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Outline of Talk

@ Introduction to quantum gases

@® Old and new Lieb-Thirring inequalities
© Repulsion = local exclusion principle
@ Local uncertainty principle

® General Lieb-Thirring type inequalities

0 Generalizations to fractional operators, HLT, interpolation
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The interacting quantum gas

N-particle Hamiltonian with repulsive pair interaction W (x) > 0:

N
ﬁN:T+V+WZZ(—Aj+V(wj))+ Z W(ch—a:k),
Jj=1 1<j<k<N

acting on normalized wave functions ¥ € L?((R%)V). % =1.
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The interacting quantum gas

N-particle Hamiltonian with repulsive pair interaction W (x) > 0:

N
ﬁN:T+V+WZZ(—Aj+V(wj))+ Z W(ch—a:k),
Jj=1 1<j<k<N

acting on normalized wave functions ¥ € L?((R%)V). % =1.

Bosons: U e ®£§m L?(R%)
Fermions: ¥ e AV L2(RY)
< Pauli’s exclusion principle: ¥ Ay = 0, 1 € L?(R%)
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The interacting quantum gas

N-particle Hamiltonian with repulsive pair interaction W (x) > 0:

N

Hy=T+V+W =) (-8 + V() + Y Wiw;—xp),
J=1 1<j<k<N

acting on normalized wave functions ¥ € L?((R%)V). % =1.

Bosons: U e ®£§m L?(R%)

Fermions: ¥ e AV L2(RY)

< Pauli’s exclusion principle: ¥ Ay = 0, 1 € L?(R%)

Total energy in the state U:

E[U] = (U, HyU) = Ty + Vg + Wy
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Local particle density

The one-body density associated to W:

N
= U(xy,...,¢i_ T 2114
p@ =3 [ araw e [ e
J=1 k#j
Normalized [pq pw = N,

fQ pw = expected number of particles on Q C R
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Local particle density

The one-body density associated to W:

N
p\p(ﬂ}) = Z/ ]\Il(ar:l, sy i1, Ly L1y - - ,CCN)‘Q H d:l:k
j=1 TR k]

Normalized [pq pw = N,
fQ pw = expected number of particles on Q C R

Aim: Replace functionals of ¥ € L2(R) (where N — o0)
by functionals of py € L'(R%)
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The non-interacting Bose gas

Know: Uy = @M,
1o normalized ground state of H; = —Apa + V()

E[Wo] = N (1o, Hitbo) = N/Rd (IV3hol* + V]ipo|?) dez,

pwo(x) = Nlgo(z)|”
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The dilute interacting Bose gas (3D)

Dilute limit ap'/? — 0 while N — cc. Expect: Uy ~ ¢p®N
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The dilute interacting Bose gas (3D)

Dilute limit ap'/? — 0 while N — cc. Expect: Uy ~ ¢p®N

Gross-Pitaevskii limit: Na/L ~ const. =
E[Wo] = Eeplol,  pwo(®) — [do(@)]”,

Ecpld] = / (IV[? + VI6[? + dmalg]") d / o =
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The dilute interacting Bose gas (3D)

Dilute limit ap'/? — 0 while N — cc. Expect: Uy ~ ¢p®N

Gross-Pitaevskii limit: Na/L ~ const. =
B[¥o] = Ecpdo),  puo(@) = |¢o(a)]?,
Eaplo] = [ (V0P +VIol? + draigl')dz, [ 1o =
‘Thomas-Fermi’ limit: Na/L — co =
E[Wo] = &rrlpol,  pwy = po,
ETelp) = /R3 (Vp+ 4map?) da, /Rsp =N, p>0

Rigorous treatments first by Dyson 1957 (hard-sphere & V = 0),
more recently and generally by Lieb, Yngvason, Seiringer, ...
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The non-interacting Fermi gas (3D)

Know: ¥y = /\kN:_()l Y, U lowest states of Hy = —Aga + V()
The free Fermi gas in a box Q C R3:

N-1
3
o= M~ Cre (V/IQDPIQL, - Cre = (6727
k=0 > g
1

= Thomas-Fermi approximation: (thomas, Fermi, 1927)

Ty, + Va, = / (CTF pu(@)’? + V(m)pxpo(fv)) da

RS

(Precursor to modern density functional theory, DFT)
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Pauli repulsion and Lieb-Thirring inequalities

Pauli exclusion: say q € N particles allowed in each one-particle
state of H} = —Apa + V(x)

= Lieb-Thirring inequality:  (Lieb, Thirring, 1975)
N
Hypasi =T +V = Z (=4; +V(x)))

j=1 oo

d
> —aY oIl = —aCa [ V@) i
k=0
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Pauli repulsion and Lieb-Thirring inequalities

Pauli exclusion: say q € N particles allowed in each one-particle
state of H} = —Apa + V(x)

= Lieb-Thirring inequality:  (Lieb, Thirring, 1975)

N
Hypaui =T +V = Z (=4; +V(x)))
j=1 oo 4
> a3l 2 —aCa [ V(@) de
R4
k=0
= kinetic energy inequality: (cp. Thomas-Fermi. New approach due to Rumin, 2011)

4

N
c 2
Ty = Ejv\p?d >—d/ 34
v /Rd’\’j:1| U = ¢*d de\p(ac) o
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Pauli repulsion and Lieb-Thirring inequalities

Pauli exclusion: say q € N particles allowed in each one-particle
state of H} = —Apa + V(x)

= Lieb-Thirring inequality:  (Lieb, Thirring, 1975)
N
Hypasi =T +V = Z (=4; +V(x)))

j=1 oo

d
> —aY oIl = —aCa [ V@) i
k=0

= kinetic energy inequality: (cp. Thomas-Fermi. New approach due to Rumin, 2011)
!

N
c 2
Ty = Ejv\p?d >—d/ 34
v /Rd’\’j:1| U = ¢*d de\p(ac) o

Bosons: ¢ = N — oo = trivial bounds
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The uncertainty principle and LT

For fermions, ¥ € /\N LARY), ¥ = 1:

N
Tq,z/ Z|Vj\11\2dx > C'(’i/ pq,(az)H% dx
RaN ) ~~ JRd
J <Crr

This can also be interpreted as a many-particle generalization of
the Gagliardo-Nirenberg-Sobolev inequality

2/d
/ \Vul|?da (/ \u!de) > C’/ w2042/ gy,
Rd R4 Rd

which is a quantitative formulation of the uncertainty principle.
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LT bounds for generalized particle statistics

DL, Solovej, 2011-2013
Abelian anyons in 2D, with interchange phase ¢®™ € U(1):

N 2
T ;:/ Z’(—ivj+A§“))w‘ dr > 003/ p% da,
R2N = R2

1/vifa=p/veQ, podd

Cq :=inf,4ez |(2p + 1)a — 2q| = { 0, otherwise
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LT bounds for generalized particle statistics

DL, Solovej, 2011-2013
Abelian anyons in 2D, with interchange phase e®™ € U(1):
N 2
T = / > ’(—z’vj + A§F‘))\If‘ dr > CCC%/ p% da,
R2N ]:1 R2
. [ 1vifa=p/veQ, podd

Co := infpgez [(2p + Do = 24| = { 0, otherwise
Intermediate statistics particles in 1D, modeled as bosons with a
pair interaction W (xz) = né(z) or oo —1)/|z|® (g bk )

Calogero-Sutherland

Ty + Wy > C’/Re(c/pq,(x))pq,(:c)?’da:

e(c/p) ~ local bound for the two-particle energy.
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LT bounds for repulsive Bose gases

DL, Portmann, Solovej, 2014

More generally, replace Pauli repulsion by W > 0.
Examples of new energy inequalities:

For the hard-sphere gas, W = W) with diameter a > 0, in 3D:
Ty + Wy > C | min {apq,(sc)Q, p\p(:n)5/3} dx
R3

cp. E[Wo)/Vol — 4map? as ap'/® — 0
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LT bounds for repulsive Bose gases

DL, Portmann, Solovej, 2014
More generally, replace Pauli repulsion by W > 0.
Examples of new energy inequalities:

For the hard-sphere gas, W = W) with diameter a > 0, in 3D:

Ty + Wy > C | min {apq,(sc)Q, p\p(:n)5/3} dx
R3

cp. E[Wo)/Vol — 4map? as ap'/® — 0

For hard disks, W = W"d ¢ > 0, in 2D:

a !

To +Wo > C p\I/(w)Q da
YT S T e 25 (< n(ape(@)172)2)

cp. E[Wq]/Vol — 47p?/|Ina?p| as ap'/? — 0



Main idea: Local exclusion principle

Consider a d-dimensional box (), and the local energy (T+W)§ =

N
> [ xal@) | 19,9F + 5 S Wiay —ulvl? | do
j=1

k#ﬂ
If W > 0 then

N
(T+W)$ > EupalQ),
n=0

where E,(|Q]; W) is the g.s. energy for n particles on @ with
Neumann b.c., and p,,(Q) the n-particle probability distribution,

N N
n == 1, n pPn = .
;::Op @) ;::O Pn(Q) /qu;
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Local exclusion for fermions

cp. Dyson, Lenard, 1967

Let ¢ € A" L*(R?) be a wave function of n fermions and let Q be
a d-cube. Then

VP dr > (n—l)—/ |2 de,
/QZ ’ QP Jgn

hence E,, > (n — 1), 72/|Q[¥/%.
It follows that

2
T+ Weaui )% > — ( d —1) .
( P I)\p |Q|2/d /Q,Oq;(ﬂ:) T .
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Local exclusion for fermions

cp. Dyson, Lenard, 1967

Let ¢ € A" L*(R?) be a wave function of n fermions and let Q be
a d-cube. Then

2
L X Vlde = -0 [ i

hence E,, > (n — 1), 72/|Q[¥/%.
It follows that

2
T+ Weaui )% > — ( d —1) .
( P I)\p |Q|2/d /Q,Oq;(ﬂ:) T .

Similarly for W(z) ~ |z|2: W& > |Q|C;/d <(fQ py)? — Jo pq,>+.
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Local uncertainty principle

We combine exclusion with uncertainty:

Lemma (Local uncertainty principle)

Let W be an N-particle wave function on R?, and Q a d-cube with
volume |Q|. Then

1+2/d
) dx py dx
1o s o Jarh I,

c —cC ,
= N (Jypudx)d T TIQPP/

where the constants c1,cy > 0 only depend on d.

Idea of proof: [q |V/pw|? and Poincaré-Sobolev inequality on Q
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General Lieb-Thirring type inequalities

General assumptions on W:

Assumption 1 (Local exclusion)

Given W, there exists a function e(~y) with
1(QD = 7IQI*™, a7 >0,

where e(~y) is monotone increasing and concave in ~y with e(0) = 0,
such that for any finite cube @, any N > 1 and all normalized
U € HY(R) the local energy satisfies

(T+W) %%(me—l)Jr,
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General Lieb-Thirring type inequalities

General assumptions on W:

Assumption 2 (Local uncertainty)

Given W, there exist o > 0 and constants S1,So > 0 such that for
any finite cube Q, any N > 1 and all normalized ¥ € H'(R*) we
have

14+2/d
o S1 (ffZi)\I\;)?/d — 5 |fg|2p/\1;, for0 < a < 2,
Sk = (U pHa/d)Z/a Joy o
7
1y perreerat ~ S2igaa, fore>2
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General Lieb-Thirring type inequalities

We also need a boundedness assumption on e(7),
QK(,‘Y) = min{e(’)/)?K}a K > 07

(arbitrarily strong exclusion cannot be matched by uncertainty)

Theorem (Lieb-Thirring inequality)

Let W satisfy Assumption 1 & 2 with an « > 0 and e replaced by
ey - Then there exists an explicit constant Cq o > 0, such that
for any N > 1 and all normalized ¥ € H'(R), the total energy
satisfies the bound

Ty +Wo > Cuaic [ exr(2/po(e)) pule) 4 da.
R

DL, Portmann, Solovej, 2014
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Proof uses a splitting algorithm (Covering lemma)

DL, Solovej, 2011. Convenient reformulation in DL, Nam, Portmann, 2015

Qo
A A
A A
AlA
AABB A A A A BABA
A A B A AAAB

Split a cube Qp C R? recursively until each sub-cube contains ~ 2
particles (B) or < 2 particles (A). Apply local uncertainty on every
cube with non-constant density. Apply local exclusion on B-cubes,
which also cover for A-cubes with ~constant density.
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Generalizations to fractional operators

DL, Nam, Portmann, 2015

Fractional kin. en. & homogeneous interaction, d > 1, s > 0:

N
+25
v vy >C 4 d
(0 (N2 Tt vz e [ e

j=1 i<k

Special case d = 3, s = 1/2: N equally charged relativistic
particles with Coulomb interaction,

4/3
< Z\/_+Z|w]_mk| >ZC ws Y i

J<k
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Generalizations to fractional operators

Cds
|m|2s

Recall Hardy's inequality: (—A)* — >0 on L*(R%),

d>1, 0 < s < d/2. Hardy-Lieb-Thirring inequality:

(cp. Ekholm, Frank, Lieb, Seiringer)

(5o ) Z )

j=1

Special case d = 3, s = 1/2: N equally charged relativistic
particles with Coulomb interaction and a static ‘nucleus’ at = 0,

N

=2 (VI 2/77) 2 [~ =

j=1
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One-body interpolation inequalities

Taking ¥ = u®" in our Hardy-Lieb-Thirring inequality =
Casy,\' 7 E @@l , N
<U, <(_A)S - d; > (// T 125 dx dy)
| [ R x R4 |$— |2
> C/ |u(x)|2(1+25/d) dz,
Rd

for 0 < s < d/2. Such an inequality, without the Hardy term, was
recently proved by Bellazzini, Frank, Ozawa, Visciglia.

For 0 < s < d/2 and s <1 this inequality is equivalent to HLT. I

Idea of proof: Use Hoffmann-Ostenhof and Lieb-Oxford inequalities
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An isoperimetric inequality

Our approach to proving LT inequalities can also be applied to
prove other interpolation inequalities, for example:

Theorem (Isoperimetric inequality with non-local term)

For any d > 2 and 1/2 < s < d/2 there exists a constant C > 0
depending only on d and s, such that for all functions
u € WH2(RY) we have

(L 'V“'stx)l_ L." |x|2j|;|(28)|2sd i)

>0 |u|25(1+2$/d) dz.
= "

alt
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