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Motivations for this talk

I. Recent experiments on intermediate
exchange quantum statistics / anyons:

• Nakamura et al., 2020

• Bartolomei et al., 2020

• Google Quantum AI & co., 2023

as predicted (independently) by

• Leinaas & Myrheim, 1977

• Goldin, Menikoff & Sharp, 1980-’81, ’83, ’85

• Wilczek, 1982; Wu, ’84
Halperin, 84; Arovas, Schrieffer, Wilczek, ’84

II. Recent recognition for experiments
on violation of Bell inequalities→ QI:
• Aspect

• Clauser

• Zeilinger
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Outline

1 Multiple perspectives on quantum mechanics

2 Interplay of uncertainty and exclusion, exemplified by anyons

3 Impossible figures as solutions to impossible problems

4 Contextual resolution of perspectives and simultaneity

“playful overview of perspectives”

unification vs. “plurality in ways of being”
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Physics as correlation

Physics is about observables and relations.

x

p

√
E

Observables: things that can be measured and have well-defined
values, i.e. properties of reality, ex. x ∈ R position of a particle,
p ∈ R momentum, E ∈ R energy, t ∈ R time

Relations: correlations between observables, ex. E = p2 + x2

Twisted perspectives on QM D. Lundholm 4/36



Physics as information

Physics is about subsystems/observers and information.

A B C

D

U

An observable could concern the information that A has on B etc.
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Physics as simultaneous/coherent information

Quantization ↔ representation of a Lie algebra of observables:

Observables a, b, . . . usually modeled jointly as self-adjoint linear
operators â, b̂, . . . on some Hilbert space (H, 〈·, ·〉), with:

spec â ↔ values that â can take upon measurement

resolution of â =
∑

a∈spec â
aprojHa ↔ possible information about â

obtainable from the system

state 0 6= Ψ ∈ H =
⊕

a∈spec â
Ha ↔ actual info/knowledge

i.e. current subjective ‘reality’

expectation
〈Ψ, âΨ〉
‖Ψ‖2

=
∑

a∈spec â
a

∥∥projHa Ψ
∥∥2

‖Ψ‖2
,

iĉ = âb̂−b̂â ↔ obstacle to simultaneous information on â and b̂
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A conceptual resolution of quantum mechanics

1. Uncertainty principle (1D)

2. Exclusion principle (2D)

3. Contextuality (3D)
... ?

Contextuality: from impossible figures to quantum correlations
Pierre-Emmanuel Emeriau and Shane Mansfield

Contextuality

It is typically the case that not all properties of a quantum system may be observed
at once; so that at best we can only ever obtain partial “snapshots” of the system by
observing some of its properties at once.

Contextuality arises when these snapshots are locally consistent
—they agree wherever they overlap—

but they are nevertheless globally inconsistent.

A very useful analogy for this is the Penrose staircase, as depicted in M.C. Escher’s
famous Ascending and descending lithograph.

The Penrose Staircase

Ascending and descending, M.C. Escher

Partial snapshots

Where snapshots overlap the information is locally consistent, but if we try to piece
the snapshots together to obtain a global picture we find a global inconsistency (the
impossible staircase, left)

Another example: the tribar

A quantum experiment

measurement
device

mA ∈ {a, a′}

oA ∈ {0, 1}

measurement
device

mB ∈ {b, b′}

oB ∈ {0, 1}

preparation

Empirical data

(0, 0) (0, 1) (1, 0) (1, 1)
(a, b) 1/2 0 0 1/2
(a, b′) 1/2 0 0 1/2
(a′, b) 1/2 0 0 1/2
(a′, b′) 0 1/2 1/2 0

Probability table for empirical observations:
e.g. the top left entry tells us that there is
probability 1/2 of seeing outcomes 0 and 0
when red choses to observe a and blue to
observe b

Visualising empirical data

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

(a) (b)

• Bundle diagrams allow us to visualise empirical data in terms of which combinations
of observational events are possible and which are impossible

• Diagram (a) is a visualisation of the empirical data table above
• It tells us that when the observables are (a, b) the only possible events are (0, 0) and
(1, 1), and so on

Classical data

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

(c) (d) (e)

• In the classical world, once a system is prepared its observable properties have defi-
nite values which do not depend on which observations will be made subsequently

• E.g. it might be the case that (a, a′, b, b′) all take value 0, which would correspond
to bundle diagram (c); or it might be that (a, a′, b, b′) all take value 1, which would
correspond to bundle diagram (d)

• It might even be that the preparation sometimes results in (c) and sometimes in (d) in
which case we could end up with the bundle diagram (e)

The real world is contextual?!

• The empirical data above is inconsistent with the assumption that observable proper-
ties have definite values independent of observational context—see diagram (b)!

• Observations can only give us partial snapshots of quantum reality. As with the Pen-
rose staircase, the snapshots are locally consistent, but when pieced together to form
a global picture of this underlying reality they are globally inconsistent

• It is typically the case in such a quantum experiment that one can filter out some
fraction of the data which can be explained classically, but can still be left with a large
portion of data as in the table and diagrams (a) and (b) above which cannot
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Uncertainty principle: incommensurability

(In)commensurate observables ↔ (non)commuting operators,
ex.

A =

[
+1 0

0 −1

]
, B =

[
0 1

1 0

]
same spectrum {+1,−1}, A2 = B2 = 1, but

AB −BA =

[
0 2

−2 0

]
6= 0, AB = −BA.

This means that obtaining knowledge of one destroys knowledge of
the other:

H = C2 = C

[
1

0

]
⊕ C

[
0

1

]
= C

[
1

1

]
⊕ C

[
1

−1

]
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Uncertainty principle: Heisenberg’s version (1D)

Continuous version: x ∈ R and p ∈ R, “conjugate” non-comm.:

x̂p̂− p̂x̂ = i1

Solution/representation:

H = L2(R; h) =

∫ ⊕
R

h, i.e. Ψ : R→ h,

x̂Ψ(x) = xΨ(x), p̂Ψ(x) = −iΨ′(x),

x(−iΨ′(x))− (−id/dx)(xΨ(x)) = iΨ(x),

〈Ψ, x̂Ψ〉
‖Ψ‖2

=

∫ ∞
−∞

x
|Ψ(x)|2h
‖Ψ‖2

dx.

Cannot simultaneously localize the terms of Ê := p̂2 + x̂2
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Uncertainty principle: Heisenberg’s version (1D)

x

p
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Uncertainty principle: Heisenberg’s version (1D)

x

p
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Uncertainty principle: Heisenberg’s version (1D)

x

p
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Uncertainty principle: circle (1D)

On the circle S1 we can use locally the same (flat) quantization

ϕ ∈ [0, 2π], p̂ϕ = −i d
dϕ
,

but the identification of ϕ = 0 and ϕ = 2π requires an
identification in the fiber h, i.e. a global/topological b.c., such as:

Ψ(2π) = TΨ(0), T ∈ U(h).

If h = C, it is simply a twist by an angle θ ∈ [0, 2π):

Ψ(2π) = eiθΨ(0),

which allows to decompose H = L2(S1) =
⊕

n∈Z hn in terms of

the twisted Fourier series ei(n+θ/(2π))ϕ, shifting the spectrum:

Ê := p̂2ϕ =
⊕
n∈Z

(n+ θ/(2π))21hn ≥ min
n∈Z
|n+ θ/(2π)|2
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Exclusion principle (2D)

At least two commensurate observables (x1, x2) ∈ R2 with their
conjugates (p1, p2) and a correlating energy observable, ex.

Ê = p̂21 + p̂22 = − ∂2

∂x21
− ∂2

∂x22

In polar coordinates (r, ϕ) ∈ R+ × [0, 2π) (fibration by circles):

Ê = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂ϕ2

Again, we may choose to represent the observable p̂ϕ = −i∂/∂ϕ
on L2(S1) =

⊕
n∈Z hn with a twist: Ψ(r, 2π) = eiθΨ(r, 0):

Ê =
⊕
n∈Z

(
− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
(n+ θ/(2π))2

)
⊗ 1hn

Finally require a choice of b.c. at r → 0, such as Ψ ∼ Jα ∼ rα.
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Exclusion principle (2D)

arg Ψ |Ψ|2

Twist ⇒ vortex:

Ψ(r, ϕ) ∼ rαeiαϕ, α = min
n∈Z
|n+ θ/(2π)| = 0.04
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Exclusion principle (2D)

arg Ψ |Ψ|2

Twist ⇒ vortex:

Ψ(r, ϕ) ∼ rαeiαϕ, α = min
n∈Z
|n+ θ/(2π)| = 0.25
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Exclusion principle (2D)

arg Ψ |Ψ|2

Twist ⇒ vortex:

Ψ(r, ϕ) ∼ rαeiαϕ, α = min
n∈Z
|n+ θ/(2π)| = 0.5
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Exclusion principle (2D vs. 3D)

The above can also model two particles in relative coordinates,
with identification ω ∼ −ω on the relative angular sphere Sd−1.

2D: S1/∼ ⇒ a circle of representations (θ) → “anyons”

3D: S2/∼ ⇒ two reps → “bosons” or “fermions”

twist ⇒ vortex ⇒ geometric repulsion & quantum statistics

ω−ω

Geometric perspective: Leinaas & Myrheim, 1977
Algebraic perspective: Goldin, Menikoff & Sharp, 1981
Magnetic perspective: Wilczek, 1982
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Exchange quantum statistics in 2D (anyons)

Ψ(x2,x1) = e±iθΨ(x1,x2) θ = απ any phase ⇒ “anyons”

+1−1 eiαπ

ei2pαπ ei(2p+1)απ

p p
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Exchange vs. exclusion for ideal abelian anyons

harm. osc. at α = θ/π: bosons for α ∈ 2Z, fermions for α ∈ 2Z + 1
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N = 2 N = 3

Leinaas, Myrheim ’77; Wilczek et al. ’82,’85
Murthy, Law, Brack, Bhaduri, ’91; Sporre, Verbaarschot, Zahed, ’91,’92

Chitra, Sen, ’92
Canright, Johnson ’94: “Fractional statistics: α to β”

Yakaboylu et al. 2019

Exactly solvable for N = 2, numerics for N = 3, 4, “DFT” for N →∞
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Bounds for the homogeneous ideal anyon gas g.s.e.

α

inf spec Ê(α,N)/N2 &N→∞

DL, Solovej ’13; Larson, DL ’18; DL, Seiringer ’18; DL, Qvarfordt ’20
α → 0: Correggi, Duboscq, DL, Rougerie, ’19; α → 1: Girardot, Rougerie ’21; DL ’23
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A possible conjecture for the ideal anyon gas g.s.e.
Condens. Matter 2018, 3, 19 7 of 11

In Figure 6 the lowest energy states of the frustrated XY model are compared to the lowest energy
branch of the Hofstadter butterfly which is proportional to the Tc for superconducting networks as
predicted by the linearized GL network equations [18–21]. The general shape of the curve is very
similar and both show fractal behavior with apparent singularities at rational values of f . However,
these singularities seem of different type. In the frustrated XY model these singularities appear
logarithmic, while in the Hofstadter butterfly the singularity is approached linearly from both sides.
The similarity of these curves suggests there might be a connection between the ground state energy of
JJAs and the Tc for superconducting networks.

Figure 6. Left: Lowest energy states found for a 100 by 100 square Josephson junction array using the
frustrated XY model. Right: Lowest energy branch of the Hofstadter butterfly, which is proportional to
the Tc of a superconducting square network.

4. Conclusions

Low energy states of large finite square Josephson junction arrays have been computed with an
annealing algorithm. The resulting curve looks continuous which is in agreement with a proof of
continuity. It gives further evidence that the staircase state hypothesis is incorrect. The curve shows
logarithmic discontinuities in the derivative dE/d f at rational frustration factors f = p/q with small q.
This is consistent with the picture of independent vortex excitations on top of the base vortex pattern
when f is close to a simple fraction. These ground state vortex patterns of finite arrays seem the same
as the ground state for infinite arrays, except for a thin region at the edge of the array where vortices
are accumulated or depleted, depending on the frustration factor. However, the width of this region is
array size independent.

Author Contributions: M.L. Conceived and designed the experiment, performed the simulations and analyzed
the data. A.B., H.H., N.P. and A.G. helped interpret the results. M.L., N.P. and A.G. wrote the paper.

Acknowledgments: This work was supported by the Dutch FOM and NWO foundations.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The goal of this section is to precisely state the system of differential equations describing a square
array of Josephson junctions. In the next section an algorithm to solve this system is described.

The current on a single junction after applying a finite difference scheme in time is given by
Equation (A1).

Lankhorst et al. ’18
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A possible conjecture for the “kreinyon” (attractive) gas

The odd-numerator Thomae/‘popcorn’ function:

α

αN→∞ := infp,q∈Z |(2p+ 1)α− 2q|
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Nonabelian anyons (plektons) & statistics transmutability

algebraic geometric magnetic

most general most practicalmost computational

statistics transmutation

• Algebraic study of braid group reps ρ : BN → U(hN )
(kinematics)

• Any rep ρ can be incorporated in a geometric anyon model
Ê = (−i∇ρ)∗(−i∇ρ) + V̂ on CN (geometrodynamics)

• Some reps admit a boson/fermion magnetic description

Ê = (−i∇+A)∗(−i∇+A) + V̂

⇔ triviality of U(hN )-bundle ⇔ existence of global section

DL, Qvarfordt ’20; DL ’23
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Contextuality (3D) — Twisted perspectives

Three or more locally commensurate observables that are globally
incommensurate.
⇒ information can be locally coherent but globally incoherent.

Coherence may then be resolved using “contextuality”:

choice of measurement context ↔ choice of coherent perspective

Compare the circle: resolving the relation x2 + y2 = 1 by functions
requires choice:

x

y
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Perspectives

Contextuality: from impossible figures to quantum correlations
Pierre-Emmanuel Emeriau and Shane Mansfield

Contextuality

It is typically the case that not all properties of a quantum system may be observed
at once; so that at best we can only ever obtain partial “snapshots” of the system by
observing some of its properties at once.

Contextuality arises when these snapshots are locally consistent
—they agree wherever they overlap—

but they are nevertheless globally inconsistent.

A very useful analogy for this is the Penrose staircase, as depicted in M.C. Escher’s
famous Ascending and descending lithograph.

The Penrose Staircase

Ascending and descending, M.C. Escher

Partial snapshots

Where snapshots overlap the information is locally consistent, but if we try to piece
the snapshots together to obtain a global picture we find a global inconsistency (the
impossible staircase, left)

Another example: the tribar

A quantum experiment

measurement
device

mA ∈ {a, a′}

oA ∈ {0, 1}

measurement
device

mB ∈ {b, b′}

oB ∈ {0, 1}

preparation

Empirical data

(0, 0) (0, 1) (1, 0) (1, 1)
(a, b) 1/2 0 0 1/2
(a, b′) 1/2 0 0 1/2
(a′, b) 1/2 0 0 1/2
(a′, b′) 0 1/2 1/2 0

Probability table for empirical observations:
e.g. the top left entry tells us that there is
probability 1/2 of seeing outcomes 0 and 0
when red choses to observe a and blue to
observe b

Visualising empirical data

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

(a) (b)

• Bundle diagrams allow us to visualise empirical data in terms of which combinations
of observational events are possible and which are impossible

• Diagram (a) is a visualisation of the empirical data table above
• It tells us that when the observables are (a, b) the only possible events are (0, 0) and
(1, 1), and so on

Classical data

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

•a
• b

• a′
•b′

•0
•1

•

•

• 0
• 1

•

•

(c) (d) (e)

• In the classical world, once a system is prepared its observable properties have defi-
nite values which do not depend on which observations will be made subsequently

• E.g. it might be the case that (a, a′, b, b′) all take value 0, which would correspond
to bundle diagram (c); or it might be that (a, a′, b, b′) all take value 1, which would
correspond to bundle diagram (d)

• It might even be that the preparation sometimes results in (c) and sometimes in (d) in
which case we could end up with the bundle diagram (e)

The real world is contextual?!

• The empirical data above is inconsistent with the assumption that observable proper-
ties have definite values independent of observational context—see diagram (b)!

• Observations can only give us partial snapshots of quantum reality. As with the Pen-
rose staircase, the snapshots are locally consistent, but when pieced together to form
a global picture of this underlying reality they are globally inconsistent

• It is typically the case in such a quantum experiment that one can filter out some
fraction of the data which can be explained classically, but can still be left with a large
portion of data as in the table and diagrams (a) and (b) above which cannot

Perspective: a logical coherence or consistency.

The cube presents a choice of global perspective.

The tribar presents “impossibility in its purest form”:
Lionel & Roger Penrose, 1956; Oscar Reutersvärd, 1934
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Perspectives 31 

IMPOSSIBLE OBJECTS : A SPECIAL TYPE 
OF VISUAL ILLUSION 

BY L. S. PENROSE AND R. PENROSE 

(University College, London, and Bedford College, London) 

Two-dimensional drawings can be made to convey the impression of three-dimensional 
objects. In certain circumstances this fact can be used to induce contradictory perceptual 
interpretations. Numerous ideas in this field have been exploited by Escher (1954). The 
present note deals with one special type of figure. Each individual part is acceptable as 
a representation of an object normally situated in three-dimensional space; and yet, owing 
to false connexions of the parts, acceptance of the whole figure on this basis leads to the 
illusory effect of an impossible structure. An elementary example is shown in Fig. 1. Here 
is a perspective drawing, each part of which is accepted as representing a three-dimensional 
rectangular structure. The lines in the drawing are, however, connected in such a manner 
as to produce an impossibility. As the eye pursues the lines of the figure, sudden changes 
in the interpretation of distance of the object from the observer are necessary. A more 
complicated structure, not drawn in perspective, is shown in Fig. 2. As this object is 
examined by following its surfaces, reappraisal has to be made very frequently. 

Fig. 1. Perspective drawing of impossible structure. 

Another way of presenting the same type of illusion is to express the impossibility in 
terms of such a phenomenon as a continually descending or ascending path. The flight of 
steps drawn in Fig. 3 is an example of this. Each part of the structure is acceptable as 
representing a flight of steps but the connexions are such that the picture, as a whole, 
is inconsistent; the steps continually descend in a clockwise direction. 

British J. Psychology, 1958
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Perspectives 32 Impossible objects : a special type of visual illusion 

Fig. 2. Diagram of structure with multiple impossibilities. 

Fig. 3. Continuous flight of steps: shadowed drawing. 

Actual objects suitably designed, when viewed from particular angles, can give exactly 
the same impressions as inconsistent drawings. A photograph of a model of this kind, 
apparently an impossible staircase, is shown as Fig. 4. Actually the extreme right hand 
step was much nearer to the camera and on a much higher level than the step which 
appears to be just above it. Illusions with a different purpose, constructed in a somewhat 
similar manner, have been discussed by Kilpatrick (1952). 
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Perspectives

Maurits Cornelis Escher, Ascending and descending, 1960

Twisted perspectives on QM D. Lundholm 25/36



Perspectives

”the father of the impossible figures”
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Perspectives
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Perspectives

“Window on the Floor” series, 2001-2013
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Satire on false perspective

“Whoever makes a Design
without the Knowledge of
Perspective will be liable
to such Absurdities as are
shewn in this Frontispiece.”
William Hogarth, 1754
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Twisted perspectives
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Contextuality — dealing with twisted perspectives

measurable observables: M = {a, α, b, β}, outcomes: O = {0, 1},
measurement contexts:

C ∈
{
{a, b}, {a, β}, {α, b}, {α, β}

}
⊆ P(M)

(commensurate measurements, i.e. can be performed together)

empirical model P: contexts → prob. dist.s on the outcomes

C 7→
(
PC : OC → [0, 1]

)
marginalization: for any subcontext D ⊆ C and outcomes t ∈ OD

PC |D(t) :=
∑

s∈OC : s|D=t

PC(s)

local coherence: demand compatibility of all marginals (cf. sheaf):

∀ contexts C,C ′ PC |C∩C′ = PC′ |C∩C′

non-contextuality: existence of global assignment of outcomes to
all measurable obs. (“hidden variables”/global coherence)

∃f : OM → [0, 1] s.t f |C = PC ∀ contexts C
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Contextuality — dealing with twisted perspectives

a

b

α

β

0

1
A B (0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1/2 0 0 1/2

(a, β) 1/2 0 0 1/2

(α, b) 1/2 0 0 1/2

(α, β) 1/2 0 0 1/2

(non-contextual model)

(Popescu-Rohrlich box)(Clauser-Horne-Shimony-Holt model)
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Contextuality — dealing with twisted perspectives

a

b

α

β

0

1
A B (0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1/2 0 0 1/2

(a, β) 1/2 0 0 1/2

(α, b) 1/2 0 0 1/2

(α, β) 0 1/2 1/2 0

(non-contextual model)

(Popescu-Rohrlich box)

(Clauser-Horne-Shimony-Holt model)
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Contextuality — dealing with twisted perspectives

a

b

α

β

0

1
A B (0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1/2 0 0 1/2

(a, β) 3/8 1/8 1/8 3/8

(α, b) 3/8 1/8 1/8 3/8

(α, β) 1/8 3/8 3/8 1/8

(non-contextual model)(Popescu-Rohrlich box)

(Clauser-Horne-Shimony-Holt model)
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Bell-Kochen-Specker paradox
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Summary on QM

• Uncertainty is about the noncommensurability of observables
(incompatibility/non-simultaneity of perspectives).

• Entanglement is about symmetry or correlation in knowledge
(compatibility/co-simultaneity of perspectives).

• Constraints & uncertainty ⇒ twisting ⇒ vorticity ⇒
exclusion/correlation/entanglement encoded in local sections
(geometry–topology–analysis ⇒ physics predictions).

• Contextuality is about the nonexistence of global sections
(necessitates choice of a local/simultaneous perspective).
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Contextual reality and non-local quantum games
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Quantum computing

ARTICLE
doi:10.1038/nature13460

Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation,which is the leadingmodel for exper-
imentally realizinga fault-tolerantquantumcomputer.This is a conceptually satisfying link,becausecontextuality,which
precludes a simple ‘hidden variable’ model of quantummechanics, provides one of the fundamental characterizations of
uniquely quantumphenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
forachieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantuminformationprovidesuniquenewcapabilities for computation
suchasShor’s factoringalgorithm1 andquantumsimulationalgorithms2.
This naturally raises the fundamental question: what unique resources
of the quantumworld enable the advantages of quantum information?
Therehave beenmany attempts to answer this question,withproposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantumsuperposition, thenecessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposalshaveprovensatisfactory6–9, and, inparticular, nonehavehelped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, themostgeneral classes ofproblems forwhichquan-
tumalgorithmsmight offer an exponential speed-upover classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the designof robust, large-scale quantumcom-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifyingnewsimulation schemes
for classesof quantumalgorithmsandbyclarifying the trade-offsbetween
the distinct physical requirements for achieving robust quantum com-
putation.Herewe establish that quantumcontextuality, a generalization
ofnon-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-upwithin the leadingmodel for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.
Contextualitywas first recognized as an intrinsic feature of quantum

theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictionsof quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantummeasurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource forpractical applications

suchasdevice-independentquantumkeydistribution19–21. Locality restric-
tionscanbemaderelevant tomeasurement-basedquantumcomputation11,
forwhichnon-locality quantifies the resources required to evaluatenon-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.
Herewe consider the framework of fault-tolerant stabilizer quantum

computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation throughMSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactlywith thepossibilityof universal quantum
computingviaMSD.Thescopeofour resultsdiffersdependingonwhether
we consider amodel of computationusingqubits (systemsof evenprime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
numberof levels.Whereas inboth caseswe canprove that violating anon-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if andonly if it lies outside theknownbound-
ary for MSD.
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Contextual resource: a measurement-based quantum computer
which computes a nonlinear Boolean function f : Zn2 → Zm2 with a
high probability is necessarily contextual:

avg. failure probability ≥ deg. of noncontextuality × dist. from linear.
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Quantum computing and time

Resolution of simultaneity — serialism vs. parallelism:

f1 f2 f3 · · · fN

t

Fermionic clock (ordered/stacked) vs. bosonic clock (unordered)

U1 U2

U3

t

Twisted perspectives on QM D. Lundholm 38/36



Game theory — using impossible to solve the impossible

Magic square: fill 3× 3 grid with + or − such that

• each row has even −’s

• each column has odd −’s

+ − −

− − +

+ − ?

Impossible!?
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Game theory — using impossible to solve the impossible

Constrained linear (binary) system: x1, x2, . . . , x9 ∈ {0, 1} = Z2

x1 + x2 + x3 = 0

+ + +

x4 + x5 + x6 = 0

+ + +

x7 + x8 + x9 = 0
= = =

1 1 1

Overconstrained: {
x1 + . . .+ x9 = 0

x1 + . . .+ x9 = 1

⇒ No solution!
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Game theory — using impossible to solve the impossible

Solution as operators on H = C2 ⊗ C2 (spinors):

A⊗ 1 1⊗A A⊗A
1⊗B B ⊗ 1 B ⊗B
−A⊗B −B ⊗A −AB ⊗AB

last row: −ABAB ⊗BAAB = 1⊗ 1
last column: −ABAB ⊗ABAB = −1⊗ 1

Compare how one solved x2 + 1 = 0 by lifting R ↪→ C:

“No one fully understands spinors. Their algebra is formally understood

but their general significance is mysterious. In some sense they describe

the “square root” of geometry and, just as understanding the square

root of -1 took centuries, the same might be true of spinors.”
E-mail from Sir Michael Atiyah, 15 July 2007, quoted in Farmelo, 2009, “The Strangest Man: The hidden life of
Paul Dirac, quantum genius”.
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Quantum pseudo-telepathy

Cooperative game theory: Alice ↔ Bob solve the impossible
together. Ex: Alice gets to generate a row and Bob a column.
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Quantum information processing is at the crossroads of physics, mathematics
and computer science. It is concerned with what we can and cannot do with
quantum information that goes beyond the abilities of classical information pro-
cessing devices. Communication complexity is an area of classical computer
science that aims at quantifying the amount of communication necessary to
solve distributed computational problems. Quantum communication complexity
uses quantum mechanics to reduce the amount of communication that would
be classically required. Pseudo-telepathy is a surprising application of quantum
information processing to communication complexity. Thanks to entanglement,
perhaps the most nonclassical manifestation of quantum mechanics, two or more
quantum players can accomplish a distributed task with no need for communi-
cation whatsoever, which would be an impossible feat for classical players. After
a detailed overview of the principle and purpose of pseudo-telepathy, we pres-
ent a survey of recent and not-so-recent work on the subject. In particular,
we describe and analyse all the pseudo-telepathy games currently known to the
authors.
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Further implications for society: Free will (whim)
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Further implications for society: Free will (whim)

The Strong Free Will
Theorem
John H. Conway and Simon Kochen

T
he two theories that revolutionized
physics in the twentieth century, rela-
tivity and quantum mechanics, are full
of predictions that defy common sense.
Recently, we used three such para-

doxical ideas to prove “The Free Will Theorem”
(strengthened here), which is the culmination of
a series of theorems about quantum mechanics
that began in the 1960s. It asserts, roughly, that if
indeed we humans have free will, then elementary
particles already have their own small share of
this valuable commodity. More precisely, if the
experimenter can freely choose the directions
in which to orient his apparatus in a certain
measurement, then the particle’s response (to
be pedantic—the universe’s response near the
particle) is not determined by the entire previous
history of the universe.

Our argument combines the well-known conse-
quence of relativity theory, that the time order of
space-like separated events is not absolute, with
the EPR paradox discovered by Einstein, Podolsky,
and Rosen in 1935, and the Kochen-Specker Para-
dox of 1967 (See [2].) We follow Bohm in using a
spin version of EPR and Peres in using his set of 33
directions, rather than the original configuration
used by Kochen and Specker. More contentiously,
the argument also involves the notion of free will,
but we postpone further discussion of this to the
last section of the article.

Note that our proof does not mention “probabil-
ities” or the “states” that determine them, which is

John H. Conway is professor of mathematics at Princeton

University. His email address is jhorcon@yahoo.com.

Simon Kochen is professor of mathematics at Prince-

ton University. His email address is kochen@math.

princeton.edu.

fortunate because these theoretical notions have

led to much confusion. For instance, it is often said

that the probabilities of events at one location can

be instantaneously changed by happenings at an-

other space-like separated location, but whether

that is true or even meaningful is irrelevant to

our proof, which never refers to the notion of

probability.

For readers of the original version [1] of our

theorem, we note that we have strengthened it

by replacing the axiom FIN together with the as-

sumption of the experimenters’ free choice and

temporal causality by a single weaker axiom MIN.

The earlier axiom FIN of [1], that there is a finite

upper bound to the speed with which informa-

tion can be transmitted, has been objected to by

several authors. Bassi and Ghirardi asked in [3]:

what precisely is “information”, and do the “hits”

and “flashes” of GRW theories (discussed in the

Appendix) count as information? Why cannot hits

be transmitted instantaneously, but not count as

signals? These objections miss the point. The only

information to which we applied FIN is the choice

made by the experimenter and the response of

the particle, as signaled by the orientation of the

apparatus and the spot on the screen. The speed

of transmission of any other information is irrel-

evant to our argument. The replacement of FIN

by MIN has made this fact explicit. The theorem

has been further strengthened by allowing the

particles’ responses to depend on past half-spaces

rather than just the past light cones of [1].

The Axioms

We now present and discuss the three axioms on

which the theorem rests.
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Bell-Kochen-Specker paradox

Theorem (Kochen-Specker)

There exists an explicit, finite set of vectors in R3 that cannot be
{0, 1}-colored in such a way that both of the following conditions
hold simultaneously:

1 For every orthogonal pair of vectors, at most one is colored 0.

2 For every mutually orthogonal triple of vectors, at least one of
them (and therefore exactly one) is colored 0.

Proof by contradiction on an explicit set E ⊆ S2, i.e.
non-existence of such a function (coloring) f : E → {0, 1}.
Apply this to a choice of frame for measuring the polarization of
entangled photons. This contextual setup may again be applied in
pseudo-telepathic strategies.
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Implications

You are not a function!

0 → ∞ →
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