = DRDR = DRDR = 4.
One also has a quaternionic version of Cauchy’s theorem as follows [4].

Theorem 1.10. Suppose f is regular in an open set U . Let w0 be a point in U ,
and let C be a rectifiable 3-chain which is homologous, in the singular homology of
U \ {w0}, to a differentiable 3-chain whose image is ∂B for some ball B ⊆ U . Then

1

2π2

∫
C

(w − w0)
−1

|w − w0|2
Dwf(w) = nf(w0)

where n is the wrapping number of C about w0.

The details are available in [4]. On can then also generalize other theorems form
complex analysis that depend only on Cauchy’s formula, such as the maximum
principle, Morera’s theorem and Liouville’s theorem [4].
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2. Dirac operators

Dirac operator are generalized Cauchy-Riemann operators. More precisely, we
have the following construction [3].

Let Cl = Cl(V, q) be the Clifford algebra associated with a real non-degenerated
quadratic vector space (V, q). The space C∞(U,Cl) of smooth Cl-valued functions
on an open set U ⊆ V is a Cl-module under pointwise multiplication. By identifying
V with a subspace of Cl we can regard any X ∈ V as an element in Cl and hence a
multiplier on C∞(U,Cl). On the other hand, each X ∈ V gives rise to a vector field
∂X acting on C∞(U,Cl). The action of this vector field is usually defined as

∂Xf(v) =
d

dt

∣∣∣∣
t=0

f(v + t X), v ∈ U.

It then holds that

∂αX+βY = α∂X + β∂Y , α, β ∈ R, X, Y ∈ V

and

∂X(af + bg) = a∂Xf + b∂Xg, a, b ∈ R, f, g ∈ C∞(U,Cl), X ∈ V.
Let now {ei}ni=1 be a normalized basis for V and denote by ∂i the vector field

corresponding to ei. We then have the following definition [3].

Definition 2.1. The Dirac operator D associated with the real non-degenerated
quadratic vector space (V, q) is the first order differential operator

(7) D =
n∑
i=1

q(ei)ei∂i

acting on C∞(U,Cl). The coefficients of D are the generators of Cl(V, q) acting by
pointwise multiplication on C∞(U,Cl). The Laplace operator 4 is the second order
constant-coefficient differential operator

(8) 4 =
n∑
i=1

q(ei)∂
2
i

acting on C∞(U,Cl).

It follows immediately from the definition of D that

(9) D2 =

(
n∑
i=1

q(e1)e1∂i

)2

=
n∑
i=1

q(ei)
2e2i∂

2
i =

n∑
i=1

q(ei)∂
2
i = 4.

Although the definition of both D and 4 depends on a choice of a basis of Cl the
following proposition shows the definitions are in fact independent of the particular
choice of a basis [3].

Proposition 2.2. Let {ei}ni=1 and {fi}ni=1 be two normalized bases of V such that
q(ei) = q(fi) for all i = 1, 2, . . . , n and let ∂i be the vector field associated to ei and

∂̃i the vector field associated to fi. Then

n∑
i=1

q(ei)ei∂i =
n∑
i=1

q(fi)fi∂̃i,
n∑
i=1

q(ei)∂
2
i =

n∑
i=1

q(fi)∂̃
2
i .
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Proof. Let A ∈ O(V, q) be such that fi = Aei for all i. Let A = {aj,k}nj,k=1. Then

fi =
n∑
j=1

ai,jej,

n∑
i=1

q(fi)ai,jai,k = q(ej)δj,k and ∂̃i =
n∑
k=1

ai,k∂k

where the middle identity follows from the fact that A ∈ O(V, q). Thus

n∑
i=1

q(fi)fi∂̃i =
n∑

j,k=1

(
n∑
i=1

q(fi)ai,jai,k

)
ej∂k =

n∑
j=1

q(ej)ej∂j

and ∑
i=1

q(fi)∂̃
2
i =

n∑
j,k=1

(
n∑
i=1

q(fi)ai,jai,k

)
∂j∂k =

n∑
j=1

q(ej)∂
2
j .

This completes the proof. �

Let now {e~i}~i be a basis for Cl where the multi-index ~i satisfies 0 ≤ |~i| < n and
~i = (i1, i2, . . . , ik), k = |~i|. We then have the following proposition [3].

Proposition 2.3. If f =
∑

~i f~ie~i is a solution of Df = 0 in C∞(U,Cl) with each f~i
real-valued then 4f~i = 0.

Proof. Using (9) we get that

0 = D0 = D2f = 4f =
∑
~i

(4f~i)e~i.

Since {e~i}~i be a basis for Cl it must hold that 4f~i = 0. �

We now consider how the Dirac and Laplace operator act from the left or the
right. Since the Laplace operator has scalar coefficients we have that

4f = f 4 .

The Dirac operator on the other hand has coefficients that are non-scalar elements
of Cl. Therefore we have to distinguish between left and right action. Suppose we
have a function f ∈ C∞(U,Cl). As in Proposition 2.3 we can then write

f(x) =
∑
~i

f~i(x)e~i, x ∈ U,

where the “coordinate” functions are scalar valued. We then have

Df =
n∑
j=1

∑
~i

q(ej)eje~i∂jf~i and fD =
n∑
j=1

∑
~i

q(ej)e~iej∂jf~i.

We thus have the following definition [1].

Definition 2.4. A function f ∈ C∞(U,Cl) is called left-monogenic if Df = 0 and
right-monogenic if fD = 0. A function is called monogenic if it is both left- and
right-monogenic.

Sometimes the terms used are left- and right- Clifford analytic [3].
We finish by returning to the case of quaternions.
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Example 2.5. In Example 1.8 we showed that the function f(w) = w
|w|4 is regular.

By proposition 2.3 its coordinate functions are harmonic. We will now check this
via a direct computation. Let

f1(t, x, y, z) =
t

(t2 + x2 + y2 + z2)2
.

We then have

∂2f1
∂t2

(t, x, y, z) =
∂

∂t

(
−3t2 + x2 + y2 + z2

(t2 + x2 + y2 + z2)3

)
=
−12t(−t2 + x2 + y2 + z2)

(t2 + x2 + y2 + z2)4
,

∂2f1
∂x2

(t, x, y, z) =
∂

∂x

(
−4tx

(t2 + x2 + y2 + z2)3

)
=
−4t(t2 − 5x2 + y2 + z2)

(t2 + x2 + y2 + z2)4
,

∂2f1
∂y2

(t, x, y, z) =
∂

∂y

(
−4ty

(t2 + x2 + y2 + z2)3

)
=
−4t(t2 + x2 − 5y2 + z2)

(t2 + x2 + y2 + z2)4
,

∂2f1
∂z2

(t, x, y, z) =
∂

∂z

(
−4tz

(t2 + x2 + y2 + z2)3

)
=
−4t(t2 + x2 + y2 − 5z2)

(t2 + x2 + y2 + z2)4
.

It is now trivial to see that we indeed have 4f1 = 0. Similar calculations can be
done for the other coordinate functions.
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