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@ 2D quantum statistics and anyons

@® Exchange vs. exclusion (“statistical repulsion™) in the ideal
anyon gas

© Almost-bosonic/fermionic extended anyon gas and DFT

O Emergence of anyons: FQHE, polarons, angulons, ...
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Quantum statistics in 3D
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Quantum statistics in 3D

Bose—Einstein
Condenstate

= T Energy Level

“y—= IT Energy Level

—* IIT Energy Level

V= 1w Energy Level
—f—* Nucleus

force carriers (coherent/degenerate)  matter (stable/non-degenerate)
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Quantum statistics in 2D

Different in 2D! (and in 1D)

quasiparticles ©
I strong pot.
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Quantum statistics in 2D (exchange a/symmetry)

@q @

eiZpam 2p+1
U (xg,x1) = 0 (x1, x0) 6 = am any phase = “anyons”
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The braid group

By is the braid group on N strands:

BN = <01,...,O'N_1 0404105 = 04410504541, 00 — UkO'j>|‘ k=1
-
BERcER ol ]
0j: \ o, (
12...5 ...N J 12...5 ...N

Examples in By:

HI-K Wity

A
010201 = 020102 0103 = 0301

If we add the relations 032- = 1 we obtain the permutation group Sy
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. 7 :
Quantum statistics in R? (exchange = exclusion)

U wave function for NV distinct particles in R? (diagonals A y):
W), x=(x1,Xo,....,xn5) € RN\ Ay
identical: R? O {x1,x%s,...,xy} € CV := (RN \ Ay)/Sn
U(o.x) = p(o)¥(x), oem(CN)=1,By or Sy

p(o) exchange phase (or operator):

bosons p(c) = +1, symm., ex. independent identically distributed
\Ifo = ®NU0 € Lgym
fermions p(o) = sign(c), determinantal correlations & Pauli principle
Uo=ugAui A... Nuy_, € L?

asym
anyons p unitary rep. of By ... intermediate/fractional statistics?

Leinaas, Myrheim 1977; Goldin, Menikoff, Sharp 1981; Wilczek 1982
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Abelian vs. non-abelian representations

An N-anyon wave function is locally a map ¥: CY — F,

F Hilbert space of ‘internal degrees of freedom' on which By acts:
p: By — U(F)
Irreducible abelian anyons: F = C,
p(oj) = e"
Reducible abelian anyons: 7 = CP, D > 1,
p(aj) ~ diag(e?™ ... PpT) Nz
Non-abelian anyons: 7 = CP, D > N — 3 (if N > 6),

p(0,)p(01) # plor)ploy)  for some j # k.
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most computational

J

algebraic ——

Goldin, Menikoff, Sharp '81,'85

Moore, Seiberg, Witten '89
Frohlich et al. '88-'90
Kitaev '97-'06-
+Freedman, Wang '02-
Bonderson '07

+Gurarie, Nayak '11

DL, Qvarfordt '17-'20-

most general

!

geometric

Anyon (/plekton/nonabelion) models

most practical

J

_, Mmagnetic

statistics transmutation

p: BN — U(.FN)

Leinaas, Myrheim '77

Dowker '85

Mueller, Doebner, '93

Mund, Schrader '95
Dell'Antonio, Figari, Teta '97
Goldin, Majid, '04

Maciazek, Sawicki '19

Review: DL, Qvarfordt '20
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Wilczek '82; Wu '84
+Arovas, Schrieffer '84, +Zee '85

Moore, Read '91, +Rezayi '99
Verlinde '91, Lee, Oh '94 (NACS)
Mancarella, Trombettoni, Mussardo '13

DL, Solovej '13,'14
+Rougerie, Larson, Seiringer,
Correggi, Duboscq '15-
+Yakaboylu et al '19-

+Lambert 22’
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Statistics transmutation in 2D: bosons<sfermions

Convenient: x = (X1,...,XN) < z=(21,20,...,2n8) € CVN\ Ay
U =UU = exp arg(z; — zx)
= ol i)
Jj<k i<k

transmutes L2 < L2 at the cost of a gauge potential:

sym asym
_ L
—iVO =U(—iV+A)T,  Aj(x)=U'VyU= Z—Q
Ix; — x|
A N . N
Th=> b “ 1 =) (—iVy, + A))
j=1 j=1

where curly; Aj =2}, . 6(x; — xj) Aharonov-Bohm fluxes.
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Statistics transmutation in 2D: abelian anyons €'@"

Convenient: x = (X1,...,XN) ¢ z=(21,20,...,2n8) € CVN\ Ay

U= Uy, H = exp Zarg P — 2k)

i<k |Z]_Zk| i<k

transmutes Lgym <+ L2 at the cost of a gauge potential:

—iVT =U*(—iV+aA)T,  Aj(x)=U 'V U= Z —2
Ix; — Xk|
N N )
To=> 90, ¢« =" (~iVx, +aA;)
j=1 i=1

where curly; A = 2ma}’, ,; 6(x; — X)) Aharonov-Bohm fluxes.
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Recent experiments

e Nakamura et al. 2020: fractional exchange statistics:
interferometry in v = 1/3 FQHE, indicating o = 2/37

e Bartolomei et al. 2020: fractional exclusion statistics:
bunching in collisions in v = 1/3 FQHE, indicating o = 1/37

e Google Quantum Al & co. 2022: non-abelian (Ising) reps on
qubit lattice

e Fan et al. 2022: non-abelian (Fibonacci) reps on edge states
of a lattice

Issues/obstacles:
© fragile phases (e!™)" vs. robust density distributions oy (x)
® Berry phases, adiabaticity and other phase ambiguities

Forte '91; Kjgnsberg, Myrheim '99; Jain '07; DL, Rougerie '16

© representations p: By — U(Fn) vs. actual anyons Tp
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Exchange vs. exclusion

How do anyons actually behave?

1
0.0 05 1.0 15 20 00 05 1.0 15 20
N =2 a N=3 a

Leinaas, Myrheim '77; Wilczek et al. '82,'85
Murthy, Law, Brack, Bhaduri, '91; Sporre, Verbaarschot, Zahed, '91,'92

Canright, Johnson '94: “Fractional statistics: « to 8"
Yakaboylu et al. 2019

Exactly solvable for N = 2, numerics for N = 3,4, ...
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Exchange vs. exclusion
Potentially interesting dependence on « for N — oc:

E/w —

)

1C

~N2

TI'/2
g —

Eof (wN¥2) —

e

Chitra, Sen, 1992: Schematic N — oo spectrum
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0
0 Tr/z

g —

(6 = am, harmonic trap w?|x|?)
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Local exclusion principle

A rigorous and local approach to exchange and exclusion.

Statistical repulsion manifests in three ways (at least):

@ effective scalar pairwise repulsion = ¥ — 0 at Ay

z
‘XJ - XkP

v = dist ({(2p + 12, 22)

@® local exclusion principle: Eny 2 N — 1

© degeneracy pressure, ex. Thomas-Fermi or Lieb-Thirring
(uncertainty < exclusion)

DL, Solovej '13; DL '17
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The odd-numerator Thomae/‘popcorn’ function

0.8 -

04+

AN—o00 = inf) 4e7 [(2p + 1) — 2¢]
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Degeneracy pressure for the ideal anyon gas

The Thomas-Fermi approximation for fermions in 2D:

Enx= inf (T4+V)y =~ inf / 2mo(x)? + V(x)o(x)] dx,
N \I’Ellrllz%sym< >\II QZO:IR2 o=N RQ[ g( ) ( )Q( )]

Theorem (Lieb-Thirring inequality): For any o € R and ¥ — gy

(To)w = c(a) /]11{2 oy (x)? dx, c(a) ~ dist(e, 2Z) = as.

For non-abelian anyons: p(a;) ~ (¢?’*™), dep. on dist({8}, 27Z).

Hence, to first order, the degeneracy pressure for the ideal anyon
gas is governed by the 2-anyon simple exchange phase ¢*“™.

DL, Solovej '13,'14; Larson, DL 18’; DL, Seiringer '18; DL, Qvarfordt '20
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The homogeneous ideal anyon gas

En/N? Z e(an)
‘ [ ]

0.6

0.4 . .

Numerical lower bounds for e(a) = 4wa + O(a*/3),

at o = aN_00, Versus c(as) = 1 min{e(as),0.147}
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“wild guess” for the exact ground-state energy

Condens. Matter 2018, 3,19 7of 11

In Figure 6 the lowest energy states of the frustrated XY model are compared to the lowest energy
branch of the Hofstadter butterfly which is proportional to the T, for superconducting networks as
predicted by the linearized GL network equations [18-21]. The general shape of the curve is very
similar and both show fractal behavior with apparent singularities at rational values of f. However,
these singularities seem of different type. In the frustrated XY model these singularities appear
logarithmic, while in the Hofstadter butterfly the singularity is approached linearly from both sides.
The similarity of these curves suggests there might be a connection between the ground state energy of
JJAs and the T; for superconducting networks.
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Towards precise density functionals for anyons

Ground state approximation: En/N A2 minimum of Elul:

The Gross—Pitaevskii functional for interacting bosons: (g € R)
£OPY] 1= / (119 + Acx)uf* + VIuf? + glul*)
R2

The Thomas—Fermi functional for fermions:

ETF ] = / (2m Nl + V]uP?)

R2

An “average-field” approximation for anyons?

£97u] ~ / (2raNfult + Viul)

R2

Mean-field ansatz: ¥(x) = u(xi)u(x2) ... u(xyN)

= Single particle u € L?(R?) in magnetic field 2raN|u(x)|?
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Almost-bosonic anyons (regularized)

Can be made rigorous in the limit « = /N — 0, fixed 3, if anyons
are also smeared out to a finite size R > 0 — extended anyons.

The idea is then to take R ~ N=7 — 0 and § = aN (flux) large.

= Correct average-field functional for any fixed g € R:

. 2
& lu] = /R ) (\(—ZV+5A[IUI2])UI +V|u|2) , curl Afg] = 2mp
= Effective Thomas-Fermi-type functional as 8 — oc:

E5 o] = /R2 (0592 +V9)

Numerics: g.s. u%f has a vortex lattice distribution with scale set
by the TF profile (minimizer) o3", and C ~ 47%/2/3 > 27 (1)

DL, Rougerie '15; +Correggi '17; +Duboscq '19
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numerics

0.025 ]

0.02 ]

0.015} ]

0.01t ]

=l ]
0-005 —— Numerical
——Theoretical

0 n n n 1 n
-6 -4 -2 0 2 4 6

©

B =90, V(x) = |x|?

and comparison with QEF

Averaged [ |?

Correggi, Duboscq, DL, Rougerie '19
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Almost-fermionic anyons

Similar approach close to fermions: « =1—3/N — 1, h ~ N-Y2,

Also “virtually” extended anyons, 0 < R~ N~ — 0.
= Actual Thomas—Fermi functional for fermions remains relevant:

EM g := /]1{2 (2%@2 + V,Q)

More precisely, a semi-classical Vlasov functional:
_ 2
eV u] = (2n) 2/R4‘P+5A[Q]| u(x, p)dxdp+/R? Vodx

for 0 < p(x,p) < 1 a measure on phase space R*, [, = (27)2.
Minimizer:
p(x,p) =1 (Ip + SA[d(x)[* < 4mo(x))
with spatial density independent of 3:
o) = (2m) [ o p)dp = (4) (3T = V().
bUt momentum density dep on B Chitra, Sen '92; Girardot, Rougerie '21
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Intermediate anyons? Try magnetic TF theory

Fermi sea of the Landau Hamiltonian in LDA with a self-generated
field B(x) = 2mfo(x), 0=>_,0n 0< 0, <|B|/(27):

en¥lgl o [ g(wuznﬂmnw@n) > [ (er(eem () +ve)

0.14

\
\

-1.0 -0.5 0.0 0.5 1.0

M(B):= (1= {87 H{B~'} €[0,8°/4)
Girardot, Levitt, Rougerie '21; DL '23, cf. Chen et al.’89, Hu et al.’21
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Emergence: QHE model for statistics transmutation

Tracers in a bath:
@ large 2D bath of non-interacting fermions, N > 1
@® n tracers/impurities, 2 < n < N
© strong external transverse magnetic field, b — oo

O strong short-range repulsive bath-tracer interaction, g — oo

I strong pot.

DL, Rougerie '16; +Lambert '22
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Emergence: QHE model for statistics transmutation

Tracers in a bath:
@ large 2D bath of non-interacting fermions, N > 1
@® n tracers/impurities, 2 < n < N
© strong external transverse magnetic field, b — oo

O strong short-range repulsive bath-tracer interaction, g — oo

< o D

I strong pot.

DL, Rougerie '16; +Lambert '22
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Model Hamiltonian

1 )
_ bxi)2 + o Z(—zvyj — qbij)2

|Mz

n@N =
- j=1
N n
+ 9> > Sxk—y;) + W(yL.-yn)
k=1 j=1
actingon U(yi,...,yn;X1,...,xyn) € L2(R?") ® Lﬁsym(RzN).
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Model Hamiltonian

n

N
2 1 . 2
Hnen = Z Ve =bxi)" + 53 (<iVy, —abyy)
—1 j=1
N n
+ 9> > Sxk—y;) + W(yL.-yn)
k=1 j=1
actingon U(yi,...,yn;X1,...,xyn) € L2(R?") ® Lisym(]RzN).

and N >>n = assume bath entirely in LLL:

HIEY o = L2

sym/ asym :

(R*™) @ /\N LLL

sym/ asyrn

Ground-state energy Ejgn = infy_;nen (HpoN)w

sym/asym
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Lowest Landau Level (LLL) & Laughlin states

Hamiltonian for a charged particle in a constant magnetic field:

1 . 1\2
leﬁ(—zV—bx ) = we(ala +1/2)

LLL :=kera = {qp € L2(R?) : y(x) = f(2)e 317 ¢ analytic}
ON basis: ug(z) = ckzkefg‘zlz, k=0,1,2,...

qj(z) = (uO/\ul/\.../\UN_l)(Zly-”aZN)

1 1 ... 1
21 zZ2 ... ZN _b,2 _by2
o det | e 2l = H(zj—zk) e 2l
: >k
N-1 _N-1 N-1
21 Zy ... 2y

IQHE: “filled LLL" (Fermi sea) in a radial trap
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Lowest Landau Level (LLL) & Laughlin states

Hamiltonian for a charged particle in a constant magnetic field:

1 . 1\2
leﬁ(—zV—bx ) :wc(aTaJrl/?)

LLL :=kera = {qp € L2(R?) : y(x) = f(2)e 31" ¢ analytic}

ON basis: ug(z) = ckzke_%‘zlz, k=0,1,2,...

U(z) =
m
1 1 ... 1
Z1 Z2 ... ZN by b2
det e 2l = H(zj—zk)“e 2l
: J>k
N-1 _N-1 N-1
21 Zy ... 2y

FQHE: “fractionally filled LLL", = 3,5,7,... Laughlin states
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Quasi-hole ansatz

For ¢ — oo we take as our ansatz for the ground state (ker d):

Vo (y;x) = @(y)cqn(w)¥qn(w; z), cqn >0,

198 =1, o) = /«:N Wan(win)2dz = [ Wyl =

(Cn+N

n N

b2

\Ilqh(wl,...,wn;zl,...,zzv):HH wj—2y;) H (zp—2z) e 2V
G=1k=1

1<k<I<N
Aim:
(Hnon)wy = BN + (HT) g + error?

n

o bn 1 . 2
He = — — 5 (—=iVy, — (¢ — D)by; — Aj)" + W (y)
2mj 1
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Quasi-hole ansatz (integer case)

For ¢ — oo we take as our ansatz for the ground state (ker d):

‘ijb(y; X) = q)(Y)th(W>‘Ith(W; Z)7 Cgh > 0,

/ B2 = 1, cqn(w)? ::/ W (w: 2) 2z ;»/ Do =
n (CN (Cn+N

n N

b2

\Ilqh(wl,...,wn;zl,...,zN):HH wj—2y;) H (zp—2z) e 2V
j: :

1<k<I<N
Aim:
(Hpon)we = N + (HS) 5 + error?
-5 bn 1 & ) N2
H' ==+ o) (ZiVy, = (@ = Dbyj)" + W()

J=1
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Quasi-hole ansatz (fractional case)

For g — oo we take as our ansatz for the ground state (kerd):

\IJ<I>(Y§ X) = (I)(Y)th(w>qth(w; Z)7 Cgh > 0,

/ |<I)|2 =1, cqh(w)f2 ::/ |\I/qh(w;z)|2dz = / |\I/q>|2 =1
n (CN (Cn+N

n N
b2
\I!qh(wl,...,wn;zl,...,zN):HH(wj—zk)p H (zp—2z)"e 2l

j=1k=1 1<k<I<N

Conjecture: (Theorem forp=pu= 1) [Lambert, DL, Rougerie, 22]
eff n
(HpoN)wy =N + (H o + error(ﬁ)

bn 1 <, . 2 \2
P N (—iVy, — (g - Dbyd — ZA) +W(y)

ot =
mu  2m

Jj=1
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Another illustrative model for statistics transmutation

Hamiltonian Hy on Hilbert space Hy of N bosons/fermions.
Add a collective degree of freedom: [a,a] =1, N = ala, |n)

H,, = Hy+ wa'a +yw(Fa' + Fla) + ~%w

Two parameters: w > 0, v € R

Two model choices:
® F=(Z/|Z|)> =U? flux attachment
® F = 72 vortex attachment

= Hilbert spaces of composite bosons/fermions: H" = F"Hg|n)
a=2nn=0,1,2,...

Now take the ‘adiabatic’ limit w — oo with ~ fixed.
Claim: in the bottom of the spectrum of H,, we obtain anyons
(interacting resp. free) with a = 272 + 2n
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Composite bosons/fermions: ladder of integer bundles
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Emergent anyons: ladder of fractional bundles
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Application: Polarons (IR?)

For N = 2 with relative coordinates (7, ¢) and radial interaction:

J.=L,+ AZ7 L, = —1:(959, A, = Z“b};ubk“
k,p

U = Ya(r,0)S(p)U(r)[0)

S(p) = exp [—ipA,], U(r) =exp | — Z )‘k“_(r)(blu — by,
kp

Fixed total angular momentum but shift in relative:
Z3j=(J)w = (L)u+ NAs)w = (La)w=J— (As)w

_ 1 .
A(T‘, 90) = _<O|U 1AZU|0>;e90 I.€. a(r) = _<Az>coherent statey(r)

Can be computed for suitable interaction, a ~ const.(£2)
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Application: Angulons (S?)

Molecular orientation

(61, 1) S 58 (62.¢2) 01, 91) 8 g (02.¢2)

Hw—ZL2+W +Zwkabk+ZAk <—Zﬁk >bT+h.c.)
7j=1
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Application: Angulons (S?)

Spectrum of N = 2 anyons on S? with monopole field 2B

12

10}

energy
[@)]

Brooks et al. '21; cf. also Ouvry, Polychronakos '19-'20
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Quantum gravity: anyons on the event horizon...

ANDREAS G. A. PITHIS AND HANS-CHRISTIAN RUIZ EULER

iy
i i

FIG. 3 (color online). Two incident bulk edges piercing the
horizon: unbraided vs upon the application of M and B,
respectively.

knotting of the spin network at least in the vicinity of the
horizon as in Fig. 3, which cannot be unraveled through a
(small) bulk diffeomorphism. In the following we want to
investigate whether such a different knotting of the spin
network in the neighborhood of the horizon has any
observable consequences. The area operator would not
be of great help here, since A is a function of the su(2)-
Casimir operator and thus commutes with all the generators
of this Lie algebra. For a representation p of a generic
element of the braid group one has

(PwlAlpw) = (wlp™ Ap lw) = (wlAly).  (61)

Mathematical physics of the 2D anyon gas

PHYSICAL REVIEW D 91, 064053 (2015)

unless n =2 and k - c0. For n =1 and k — oo (65)
reduces to expression (43). For example, when n = 2 the
commutator yields

PR . 4n 4n

M =5
x ich (. 1), ® I, + T}, ® J5,5%(x, )
+O(k3). (66)

A local stationary observer who resides on the node in
Fig. 3 at proper distance £ to the horizon will be able to
discern braided from unbraided states e.g. by measuring
differences in the expectation values of the field strength
operator. When considering large black holes the effect of
the braiding onto the field strength would be negligible but
it would become relevant for smaller (and smaller getting)
black holes.

The physical picture behind the statistical phase is very
similar to what happens in electromagnetism when dealing
with the Aharonov-Bohm effect. To see this we use the
ideas presented in [49] and consider a locally flat con-
nection on % — {p}

A. (ﬂ:ﬁn (¥) (67)
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Some math-phys references on the 2D anyon gas

D.L., Properties of 2D anyon gas, invited contribution to the
Encyclopedia of Condensed Matter Physics 2e, 2023, arXiv:2303.09544

D.L., V. Qvarfordt, Exchange and exclusion in the non-abelian anyon
gas, 2020, arXiv:2009.12709

M. Correggi, R. Duboscq, D. L., N. Rougerie, Vortex patterns in the
almost-bosonic anyon gas, EPL 126 (2019) 20005

D.L., N. Rougerie, Emergence of fractional statistics for tracer particles
in a Laughlin liquid, PRL 116 (2016) 170401

G. Lambert, D.L., N. Rougerie, Quantum statistics transmutation via
magnetic flux attachment, 2022, arXiv:2201.03518 (to appear in PMP)

E. Yakaboylu, A. Ghazaryan, D.L., N. Rougerie, M. Lemeshko, R.
Seiringer, Quantum impurity model for anyons, PRB 102 (2020) 144109
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