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Abstract. We find a global asymptotic formula for the polynomial Bergman
densities with respect to a wide class of exponentially varying weights in the
plane. Under appropriate conditions on the potential Q and the associated spec-
tral droplets Sτ , the n-th polynomial Bergman density ρm,n(z) in L2(C, e−2mQdA)

satisfies an asymptotic expansion of the form

ρm,n ∼ ρm erf
(
−2

√
mVτ

)
+m− 1

2Bm,τ e
−2mV 2

τ ,

as n = τm → +∞. Here, ρm ∼ 2∆Q + . . . denotes the Bergman density of
states for the space of all entire functions in L2(C, e−2mQdA), while Vτ is a certain
smooth function vanishing along ∂Sτ which is positive outside and negative inside
Sτ . The expression Bm,τ stands for a smooth asymptotic expansion in powers of
m−1 and Vτ . The main novelty is a new calculus which bypasses the summation
over the degree of the orthogonal polynomials in the calculation of ρm,n, which is
needed due to the lack of Christoffel-Darboux-type formulae in the planar context.
The result has direct applications to strong planar Szegő limit theorems for Gram
determinants, the details of which will appear elsewhere.

1 INTRODUCTION

1.1 Polynomial Bergman densities

Fix a real-valued function Q (“the potential”) on the complex plane C, subject to
the growth condition

(1.1) lim inf
|z|→+∞

Q(z)

log |z|
= τ∞ > 1.

For a positive integer n ∈ Z≥0, we denote by Poln(C) the space of polynomials of
degree at most n− 1 and by dA(z) = 1

πdxdy the usual area element normalized by
1
π . For n and Q as above and m ∈ R>0, we denote by Km,n(z, w) the polynomial
Bergman kernel associated to the weight e−2mQ. That is, Km,n(z, w) is the unique
Hermitian kernel function which satisfies the reproducing property

p(z) =

∫
C
p(w)Km,n(z, w) e

−2mQ(w)dA(w)
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for any polynomial p with deg(p) ≤ n−1, such for any fixed w the function Km,n(·, w)
belongs to Poln(C). If we denote by {Pm,k(z)}k≤n−1 the standard sequence of nor-
malized orthogonal polynomials in L2(C, e−2mQdA), the polynomial Bergman kernel
may be expressed more concretely as the sum

(1.2) Km,n(z, w) =

n−1∑
k=0

Pm,k(z)Pm,k(w).

We also let Km(z, w) be the reproducing kernel for the full Bergman space of all
entire functions in L2(C, e−2mQdA). Under mild assumptions on the potential, we
may think of Km as the large n-limit of Km,n, for fixed m. Our aim in this paper is
to derive a new calculus for the polynomial Bergman density

ρm,n(z) = m−1Km,n(z, z) e
−2mQ(z)

in the regime when m and n tend to infinity in a proportional fashion. In particular,
we will obtain a transparent asymptotic formula which expresses ρm,n(z) in terms of
the full Bergman density ρm(z)

def
= m−1Km(z, z)e−2mQ(z) (see Theorem 1.2 below).

We note in passing that ∫
C
ρm,n(z)dA(z) =

n

m

def
= τ(m,n).

The large m-asymptotics of ρm has been studied extensively. We will discuss
the relevant literature in Section 1.5 below, but let us mention already here that
for smooth and strictly subharmonic potentials, the Bergman density satisfies a full
asymptotic expansion, the first few terms of which are given by

(1.3) ρm = 2∆Q+
1

2m
∆ log∆Q+O

(
m−2

)
.

In contrast, the asymptotics of the polynomial density ρm,n is much more recent and
still not fully understood. Roughly speaking, if the parameters n and m are related
by n = τm with τ > 0, there is a compact region Sτ in the interior of which ρm,n

has “classical” behavior, i.e., the asymptotic expansion matches that in (1.3), see,
e.g., [4,5,9]. On the other hand, outside Γτ

def
= Sτ the density instead decays rapidly,

with the transition taking place in a band around ∂Sτ at scale m− 1
2 . In particular,

we have the convergence in the sense of distribution theory

(1.4) lim
n=τm→+∞

ρm,n = 2∆Q 1Sτ ,

see, for instance, [15]. The sharp cut-off along the boundary interface Γτ = ∂Sτ

ought to be understood better. A natural thing is blow up to the the microscopic
characteristic scale m− 1

2 , which amounts to the typical distance between the particles
in the standard Coulomb gas models. Under suitable conditions on Q and Sτ , the
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macroscopic sharp cut-off exhibited in (1.4) gets smooth at the microscopic level,
and instead governed by the Gaussian error function

(1.5) erf(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

This universal boundary behavior, which may be understood as the boundary uni-
versality of Coulomb gas ensembles with inverse temperature β = 2, was obtained
recently in [18]. This may also be understood as universality of eigenvalue statistics
of random normal matrix ensembles along smooth spectral interfaces.

1.2 Potential theoretic assumptions

We require require that the potential Q meets the logarithmic growth bound (1.1),
so that any polynomial of degree n belongs to L2(C, e−2mQdA) provided that m is
sufficiently large. For a positive parameter τ < τ∞, we let µτ = µτ,Q be the unique
minimizer of the weighted logarithmic energy functional

IQ(µ) =

∫
C×C

log
1

|z − w|
dµ(z)dµ(w) + 2

∫
C
Q(z)dµ(z)

among all positive compactly supported Borel measures on C with total mass τ

and finite logarithmic energy. The measure µτ is known as the weighted equilibrium
measure, and we denote by Sτ its support (the “droplet”). The logarithmic potential
of a measure µ is given by Uµ(z) =

∫
log |z − w| dµ(w). If Q is assumed to be C2–

smooth and subharmonic, there is a constant Cτ such that

Q̌τ (z)
def
= Uµτ (z) + Cτ = Q(z) for z ∈ Sτ .

On the exterior domain C \ Sτ we have the bound Q(z) ≥ Q̌τ (z).

Definition 1.1 (Admissible potentials). Fix a potential Q subject to (1.1). We say
that Q is τ -admissible if

(1) Q is Cω–smooth and strictly subharmonic on a neighborhood of Sτ ,
(2) the spectral boundary ∂Sτ is a smooth Jordan curve,
(3) We have Q(z) > Q̌τ (z) on the exterior domain C \ Sτ .

The assumptions (2)–(3) correspond to the standard “off-critical one-cut regime”
in 1D random matrix theory, and they are known to hold in many concrete situations
as well as under certain convexity assumptions on Q.

If Q is τ0-admissible, it is not difficult to see that it is also τ -admissible for each
τ ∈ I0

def
= {τ : |τ − τ0| ≤ ϵ}, provided that ϵ > 0 is chosen sufficiently small. We will

assume that this is the case, and in addition that ϵ is small enough for the exterior
conformal maps ϕτ : C\Sτ → De

def
= {z : |z| > 1}, τ ∈ I0, to extend conformally to a

common domain C \K. Here, K = Kϵ is a compact subset with Sτ0−2ϵ ⊂ K ⊂ S◦
τ0−ϵ,

and the conformal maps are normalized by the conditions that ϕτ (∞) = ∞ and
ϕ′
τ (∞) > 0. Below we will need to shrink ϵ further, but it will always remain strictly
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positive and independent of the main parameter m. The precise restriction placed
upon ϵ depends upon a quantitative regularity measure of Q and the boundaries
∂Sτ , and is explained in Section 3.1 below.

For f ∈ C(∂Sτ ), we let Pτf denote the Poisson extension of f to the exterior
domain C \ Sτ . If we define the function

Q̆τ = τ log |ϕτ |+PτQ,

the above regularity assumptions guarantee that Q̆τ extends harmonically to some
neighborhood of the exterior domain C \ Sτ . Possibly after decreasing ϵ, we may
assume that this neighborhood coincides with C \ K. On C \ Sτ , we have Q̆τ = Q̌τ .
It is well-known that Q̌τ is C1,1-smooth and that its gradient coincides with that
of Q along ∂Sτ (see [15]), from which we conclude that the difference Q − Q̆τ is
non-negative in a neighborhood of C \ Sτ and vanishes quadratically along ∂Sτ . We
let Vτ denotes the unique real-analytic square root defined by

V 2
τ = Q− Q̆τ ,

where the sign is chosen such that Vτ < 0 on Sτ \ K while Vτ > 0 on C \ Sτ . We
tacitly extend Vτ to a smooth function on C, such that Vτ is strictly negative on the
interior of Sτ .

1.3 The main result

Our main result is an asymptotic formula for ρm,n, which in particular explains how
it relates to the full density ρm, and highlights how the error function transition
across ∂Sτ comes about.

Theorem 1.2. Suppose that Q is τ0-admissible. Then there exists a positive number
ϵ = ϵ(Q, τ0) as well as smooth bounded functions aj,τ and bj,ℓ,τ , such that for any
κ ∈ Z>0, we have the asymptotics

ρm,n = ρm erf
(
−2

√
mVτ

)
+

1√
m

Bm,τ e
−2mV 2

τ +O
(
m−κ− 1

2 e−2m(Q−Q̌τ )
)
,

as n = τm → ∞ uniformly on a neighborhood Vτ of Sτ , where the boundary correc-
tion Bm,τ = Bκ

m,τ is given by

Bm,τ =

κ∑
j=0

m−jaj,τ +

κ∑
j=1

2j−1∑
ℓ=0

m−2j+1bj,ℓ,τ (2mVτ )
ℓ.

Moreover, the implicit constant is uniformly bounded throughout the complex plane
provided that |τ − τ0| ≤ ϵ.

Remark 1.3. (a) Theorem 1.2 gives the asymptotics of ρm,n on a fixed neighbor-
hood Vτ of Sτ . However, the globally valid a priori bound

ρm,n ≤ Cme−2m(Q−Q̌τ )



GLOBAL ASYMPTOTICS OF THE POLYNOMIAL BERGMAN DENSITY 5

combines with Assumption (3) from Definition 1.1 to ensure that the density is
exponentially decaying in m on C \ Vτ .
(b) All of the coefficient functions aj,τ and bj,ℓ,τ can in principle be computed in an
iterative fashion. Below, we will give explicit formulas for the first few terms.
(c) We note that the asymptotic expansion of Bm,τ in Theorem 1.2 is somewhat
non-standard. If we attempt to write a standard expansion of the form

Bm,τ (z) =
κ∑

j=0

m−jαj,τ (z)

for some smooth coefficients αj,τ , these would have to be adjusted as the precision
parameter κ varies. For instance, we would get

α0,τ = a0,τ +
κ∑

j=1

bj,2j−1,τ (2Vτ )
2j−1.

This means that the added terms produce a correction away from the droplet bound-
ary loop Γτ = ∂Sτ , which however gets suppressed by the later multiplication by
the “Gaussian ridge” e−2mV 2

τ . For instance, the uniform norm of V k
τ e−2mV 2

τ is of
order O(m−k/2).
(c) The precise condition on the size of the parameter ϵ is outlined in Section 3.1
below. Roughly speaking, ϵ should be small enough for Q, ∆Q, ϕτ and a couple of
additional functions of potential theoretical nature to remain real-analytic through-
out

⋃
|τ−τ0|≤ϵ ∂Sτ in a quantified way. The regularity is measured in terms of certain

uniform norms of the Hermitian-analytic polarizations of these functions.

Curiously, the proof of Theorem 5.1 does not rely on an a priori understanding
of ρm in any essential way. Indeed, it is enough to know that the expansions of ρm and
ρm,n coincide deep inside the droplet. The calculus for ρm,n thus gives a genuinely
new algorithm for the deriving the classical bulk-asymptotics, provided that the
region around a given point can be foliated by admissible droplet boundaries. In
contrast to previous approaches which are entirely local, this method emphasizes
the connection with the Hele-Shaw flow via the expansion of the domains Sτ .

It is natural to ask whether the asymptotics obtained in Theorem 1.2 can be
polarized to give off-diagonal asymptotic information about the polynomial Bergman
kernels. Certainly this is possible in a shrinking neighborhood of the diagonal, but it
is less clear what happens when z and w are far away. Such descriptions are known
to hold in several different regimes, such as when one of the points is fixed in C \ Sτ

and the other varies in C \ Sτ [17] (“off-spectral” asymptotics), or when both points
are on ∂Sτ but remain separated from each other [3]. In particular, it would be
interesting to interpolate this latter result of Ameur and Cronvall with the present
formula.
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The proof of Theorem 1.2 is based on an approximate potential theoretic char-
acterization of the polynomial Bergman density (see Problem 2.4 below). This
shares some resemblance with the Fokas-Its-Kitaev characterization for orthogonal
polynomials on the real line in terms of a Riemann-Hilbert problem [13] as well as
the corresponding characterization of planar orthogonal polynomials in terms of a
∂̄-problem (or soft Riemann-Hilbert problem) from [14,20]. However, instead of the
∂̄-operator the characterization involves the third order operator ∂τ∆, where τ is a
continuous parameter playing the role of the quotient n/m. This characterization
appears to be quite novel, given that the density function lacks any typical repro-
ducing properties or defining orthogonality conditions. Such conditions are usually
needed in the Riemann-Hilbert framework.

While it will be discussed in detail in Section 2, we should give the flavor of
the potential theoretic problem already here. It involves a family Pτ of holomorphic
functions of fractional growth

|Pτ (z)| = |z|τm(1 + O(|z|−1)) as |z| → +∞,

with the necessary branch cut suitably chosen for τm /∈ Z≥0, as well as a potential
Uτ such that

(1.6) ∂τ∆Uτ = |Pτ |2e−2mQ
(
1 + O

(
m−κ−1

))
If Uτ satisfies the appropriate asymptotics at infinity along with a condition of rapid
decay interiorly to ∂Sτ , then (1.6) encodes the approximate orthogonality of Pτ

to lower order holomorphic functions of fractional growth and matching branch cut
structure. In particular, for n ∈ Z≥0, Pτ will approximate the orthogonal polynomial
Pm,n. Since integration in τ is closely related to summation over the right-hand
sides of (1.6) over n = τm ∈ Z≥0, it turns out that ∆Uτ approximates ρm,n modulo
(explicit) boundary corrections. The approximate potential Uτ will take the form

(1.7) Uτ = Λτ erf
(
2
√
mVτ

)
+Ωerf

(
−2

√
mVτ

)
+

Στ√
2πm

e−2mV 2
τ ,

where Λτ are harmonic in the exterior and of logarithmic growth, while Ω and Στ

are smooth, and we will algorithmically compute the coefficients. The first order
approximation is given by Λτ ≈ 2Q̆τ while Ω ≈ 2Q. Comparing with (1.4), we see
that Uτ can be thought of as a “quantization” of the limiting potential

lim
n=τm→+∞

∫
C
log |z − w|2ρm,n(w)dA(w) = 2Q̌τ (z).

1.4 Consequences for the asymptotics of Gram determinants

For a potential Q as above, we consider the Gram matrices of complex moments

Gm,n(Q) =
(∫

C
zj z̄ke−2mQ(z)dA

)
0≤j,k≤n−1



GLOBAL ASYMPTOTICS OF THE POLYNOMIAL BERGMAN DENSITY 7

and the large m-asymptotics of the Gram determinants detGm,n(Q). As a direct con-
sequence of Theorem 1.2 and the asymptotics of the potential (1.7) (cf. Lemma 5.1
and its proof), we will obtain the following theorem. It gives precise asymptotics of
detGm,n(Q) for a wide class of so-called Hele-Shaw potentials, i.e. those of the form

Q(z) =
1

2
|z|2 − Uµ(z)

where µ is a finite (signed) Borel measure. We put Qλ = Q(z) = 1
2 |z|

2 − λUµ(z),
0 ≤ λ ≤ 1. We denote by cap(S) the logarithmic capacity of a compact set S, and
by Pτ = PC\Sτ

the Poisson extension operator for the exterior domain C \ Sτ . We
put

(1.8) Υλ
τ = Λλ

τ +
1

2m
∂τΛ

λ
τ +

⌈κ
2
⌉∑

l=1

m−2ℓ B2ℓ

(2ℓ)!
∂2ℓ
τ Λλ

τ − Cλ
τ ,

where B2ℓ are the standard Bernoulli numbers and where Cλ
τ are the uniquely deter-

mined constants such that Υτ (z) = τ log |z|2+O(|z|−1) at infinity. It is not difficult
to see that Cλ

τ admits a full asymptotic expansion in negative powers of m.

Theorem 1.4. Let µ and Q = Qµ be as above, and assume that for each λ,
the interior of the droplet Sλ

τ is simply connected with regular boundary and that
supp(µ) ⊂ (Sλ

τ )
c. Then we have the asymptotics

log detGm,n(Q) = log detGm,n(
1
2 |z|

2) + 2m2

∫ 1

0

∫
C
Υλ

τ (z)dµ(z)dλ+O(m−κ−1)

as n = τm → +∞. Moreover, Υλ
τ admits a full asymptotic expansion in powers of

m−1, and depends smoothly on λ.

The above expansion takes on a particularly simple form when µ is a finite sum
of point masses.

Theorem 1.4 can be thought of as a (structural) strong Szegő limit theorem in
the planar context. Equivalently, it amounts to having a full asymptotic expansion of
the free energy in the determinantal 2D Coulomb gas model for Hele-Shaw potentials.
We discuss this connection and related literature in more detail in Section 6.

1.5 Related work on Bergman kernel asymptotics

As mentioned above, there is a large literature on Bergman kernel expansions. We
mention specifically the celebrated Tian-Catlin-Zelditch expansion [11, 26, 28] and
the more recent developments [8, 12, 25] (this list is by no means complete). These
works pertain to higher dimensional compact settings of relevance in complex ge-
ometry, but the methods can be adapted to our context and yield full asymptotic
expansions of ρm, as well as bulk-asymptotics (that is, asymptotics inside S◦

τ ) of
ρm,n [4, 5, 9].
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The boundary universality result of [18] was derived as a corollary of a full
asymptotic expansion of the planar orthogonal polynomials on shrinking neighbor-
hoods of C \ Sτ followed by direct summation of the right-hand side of (1.2). We
stress that in the planar context there is no Christoffel-Darboux formula, and thus
polynomials of all orders need to be taken into account. Due to the complexity of the
resulting calculations, this approach has inherent limitations. As a result, we were
restricted to studying the leading order behavior of ρm,n, and more importantly,
much remains to be said about the interpolation between different regimes.

We mention in passing that in the setting of polarized Kähler manifolds, the
boundary behavior of the related partial Bergman kernels of holomorphic sections
constrained to vanish to order ϵm along a divisor is of considerable interest. Ross-
Singer [24] and Zelditch-Zhou [31] determined the near-boundary asymptotics under
S1-invariance assumptions, and just like in the planar context the boundary scaling
limit is expressed in terms of the Gaussian error function. Moreover, the error
function has recently been shown to govern interface transitions also for the class of
spectral partial Bergman kernels [30], but the general universality question remains
open. The interested reader will enjoy the survey [29].

1.6 Overview of the article

The paper is organized as follows. The potential theory problem and an Ansatz for
its solution are described and motivated in Section 2. There we also give a detailed
but non-technical outline of the proof of the main result. Section 3 is devoted to the
asymptotic analysis of a non-linear semiclassical PDE which arises in the construc-
tion of the potential. We recall a convenient measure of real-analytic smoothness,
and develop basic existence and regularity theory for an initial value problem (a
“moving front Neumann jump problem”). This is then used to set up an approxi-
mate solution scheme for the semiclassical PDE. In Section 4 we perform a sequence
of reductions, which show that the potential problem can be cast as a semiclassical
PDE of the form treated in Section 3. The proof of the main result is supplied in
Section 5. We conclude the paper in Section 6 by describing an application of Theo-
rem 1.2 to strong Szegő limit theorems for planar Gram determinants. We keep the
discussion brief and informal, with the intent of pursuing the finer details in future
works.

1.7 Notation and conventions

We denote by erf(x) the Gaussian error function with the normalization

erf(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

With this normalization, erf(x) satisfies limx→+∞ erf(x) = 1 as well as the identity
erf(x) + erf(−x) = 1. The derivative is given by erf ′(x) = (2π)−

1
2 exp(−t2/2). We
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also use the (non-standard) normalization

∆ = ∂∂̄ =
1

4

(
∂2
x + ∂2

y

)
for the Laplacian, where ∂ = ∂z and ∂̄ = ∂̄z are the standard Wirtinger (or Cauchy-
Riemann) operators.

For f, g ∈ L2(C, e−2mQdA), we denote by ∥f∥2mQ and ⟨f, g⟩2mQ the usual norm
and sesquilinear inner product in the space L2(C, e−2mQdA), respectively.

To keep the notation light and since no confusion should occur, we will mostly
suppress the subscripts m and n and the truncation parameter κ. However, it will
crucial to keep track of whether or not different function depend on the parameter
τ , so we will keep this index at all times.

2 THE POTENTIAL OF THE BERGMAN DENSITY

2.1 The single wave potential

In the recent work [19], we found that the n-th normalized orthogonal polynomial
Pm,n in L2(C, e−2mQdA) is uniquely characterized by the following problem.

Problem 2.1. Determine a pair (U , P ) of smooth functions on C such that U is
real-valued, and such that 

∆U = |P |2e−2mQ,

∂̄P ≡ 0,

P−1∂ U ∈ C2(C),

with asymptotic behavior

U (z) = log |z|2 +O(|z|−1) and P (z) = κ−1 zn
(
1 + O(|z|−1)

)
as |z| → +∞, for some positive constant κ = κm,n.

If (U , P ) is a solution to Problem 2.1, then P coincides with the orthogonal
polynomial Pm,n and U is twice the logarithmic potential of |Pm,n|2e−2mQ

U (z) =

∫
C
log |z − w|2 |Pm,n(z)|2e−2mQ(z)dA(z)

(see Proposition 2.1 in [19]). Roughly speaking, the reason for this is the following
computation. Assume for simplicity that the zeros of P are simple1. For any poly-
nomial q of degree at most n− 1, the quotient q(z)/P (z) decays like z−1 at infinity,

1The present argument can be adapted to the situation with zeros with higher multiplicity. as
well, but in that situation the proof in [19] is preferable.
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and the same holds for ∂U . Along with the assumed simplicity of the zeros of P ,
this allows us to apply Green’s formula in the sense of distributions, to obtain∫

C
q(z)P (z)e−2mQ(z)dA(z) =

∫
C

q(z)

P (z)
∆U (z)dA(z)

= −
∫
C
∂̄
q(z)

P (z)
∂U (z)dA(z)

= −
∑

{ζ:P (ζ)=0}

q(ζ)

P ′(ζ)
∂U (ζ).

Since the quotient ∂U /P is smooth we must have ∂U (ζ) = 0 for each zero ζ of
P . Hence the right-hand side vanishes, and since q was an arbitrary element of
Poln−1(C) the orthogonality of P follows.

Remark 2.2. (a) Notice that the above computation also gives a converse state-
ment. If P = Pm,n is the orthogonal polynomial and U its potential, then if P has
simple zeros, we have for any q ∈ Poln(C) that

(2.1)
∫
C
q(z)P (z)e−2mQ(z)dA(z) =

∑
{ζ:P (ζ)=0}

q(ζ)

P ′(ζ)
∂U (ζ).

For a given zero ζ of P , there exists interpolating polynomials qζ ∈ Poln−1(C) such
that qζ(ζ) = 1 while qζ(ζ

′) = 0 for any zero ζ ′ ̸= ζ of P . From the orthogonality of
P to qζ , it follows that ∂U (ζ) = 0. Hence, the division condition on ∂U /P is also
necessary, at least when the zeros of P are simple.
(b) Looking again at (2.1), one realizes that if P is close to the orthogonal polynomial
Pm,n, then ∂U needs to be small on the zero set of P (we do not make precise
what “close” or “small” mean here). The zero set of P should in turn be close
to that of Pm,n, which is located inside Sτ . When looking for the potential U of
an approximation P of Pm,n, it is hence natural to ask that that |∂U (z)| decays
rapidly in the interior direction to Sτ at the boundary ∂Sτ . For us it will be natural
to impose that |∂U (z)| = O(e−2mV 2

τ ) for z ∈ Sτ \ K.

There is a natural generalization of Problem 2.1, which can be thought of as
a characterization of orthogonal polynomials of fractional growth. To formulate it,
fix a point z0 ∈ K and denote by (z − z0)

s the principal branch of the s-th power.
We denote by ⌈α⌉ the smallest integer greater than or equal to α, and consider the
space of “fractional polynomials”

P (z) = (z − z0)
α−⌈α⌉p(z), deg(p) ≤ ⌈α⌉.

We also let {α} denote the fractional part of α. Note that while a fractional poly-
nomial P (z) has a branch cut along a slit emanating from z0, the modulus |P (z)| is
well-defined throughout.
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Problem 2.3. For given reals α > −1 and m > 0, find a pair (U , P ) of smooth
functions on C such that U is real-valued, and such that

∆U = |P |2e−2mQ,

P = (z − z0)
τm−⌈τm⌉p, deg(p) ≤ ⌈τm⌉

p−1∂ U ∈ C2(C),

with prescribed asymptotic behaviorU (z) = log |z|2 +O(|z|−1),

p(z) = κ−1 z⌈τm⌉(1 + O(|z|−1)
)

as |z| → +∞, for some positive constant κ = κm,τ .

If (U , P ) is a solution to Problem 2.3, then P is orthogonal to any fractional
polynomial of the form (z− z0)

α−⌈α⌉q(z) with deg(q) ≤ ⌈τm⌉− 1. Equivalently, the
polynomial p(z) = (z − z0)

⌈τm⌉−τmP (z) is the normalized orthogonal polynomial of
degree ⌈τm⌉ with respect to the planar measure |z−z0|2(τm−⌈τm⌉)e−2mQdA. We will
not use this problem outright, and therefore leave the verification of these properties
to the interested reader. However, below it will be useful to keep in mind this type
of embedding of the orthogonal polynomial sequence for a given potential Q into a
continuously indexed family exhibiting fractional growth.

2.2 The integrated potential

In view of the identity |Pm,n|2e−2mQ = ρm,n−ρm,n−1, it is clear that if (Uk, Pk−1)
n
k=1

is a sequence of pairs such that for each k, (Uk+1−Uk, Pk) is a solution of Problem 2.1
with degree parameter n = k, then we recover the polynomial Bergman density as

ρm,n(z) = m−1∆Un(z).

Our main new idea is that there is an approximate characterization of ρm,n in terms
of a similar problem, but for a continuously indexed pair (Uτ , hτ ). Here, the function
hτ plays the role of log

∣∣Pmτ |2 − 2mQ̆τ (cf. Problem 2.3), and the discrete difference
Uk − Uk−1 is replaced with differentiation in the “continuous degree parameter” τ .
As motivated in Remark 2.1 (b), the divisibility condition

P−1
k ∂(Uk − Uk−1) ∈ C2(C)

is replaced by an interior decay condition. The problem reads as follows.
For the formulation, recall the compact subset K of S◦

τ0−ϵ from Section 1.2. We
moreover fix an open set V = Vϵ with Sτ0+ϵ ⊂ V ⊂ Sτ0+2ϵ.
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Problem 2.4. Fix an accuracy parameter κ ∈ Z>0. Find a pair Uτ = U
⟨κ⟩
τ,m and

hτ = h
⟨κ⟩
τ,m of functions C \ K × I0 → R such that

(2.2)


∂τ∆Uτ =

√
m
2π ehτ−2mV 2

τ

(
1 + O

(
m−κ−1

))
on V \ K, ,

∆hτ = 0 on C \ K,

|∂∂τUτ (z)| = O(e−2m(Q−Q̆)(z)) for z ∈ Sτ \ K,

with prescribed asymptotic behavior

Uτ (z) = τ log |z|2 +O(1) and hτ (z) = O(1) as |z| → +∞.

If (Uτ , hτ ) is a solution to Problem 2.4, we expect ∆Uτ to be a good approx-
imation of the Bergman density ρm,n. In the following section, we proceed with a
non-technical description of why this is.

2.3 Outline of the proof of Theorem 1.2

By introducing suitable cut-off functions, it is possible to modify Uτ to a globally
defined approximate potential Uτ , such that the approximate potential equation

(2.3) ∂τ∆Uτ = χ

√
m

2π
ehτ−2mV 2

τ

(
1 + O

(
m−κ−1

))
holds throughout the plane. Here, χ is a cut-off function which vanishes on K
and equals one on a neighborhood of C \ Sτ . In addition, the requisite decay and
asymptotic properties from Problem 2.4 are retained in the truncation procedure.

Whenever τ is an integer fraction n/m of m, the exponential on the right-hand
side of (2.3) can be written as a weighted squared modulus√

m

2π
ehτ−2mV 2

τ = |Fn(z)|2e−2mQ(z),

where Fn is a holomorphic function on C\K of polynomial growth, i.e. Fn(z) = zn+

O(|z|n−1) as |z| → +∞ (that is, Fn is a “quasipolynomial” in the terminology of [18]).
Moreover, |Fn|2e−2mQ decays rapidly interiorly to ∂Sτ . Using a scheme involving
Hörmander’s L2-estimate for the ∂̄-operator, we may moreover find a polynomial
Pτ of degree n, such that |Pτ |2e−2mQ approximates χ|Fn|2e−2mQ to exponentially
decaying accuracy in m. This is by now standard, and is explained in detail e.g. in
Section 3.6 of [18]. The fact that (Uτ , hτ ) is a solution to Problem 2.4 translates
to saying that (∂τUτ , Pτ ) is an approximate solution to Problem 2.1, and hence Pτ

must be close to the true orthogonal polynomial Pm,n. More specifically, the squared
modulus of the n-th orthonormal polynomial is asymptotically given by

(2.4) |Pm,n|2e−2mQ(z) = χ(z)

√
m

2π
e
hτ(n,m)−2mV 2

τ(n,m) +O
(
m−κ− 1

2 e−2m(Q−Q̌τ )
)
,

where τ(n,m) = n/m ∈ I0 (cf. Theorem 5.1 in [19]).
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Using the approximation (2.4) together with the Euler-MacLaurin summation
formula, the difference ρm,n − ρm,k may then be expressed as

ρm,n − ρm,k =

n−1∑
j=k

χ

√
1

2πm
e
hτ(j,m)−2mV 2

τ(j,m) +O
(
m−κ− 1

2 e−2m(Q−Q̌τ )
)

=

∫ τ

τ ′
χ

√
m

2π
eht−2mV 2

t dt+ Bκ +O
(
m−κ− 1

2 e−2m(Q−Q̌τ )
)

=

∫ τ

τ ′
∂t∆Ut dt+Bκ

m,τ +O
(
m−κ− 1

2 e−2m(Q−Q̌τ )
)
,

(2.5)

where k = τ ′m and n = τm. Here, Bκ
m,τ is a sum of boundary terms that arise from

the application of Euler-MacLaurin’s formula. The first term on the right-hand side
can be further simplified using the fundamental theorem of calculus, which gives∫ τ

τ ′
∂t∆Ut dt = ∆

(
Uτ − Uτ ′

)
.

Combining this with the equation (2.5) and a well-known Bernstein-Walsh type
exterior decay estimate for ρm,k(z), we obtain

(2.6) ρm,n(z) = ∆Uτ (z) +Bκ
m,τ (z) + O

(
m−κ−1O(m−κ− 1

2 e−2m(Q−Q̌τ ))
)
,

where the error term is initially only controlled for z in some neighbourhood Vτ and
at a fixed positive distance from Sτ ′ . In our construction of Uτ we will find that the
Laplacian of Uτ takes the form

(2.7) ∆Uτ = ρm erf
(
−2

√
mVτ

)
+Am,τ e

−2mV 2
τ +O

(
m−κ−1O(m−κ− 1

2 e−2m(Q−Q̌τ ))
)
,

where the boundary correction Am,τ admits an asymptotic expansion in negative
powers of m with smooth coefficients. Hence, if we put Bκ

m,τ = Aκ
m,τ + Bκ

m,τ , the
asymptotic formula of Theorem 1.2 follows by combining (2.7) and (2.6).

Since (2.6) only holds for z ∈ Vτ away from \Sτ ′ , (where ∆Uτ ′ has negligible
influence), the asymptotic formula for ρm,n initially holds only on that same set.
However, deep inside Sτ the two densities ρm,n and ρm have matching asymptotic
expansions to any order, and there we also have

erf(−2
√
mVτ ) = 1 + O(e−δ0m), e−2mV 2

τ = O(e−δ0m)

for some δ0 > 0. As a consequence, the asymptotic formula is readily extended to
all of Vτ .

The remainder of the paper is devoted to carrying out the scheme outlined in
this section in detail. The main step is to supply an algorithm that produces the
approximate potential Uτ satisfying (2.2). This will be done in Lemma 5.1 below,
but we proceed to describe some of the main ingredients already now, beginning
with a structural Ansatz for Uτ .
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2.4 The Ansatz for Uτ

We start from an Ansatz which guarantees that Uτ and ∂∂τUτ have the correct
asymptotics at infinity and appropriate interior decay at ∂Sτ , respectively. To ac-
complish this, we look for a potential Uτ = U

⟨κ⟩
τ,m of the form

(2.8) Uτ = Λτ erf
(
2
√
mVτ

)
+Ωerf

(
−2

√
mVτ

)
+

Στ√
2πm

e−2mV 2
τ

for some functions Λτ , Ω and Στ . Recall that the error function erf is given by (1.5),
and that Vτ is the unique real-analytic function with V 2

τ = Q − Q̆τ such that Vτ is
negative on the interior of the droplet Sτ and positive on C \ Sτ . This means that
Λτ dominates the asymptotics of Uτ in the exterior of Sτ while Ω dominates in the
interior. The two regimes are smoothly interpolated in a band around ∂Sτ at the
scale m− 1

2 .
The functions Ω and Στ are required to be real-analytically smooth functions

on V \ K, while we ask that Λτ is harmonic throughout the exterior domain C \ K.
Up to an additive constant, Uτ should approximate twice the logarithmic potential
of a measure of mass τ whose density with respect to dA decays rapidly at infinity,
so we should ask that Λτ meets the growth condition

(2.9) Λτ (z) = τ log |z|2 +O(1) as |z| → +∞.

The functions Λτ and Στ will depend on τ (in addition to m and κ). However,
we will require that Ω is independent of τ . Heuristically, this can be motivated
as follows. For integer values of k = τm, the measure |Pm,k|2e−2mQdA supplies a
good approximation to harmonic measure for C \ Sτ . Thus, adding additional wave
functions should at most cause the potential to change by a constant inside Sτ (plus
an error term which is O(m−K) for any K > 0). Since varying τ essentially has
this effect, we expect that ∂τΩ should be a constant. By Eq. (2.9), the potential
Uτ is only defined up to an additive constant, so we may just as well ask that Ω is
independent of τ altogether.

We finally ask that the functions Λτ , Ω and Στ are given by truncated asymp-
totic expansions

(2.10) Λτ =
κ+2∑
j=0

m−jΛj,τ , Ω =
κ+2∑
j=0

m−jΩj , Στ =
κ+2∑
j=0

m−jΣj,τ ,

for some coefficient functions Λj,τ , Ωj and Σj,τ . We finally put

(2.11) Ξτ = Λτ − Ω− 2VτΣτ

and use the notation Ξj,τ = Λj,τ − Ωj − 2VτΣj,τ for its coefficient functions. To
find Uτ , our task is to understand what the structural requirement of (2.3) entails
for the coefficient functions in (2.10). That is, the coefficients will get uniquely
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determined up to the given accuracy from the condition that ∂τ∆Uτ is essentially
the exponential of a bounded harmonic function times

√
m
2π e

−2mV 2
τ .

2.5 The approximate potential equation for the coefficients

Taking first the ∂̄-derivative of the Ansatz (2.8) for Uτ , we find that

∂̄Uτ = ∂̄Λτ erf
(
2
√
mVτ

)
+ ∂̄Ωerf

(
−2

√
mVτ

)
+

(2√m√
2π

Ξτ ∂̄Vτ +
∂̄Στ√
2πm

)
e−2mV 2

τ .

Proceeding to take the ∂-derivative of the right-hand side, we obtain

∆Uτ = ∆Ω erf
(
−2

√
mVτ

)
− 8

m
3
2

√
2π

ΞτVτ |∂̄Vτ |2 e−2mV 2
τ

+
m

1
2

√
2π

(
2∂Vτ

(
∂̄Λτ − ∂̄Ω− 2Vτ ∂̄Στ

)
+ 2∂Ξτ ∂̄Vτ + 2Ξτ∆Vτ

)
e−2mV 2

τ

+
m− 1

2

√
2π

∆Στ e
−2mV 2

τ .

Cleaning up the formula using the identity Vτ ∂̄Στ = ∂̄(VτΣτ )− Στ ∂̄Vτ , we obtain

(2.12) ∆Uτ = ∆Ω erf
(
−2

√
mVτ

)
+

√
m

2π

(
mX0,τ +X1,τ +m−1X2,τ

)
e−2mV 2

τ ,

where the functions Xj,τ are given by

(2.13)


X0,τ = −8ΞτVτ |∂Vτ |2

X1,τ = 4Στ |∂̄Vτ |2 + 4Re {∂Ξτ ∂̄Vτ}+ 2Ξτ∆Vτ

X2,τ = ∆Στ .

Taking the ∂τ derivative of the right-hand side of (2.12), we obtain a formula for
∂τ∆Uτ , which reads

(2.14) ∂τ∆Uτ =

√
m

2π

(
m2Y0,τ +mY1,τ + Y2,τ +m−1Y3,τ

)
e−2mV 2

τ

where the functions Yj,τ are given in terms of the functions Xj,τ and the potential
theoretic data by

(2.15)


Y0,τ = −4Vτ∂τVτX0,τ

Y1,τ = −4Vτ∂τVτX1,τ + ∂τX0,τ

Y2,τ = −2∂τVτ∆Ω− 4Vτ∂τVτX2,τ + ∂τX1,τ

Y3,τ = ∂τX2,τ .

In order to solve Problem 2.4, we need to find coefficient functions Λτ , Ω, Στ and
hτ , all with asymptotic expansions in powers of m−1 and subject to the appropriate
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smoothness and harmonicity conditions, such that the potential Uτ given by (2.8)
satisfies

∂τ∆Uτ =

√
2m

π
ehτ e−2mV 2

τ

(
1 + O

(
m−κ−1

))
in V \ K. In terms of the functions Yj,τ , this amounts to asking that

(2.16) m2Y0,τ +mY1,τ + Y2,τ +m−1Y3,τ = ehτ +O(m−κ−1).

In the form (2.16), the equation is not very illuminating. We will return to it
in Section 4, where the following result will be obtained. For the formulation, we
put Ξτ = −1

2m
−1 +m−2Ξ

(2)
τ ,

Ω = 2Q+m−1Ω(1).

Proposition (see Proposition 4.2). The approximate potential equation (2.16) is
equivalent to the reduced problem

(2.17) V 2
τ AτΞ

(2)
τ + VτBτ

(I−Pτ )Ω(1)

Vτ
+ fτ +m−1Sτ = ehτ +O(m−κ−1)

for the functions Ξ
(2)
τ , Ω(1) and hτ . Here, Aτ , Bτ and fτ are non-vanishing real-

analytic functions with fτ strictly positive, and Sτ is a bounded affine differential
expression in the coefficients Ξ

(2)
τ and Ω

(1)
τ .

For the explicit representations of fτ and Sτ , see the formulation of Proposi-
tion 4.1 below. We also note that the coefficients Λτ and Στ are determined by Ξτ

and Ω (cf. (4.10)).
Before performing the reductions which transform (2.16) to (2.17), we discuss

how approximate semiclassical equations of the form (2.17) can be solved. This is
the focus of the upcoming section.

3 A SEMICLASSICAL EQUATION ALONG MOVING FRONTS

3.1 Spaces of quantitatively real-analytic functions

Throughout the proof, we need to keep track of the regularity of various functions
defined by iterative procedures. A prototypical example is that we are given a family
of functions fτ : ∂Sτ → R, τ ∈ I0, and want to ensure that all the functions Pτfτ

with τ ∈ I0 extend harmonically to a common domain C \ K. It turns out to be
convenient to express regularity in terms of a certain chain of Banach spaces. The
use such measures of regularity in the context of non-linear PDE can be traced back
to work by Nishida [23] and Nirenberg [22], and it was recently used successfully in
[14,19] in a similar context as this one.
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We let ρ, σ ∈ (0, 1) and δ > 0 denote three positive parameters. We write A(ρ)
for the annulus {z : ρ ≤ |z| ≤ ρ−1} and Â(σ) for the fattened diagonal annulus

Â(σ) =
{
(z, w) ∈ A2(ρ(σ)) : |z − w| ≤ 2σ

}
,

where the number ρ(σ) is given by2

ρ(σ) =
1

σ +
√
1 + σ2

.

For a real-analytic function f(z), we denote by f⋄(z, w) its Hermitian-analytic polar-
ization. We denote by H ∞

σ the space of real-analytic functions f(z) on ϕ−1
τ0

(
A(ρ(σ))

)
,

such that the Hermitian-analytic polarization of f ◦ϕτ0 is bounded on Â(σ). Denote
moreover by H ∞

σ,δ the class of functions fτ (z) which are holomorphic in τ ∈ D(τ0, δ),
such that for fixed τ ∈ D(τ0, δ) we have that fτ (z) ∈ H ∞

σ .
It is immediate that these spaces grow as the parameters σ and τ decrease.

Endowed with the uniform norms

∥f∥σ =
∥∥(f ◦ ϕτ0)

⋄(z, w)
∥∥
Â(σ)

and
∥fτ∥σ,δ =

∥∥(fτ ◦ φ)⋄(z, w)∥∥Â(σ)×D(τ0,δ)
,

respectively, the spaces H ∞
σ and H ∞

σ,δ become commutative Banach algebras. We
refer to Section 5.2 of [14] or Section 9.1 of [19] for more details on these spaces. Here
we will only need a few basic results, which are summarized in the following extensive
remark. Most of the necessary estimates can be found verbatim in Section 5.2 of
[14], but we leave some routine extensions to the interested reader.

Remark 3.1. (a) For any element fτ of H ∞
σ,δ , the Poisson extension Pτfτ be-

longs to H ∞
σ,δ as well, and provided that σ remains bounded away from zero the

norm ∥Pτfτ∥σ,δ comparable to ∥fτ∥σ,δ. If fτ vanishes along ∂Sτ , then the quotient
fτ (z)/Vτ (z) belongs to H ∞

σ′,δ for any parameter σ′ with σ′ < σ, and the norm grows
at most by a factor proportional to (σ − σ′)−1. The same type of bound holds for
complex gradients and derivatives in τ .
(b) It is clear that if f is a real-analytic and non-vanishing function in a neigh-
borhood of ∂Sτ0 , then both f and its reciprocal belong to the space H ∞

σ for some
σ ∈ (0, 1). Similarly, for any function fτ (z) which is real-analytic and non-vanishing
for z on a neighborhood of ∂Sτ0 and τ near τ0, we have fτ ,

1
fτ

∈ H ∞
σ,δ for some

σ ∈ (0, 1), δ > 0. In particular, there exist parameters σ ∈ (0, 1), δ > 0 such that
all the functions

∂τVτ , ∂̄Vτ , ∆Vτ , ∂τVτ ,

as well as their reciprocals belong to H ∞
σ,δ . We may moreover arrange thing so that

∆Q, 1/∆Q ∈ H ∞
σ and that Vτ (z) ∈ H ∞

σ,δ .

2Why this particular choice is convenient is explained in Section 6 of [18].
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(c) The domains (Sτ )τ undergo a weighted Hele-Shaw-type flow as τ varies [15].
More precisely, the exterior domains C \ Sτ evolve according to the weighted Lapla-
cian growth flow with weight 2∆Q, and a sink of unit strength at infinity. Informally,
this means that the boundary ∂Sτ moves at speed

ν(z) = (4∆Q(z))−1|ϕ′(z)|

in the outward normal direction to Sτ . This scalar velocity field will play a role
below, and we note that both ν and its reciprocal belong to H ∞

σ,δ for some σ, δ > 0.
The same holds for |ϕ′

τ | and 1/|ϕ′
τ | (see, e.g., the main result of [16]).

(d) For τ in some neighborhood I of τ0, (∂Sτ )τ∈I is a flow of simple smooth loops
which foliates a ring domain D. For z ∈ D we denote by τ(z) the “radial Laplacian
growth coordinate”, that is, the unique parameter τ for which z ∈ ∂Sτ . For suffi-
ciently small σ, we have that τ(z) ∈ H ∞

σ (this also follows from [16]). We restrict
attention to σ for which this holds.

We fix the parameters σ ∈ (0, 1), δ > 0 and ϵ > 0 as follows. First we require
that σ and δ are small enough to ensure that all the functions from Remark 3.1
(b)–(d) belong to H ∞

σ,δ . After possibly shrinking σ, we may also assume that the
polarized Hele-Shaw coordinate satisfies

(3.1) τ⋄(z, w) ∈ D
(
τ0,

1
2δ
)

whenever (ϕτ0(z), ϕτ0(w)) ∈ Â(σ).

We then let ϵ ∈ (0, 12δ), be small enough for the conformal mapping ϕτ0 to map the
ring domain D =

⋃
|τ−τ0|≤ϵ ∂Sτ into the annulus A(ρ(12σ)). With ϵ given, we fix

once and for all I0 = {τ : |τ − τ0| < ϵ}.
Below we will need to shrink the parameters σ and δ finitely many times. We

will at all times ensure that the final (smallest) parameters σ′ and δ′ satisfy σ′ ≥ 1
2σ

and δ′ ≥ 1
2δ, respectively. This is significant because, due to the above parameter

choices, we have ϕτ0

(
V \ K

)
⊂ A

(
ρ(12σ)

)
and I0 ⊂ D(0, 12δ). As a consequence, any

element fτ of Hσ′,δ′ is defined and real-analytic for z ∈ V\K and τ ∈ I0. In addition,
all the functions Pτfτ with τ ∈ I0 extend to bounded harmonic functions on C \ K.

3.2 Moving front Neumann jump problems

In the process of obtaining approximate solutions to the equation (2.16) and thereby
to Problem 2.4, we will encounter the following type of initial value problem repeat-
edly. We are given a real-analytic function Fτ : ∂Sτ → R, τ ∈ I0, and we want to
find a solution ω to the problem

∂n(I−Pτ )ω
∣∣
∂Sτ

= Fτ , τ ∈ I0

where Pτ denotes the Poisson extension operator to the exterior domain C\Sτ , and
where n denotes the outward unit normal to Sτ . Here, the solution ω should be a
τ -independent, real-valued and real-analytic function on V \ K.
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Lemma 3.2. Suppose that Fτ , τ ∈ I0, are real-valued real-analytic functions on a
fixed neighborhood of V \ K. Suppose moreover that we are given an initial datum
f0 on ∂Sτ0−ϵ, whose Poisson extension is harmonic on C \ K. Then there exists a
unique real-analytically smooth solution ω on V \ K to the equation

(3.2) ∂n(I−Pτ )ω
∣∣
Sτ

= Fτ

∣∣
∂Sτ

, |τ − τ0| ≤ ϵ

with initial value ω
∣∣
∂Sτ0−ϵ

= f0. If moreover Fτ ∈ Hσ′,δ′ and f0 ∈ H ∞
σ′ , then

ω ∈ H ∞
σ′ as well.

Remark 3.3. Below we will fix f0 = 0. We will denote by ω = N[Fτ ] the unique
solution to (3.2) corresponding to this initial value.

Proof. We look for a solution ω(z) of the form

(3.3) ω(z) = Pτ0−ϵf0(z) +

∫ τ(z)

τ0−ϵ
Psgs(z) ds, z ∈ V \ K

where gs, s ∈ I0, are real-analytic functions subject to the appropriate regularity
conditions. For a point z ∈ Sτ sufficiently close to the boundary ∂Sτ , we claim that

(3.4) (I−Pτ )ω(z) =

∫ τ(z)

τ
Psgs(z) ds.

Indeed, for z ∈ ∂Sτ we have τ(z) = τ , and hence the restriction of ω to ∂Sτ satisfies

ω(z) = Pτ0−ϵf0(z) +

∫ τ

τ0−ϵ
Psgs(z) ds.

Moreover, considered as a function on C \ Sτ , the right-hand side defines a bounded
harmonic function, and hence we have

Pτ ω(z) = Pτ0−ϵf0(z) +

∫ τ

τ0−ϵ
Psgs(z) ds, z ∈ C \ K

from which (3.4) is immediate. We next compute the normal derivative at ∂Sτ from
the inside of Sτ . To that end, fix τ ∈ I0 and let z = z0 − ny, where y > 0 and
z0 ∈ ∂Sτ . It then holds that

(I−Pτ )ω(z) = −
∫ τ

τ−y/ν(z0)+O(y2)
Psgs(z0 − ny) ds

= −y
gτ (z0)

ν(z0)
+ O(y2),

where ν(z) denotes the normal velocity of the Hele-Shaw flow (∂St)t. Hence

∂n(I−Pτ )ω(z) = −gτ (z)

ν(z)
, z ∈ ∂Sτ

and we may solve for gτ in (3.2) to obtain

gτ (z) = −ν(z)Fτ (z), z ∈ ∂Sτ .

With this choice, (3.3) supplies a real-analytic solution to the equation (3.2).
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In order to see that the solution is unique, we simply need to show that if

(3.5) ∂n(I−Pτ )u = 0 for τ ∈ I0

with u = 0 on one given spectral boundary (say ∂Sτ0−ϵ), then u ≡ 0. But this follows
from the following argument. The function ∂τPτu(z) is bounded and harmonic on
C\Sτ . Moreover, if we denote by zη the point on ∂Sτ+η which is closest to z ∈ ∂Sτ ,
we have

zη = z + ην(z)n + O(η2) = z + ην(z)nη +O(η2),

where n and nη denote the outward unit normals to ∂Sτ and ∂Sτ+η at z and zη,
respectively. But by (3.5), the function (I − Pτ )u vanishes quadratically around
∂Sτ+η, so an application of Taylor’s formula in normal coordinates around ∂Sτ+ϵ

shows that

(I−Pτ+η)u(z) = (I−Pτ )u
(
zη − ην(z)

)
+O(η3) = 2∆u(zη)(ν(z)η)

2 +O(η3).

But this then shows that
∂τPτu(z) = −∂τ (I−Pτ )u(z) = − lim

η→0
η−1(I−Pτ+η)u(z)

= − lim
η→0

2∆u(zη)ν
2(zη)η +O(η2) = 0,

from which we deduce that ∂τPτu vanishes along the boundary ∂Sτ . But ∂τPτu us
bounded and harmonic, so ∂τPτu must vanishes identically. As a consequence, Pτu

is constant in τ , so since Pτ0u ≡ 0 holds by the initial condition this gives that u

vanishes identically.
Turning to the fine regularity of ω, we note that since Fτ , ν ∈ H ∞

σ,δ , we have
gτ ∈ H ∞

σ,δ as well. The polarization of ω1(z)
def
=

∫ τ(z)
τ0−ϵPsgs(z) ds is given by

ω⋄
1(z, w) =

∫ τ⋄(z,w)

τ0−ϵ

(
Psgs

)⋄
(z, w)ds,

where, by (3.1), the integration contour can be taken to be an arc in D(τ0, 12δ). From
this it follows by inspection that ω1 ∈ H ∞

σ′,δ′ . Since Pτ0 [f0] ∈ H ∞
σ′,δ′ by assumption,

the regularity assertion follows and the proof is complete. □

3.3 A classical limiting equation

In Proposition 4.2 below, we will show that the potential equation from Problem 2.4
induces a non-linear problem of a semiclassical character. Our goal for the remainder
of this section is to develop tools for solving such equations approximately to high
precision. We begin by looking closely at a related equation, which corresponds to
collapsing the semiclassical problem to a classical one by taking the limit m → +∞.
The limiting equation can be solved by hands, and the solution scheme forms the
basis for an iterative approach to the full semiclassical problem.
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The limiting classical problem reads as follows. We are given strictly positive
real-analytic functions fτ defined on the neighborhood V \ K of ∂Sτ0 , and consider
an equation for three unknown functions Eτ , Fτ and Gτ of the form

V 2
τ Eτ + Vτ Fτ + Gτ ≡ fτ on V \ K

where Fτ is subject to the structural requirement that

(3.6) Fτ = Hτ
(I−Pτ

)
f

Vτ

for some (τ -independent) function f and a given non-vanishing real-analytic function
Hτ , while Gτ takes the form

(3.7) Gτ = egτ

for some bounded harmonic function gτ on a neighborhood of C \K. How would we
go about solving such an equation?

First restriction. Notice that the function Gτ is uniquely determined from fτ by
restricting to ∂Sτ . Indeed, since Vτ vanishes there, we find that Gτ = fτ along the
boundary, so that

(3.8) gτ = Pτ [log fτ ].

Second restriction. The difference fτ −Gτ vanishes along ∂Sτ , hence gτ
def
= fτ−Gτ

Vτ

is a real-analytic function. After adding Gτ on both sides followed by dividing by
Vτ , our equation reads

Vτ Eτ + Fτ ≡ gτ ,

where only Eτ and Fτ remain to be determined. Restricting anew to ∂Sτ , we see
that

Fτ = gτ along ∂Sτ .

Incorporating the structural assumption (3.6) and expanding both numerator and
denominator of (3.6) using Taylor’s formula in normal coordinates, we see that

Fτ

∣∣
∂Sτ

= Hτ
(I−Pτ ) f

Vτ

∣∣∣
∂Sτ

= Hτ (∂nVτ )
−1∂n(I−Pτ ) f.

As a consequence of this formula, the restriction condition for Fτ turns into the
“moving front Neumann jump problem”

(3.9) ∂n(I−Pτ ) f =
gτ∂nVτ

Hτ
=: Fτ along ∂Sτ .

for f (cf. Section 3.2). Up to the addition of an inessential bounded harmonic func-
tion, the jump problem (3.9) determines f uniquely as a linear function f = N[Fτ ]

of Fτ (see Lemma 3.2).
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The full solution. By construction, the solution f = N[Fτ ] to the above moving
front Neumann problem satisfies

gτ −Hτ
(I−Pτ )f

Vτ
= 0 along ∂Sτ ,

so the quotient gτ−Fτ

Vτ
is real analytic on V\K. Our original equation thus transforms

into
Eτ ≡ gτ −Fτ

Vτ
,

where the right-hand side is a real-analytic function, uniquely determined by the
datum fτ . Taking this as our definition of Eτ , the full equation has been solved.

In summary, the equation (3.8) admits a solution

(3.10)


Gτ = egτ , where gτ = Pτ [log fτ ],

Fτ = Hτ
(I−Pτ )f

Vτ
, where f = N

[
∂nVτ
Hτ

fτ−Gτ

Vτ

]
,

Eτ = gτ−Fτ

Vτ
.

Moreover, the solution is unique up to the freedom of adding a bounded harmonic
function to f, which does not affect Eτ , Fτ or Gτ . If fτ , log fτ , Hτ and 1/Hτ all
belong to to the space H ∞

σ′,δ′ , the regularity assertion of Lemma 3.2 and Remark 3.1
(a) imply that Eτ , Fτ and Gτ belong to H ∞

σ′′,δ′ whenever 0 < σ′′ < σ′.

3.4 Approximate solutions to the full semiclassical problem

The problem we have at our hands is of a similar form, but with one essential
complication. Namely, the right-hand side fτ appearing in the toy problem was
given to us in advance, while in the actual problem it depends on the unknowns.
However, the right-hand side is of the “semiclassical” form

fτ +m−1Tτ (Eτ ,Fτ ),

where fτ is a given strictly positive real-analytic function, and where Tτ = Tτ,m is
a certain well-behaved affine operator acting on tuples of real-analytic functions. By
“well-behaved” we mean that they admit a Lipschitz-type estimates in the Banach
scales introduced in Section 3.1. More specifically, we ask that for some positive
constant C = C(σ′ − σ′′, δ′ − δ′′) the bound

(3.11)
∥∥Tτ

(
Eτ ,Fτ

)
−Tτ

(
E ′
τ ,F ′

τ

)∥∥
σ′′,δ′′

≤ Cmax
{∥∥Eτ − E ′

τ

∥∥
σ′,δ′

,
∥∥Fτ −F ′

τ

∥∥
σ′,δ′

}
,

holds for any pairs (Eτ ,Fτ ) and (E ′
τ ,F ′

τ ) of functions in H ∞
σ′,δ′ .

While the added perturbation prevents us from solving the equation exactly,
the semiclassical nature ensures that we can still construct approximate solutions by
iterating the above exact solution algorithm. More precisely, we have the following
lemma.
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Lemma 3.4. Let fτ , Hτ and Tτ be be as above, and fix κ ∈ Z>0. Then there
exist triples (Eτ ,Fτ ,Gτ ) of real-analytic functions in H∞

1
2
σ, 1

2
δ

subject to the structural
constraints (3.6) and (3.7) and with asymptotic expansions in powers of m−1, such
that

(3.12)
∥∥V 2

τ Eτ + Vτ Fτ + Gτ − fτ −m−1Tτ (Eτ ,Fτ )
∥∥

1
2
σ, 1

2
δ
= O

(
m−κ−1

)
.

Proof. Fix thee sequences of shrinking positive parameters {σk}κk=0, {σ′
k}κk=0 and

{σ′′
k}κk=0 with the interlacing property

1
2σ < σκ < σ′

κ < σ′′
κ < . . . < σ0 < σ′

0 < σ′′
0 < σ.

We similarly let {δk}κk=0 and {δ′k}κk=0 be interlacing increasing sequences bounded
between 1

2δ and δ. We formally put E−1,τ ≡ F−1,τ ≡ 0.

The initial guess. We start with a first guess (E0,τ ,F0,τ ,G0,τ ), obtained by solving
the equation from Section 3.3 for the unperturbed (classical) right-hand f0,τ = fτ .
As a consequence, we obtain

(3.13) V 2
τ E0,τ + VτF0,τ + G0,τ − fτ −m−1Tτ (E0,τ ,F0,τ ) = −m−1Tτ (E0,τ ,F0,τ ),

The three elements of the triple (E0,τ ,F0,τ ,G0,τ ) belong to the space H ∞
σ′
0,δ

, and
hence by the assumption on Tτ we have that

Tτ (E0,τ ,F0,τ ) ∈ H ∞
σ0,δ′0

.

Combining this by (3.13), we find that∥∥V 2
τ E0,τ + VτF0,τ + G0,τ − fτ +m−1Tτ (E0,τ ,F0,τ )

∥∥
σ0,δ0

= O(m−1),

where we used the fact that δ0 < δ′0 in the last step. Hence, this guess gives (3.12)
with κ = 0.

The iteration step. We enter this step having obtained an exact solution triple
(Ek,τ ,Fk,τ ,Gk,τ ) to the equation

V 2
τ Ek,τ + VτFk,τ + Gk,τ = fτ +m−1Tτ (Ek−1,τ ,Fk−1,τ ) =: fk−1,τ ,

such that

(3.14)


Ek,τ = Ek−1,τ +O(m−k),

Fk,τ = Fk−1,τ +O(m−k),

Gk,τ = Gk−1,τ +O(m−k)

where the errors refer to the norm in H ∞
σk,δk

. Hence, the triple is an approximate
solution to the equation (3.12) in the sense that

V 2
τ Ek,τ + VτFk,τ + Gk,τ − fτ −m−1Tτ (Ek,τ ,Fk,τ )

= m−1
(
Tτ (Ek−1,τ ,Fk−1,τ )−Tτ (Ek,τ ,Fk,τ )

)
= O(m−k−1),
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the last line referring to the norm in the space H ∞
σ′′
k+1,δ

′
k+1

.
We define an improved right-hand side by

fk,τ = fτ +m−1Tτ (Ek,τ ,Fk,τ ),

which by the induction assumption belongs to Hσ′′
k+1,δ

′
k+1

. Using the Lipschitz
bounds for Tτ together with the approximation (3.14), it is not difficult to see
that the two successive right-hand sides meet the bound

∥fk,τ − fk−1,τ∥σ′′
k+1,δ

′
k+1

= O(m−k−1),

uniformly for τ ∈ I0. Hence, denoting by (Ek+1,τ ,Fk+1,τ ,Gk+1,τ ) the solution triple
to the exact equation

V 2
τ Ek+1,τ + VτFk+1,τ + Gk+1,τ = fk,τ ,

an inspection of the solution formula (3.10) together with the approximation (3.14)
shows that 

Ek+1,τ = Ek,τ +O(m−k−1),

Fk+1,τ = Fk,τ +O(m−k−1),

Gk+1,τ = Gk,τ +O(m−k−1)

where the errors are taken in the norm of H ∞
σ′
k+1,δ

′
k+1

. As a consequence, it holds
that ∥∥Tτ (Ek+1,τ ,Fk+1,τ )−Tτ (Ek,τ ,Fk,τ )

∥∥
σk+1,δk+1

= O(m−k−1),

which implies that

(3.15)
∥∥fk,τ − fτ −m−1Tτ (Ek+1,τ ,Fk+1,τ )

∥∥
σk+1,δk+1

= O(m−k−2).

But we have

V 2
τ Ek+1,τ + VτFk+1,τ + Gk+1,τ − fτ −m−1T(Ek+1,τ ,Fk+1,τ )

= fk,τ − fτ −m−1Tτ (Ek+1,τ ,Fk+1,τ ),

which when combined with (3.15) shows that the new triple solves the original
equation up to error O(m−k−2) in the space H ∞

σk+1,δk+1
.

The assertion of the lemma now follows by induction on the number k of iter-
ations. □

Remark 3.5. By the argument of Lemma 10.2 in [14], we may write

Eτ =
κ∑

j=0

m−jEj,τ +m−κ−1E,

for a sequence {Ej,τ}κj=0 of m-independent coefficients and an function (“error”) E =

Em,κ,τ belonging to the space H ∞
1
2
σ, 1

2
δ
. Similar expansions hold for the remaining

functions Fτ ,Gτ , f and gτ as well.
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4 A NON-LINEAR PDE FOR THE BERGMAN POTENTIAL

4.1 The potential equation as a semiclassical PDE

In the form (2.16), the approximate potential equation is not very illuminating. Our
goal in this subsection is to bring it into the form of a semiclassically perturbed (or
“quantized”) non-linear equation for the unknowns Ξτ and Ω. This type of equation
can be solved by iterating a non-linear operator, see Section 3 above.

Proposition 4.1. We have the identity

∂τ∆Uτ =

√
m

2π

(
m2V 2

τ AτΞτ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ

)
e−2mV 2

τ ,

where Aτ and Bτ are non-vanishing real-analytic functions on V \ K given by

(4.1)

Aτ = 32∂τVτ |∂̄Vτ |2

Bτ = −16∂τVτ |∂̄Vτ |2,

and where Qτ = Qτ,m(Λτ ,Ω,Στ ) is a linear operator acting on the coefficient func-
tions, explicitly given by

(4.2) Qτ = −m
(
16Vτ∂τVτRe

{
∂Ξτ ∂̄Vτ

}
+ 8Vτ∂τVτΞτ∆Vτ + 8∂τ

(
ΞτVτ |∂Vτ |2

))
− 4Vτ∂τVτ∆Στ + 2∂τ

(
2Στ |∂̄Vτ |2 + 2Re {∂Ξτ ∂̄Vτ}+ Ξτ∆Vτ

)
+m−1∂τ∆Στ .

Proof. Recall the definitions of Xj,τ and Yj,τ from (2.13) and (2.15). To isolate the
important terms, we first decompose X1,τ as

X1,τ = 4Στ |∂̄Vτ |2 + X̃1,τ

where X̃1,τ is given by

X̃1,τ = 4Re {∂Ξτ ∂̄Vτ}+ 2Ξτ∆Vτ .

Similarly, we introduce the decompositionsY1,τ = −16Vτ∂τVτ |∂̄Vτ |2Στ + Ỹ1,τ ,

Y2,τ = −2∂τVτ∆Ω+ Ỹ2,τ

where Ỹ1,τ and Ỹ2,τ are given by

(4.3)

Ỹ1,τ = −4Vτ∂τVτ X̃1,τ + ∂τX0,τ .

Ỹ2,τ = −4Vτ∂τVτX2,τ + ∂τX1,τ .

Using these decompositions, we may rewrite the right-hand side of (2.14) as

∂τ∆Uτ =

√
m

2π

(
m2AτV

2
τ Ξτ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ

)
e−2mV 2

τ ,



26 HAAKAN HEDENMALM AND ARON WENNMAN

where Aτ and Bτ are readily checked to be given by the explicit formulas in the
proposition, and where Qτ is given by

Qτ = mỸ1,τ + Ỹ2,τ +m−1Y3,τ .

Expressing the right-hand side in terms of the coefficient functions Ξτ , Ω and Στ

using the definitions (2.15) and (4.3), it is readily verified that Qτ is indeed given
by (4.16). The claim follows. □

4.2 Reduction of the semiclassical PDE

Starting from Proposition 4.1, we proceed to obtain the first few terms in the as-
ymptotic expansion of Ξτ , and the leading order coefficients Λ0,τ , Ω0 and Σ0,τ . This
will solve the equation (2.16) approximately to order O(1), and will bring it exactly
into the form (3.12). The outcome is summarized in Proposition 4.2 below.

The coefficient Ξ0,τ . In view of Proposition 4.1, the approximate potential equa-
tion (2.16) is equivalent to

(4.4) m2V 2
τ AτΞτ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ = ehτ +O(m−κ−2),

where Aτ and Bτ are non-vanishing real-analytic functions defined in (4.1), and
where Qτ is a linear expression in the coefficient functions, explicitly given by (4.16).
It is immediate from (4.16) that Qτ = O(m), from which it follows that the left-hand
side of (4.4) equals

m2V 2
τ AτΞ0,τ +O(m)

while the right-hand side is bounded. Since Aτ is non-vanishing on V \ K, we see
that the coefficient Ξτ,0 has to vanish identically, and we write

(4.5) Ξτ = m−1Ξ(1)
τ .

With this choice, (4.4) is equivalent to the approximate equation

(4.6) mV 2
τ AτΞ

(1)
τ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ = ehτ +O(m−κ−2).

By the definition (2.11) of Ξτ , we must moreover have

(4.7)

Λ0,τ = τ log |ϕτ |2 +Pτ [Ω0]

Σ0,τ =
Λ0,τ−Ω0

2Vτ
.

Note that these relations do not determine Λ0,τ , Ω0 and Σ0,τ uniquely. Rather, they
express Λ0,τ and Σ0,τ as functions of the unknown Ω0, which will be determined in
the next step. Observe however that Λ0,τ − Ω0 vanishes along the boundary ∂Sτ ,
so the division by Vτ does not create any singularity. Hence these relations are
compatible with the properties we ask of the coefficient functions, no matter the
choice of Ω0.
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The coefficients Ξ1,τ , Λ0,τ , Ω0 and Σ0,τ . Incorporating the first-order coefficients
of Ξτ , Ω and Στ from (4.5) and (4.7) into the definition (4.16) of Qτ , we find that

(4.8) Qτ = −16Vτ∂τVτRe
{
∂Ξ(1)

τ ∂̄Vτ

}
− 8Vτ∂τVτΞ

(1)
τ ∆Vτ − 8∂τ

(
Ξ(1)
τ Vτ |∂Vτ |2

)
− 4Vτ∂τVτ∆Στ + 2∂τ

(
2Στ |∂̄Vτ |2 + 2Re {∂Ξτ ∂̄Vτ}+ Ξτ∆Vτ

)
+m−1∂τ∆Στ .

Despite the initial appearance in (4.16), this shows that Qτ = O(1). Expanding the
left-hand side of the approximate potential equation (4.4) to order O(1), we see that

m2V 2
τ AτΞτ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ = mV 2

τ AτΞ
(1)
τ +mVτBτΣ0,τ +O(1),

which when inserted into (4.4) implies that

(4.9) V 2
τ AτΞ1,τ + VτBτΣ0,τ ≡ 0.

As the function Vτ vanishes only along the boundary ∂Sτ we also conclude that

VτAτΞ1,τ +BτΣ0,τ ≡ 0.

In order for this equation to hold, it must in particular hold along the boundary
∂Sτ , which since Bτ is non-vanishing implies that Σ0,τ |∂Sτ = 0. But in view of the
relation (4.7) between Σ0,τ and the other coefficients Λ0,τ and Ω0, this condition is
equivalent to

Ω0 − Λ0,τ

Vτ

∣∣∣
∂Sτ

= 0,

which by an application of Taylor’s formula at ∂Sτ is seen to be equivalent to the
normal derivative condition

∂n
(
Λτ,0 − Ω0

)∣∣
∂Sτ

= 0.

This is an instance of the “moving front Neumann jump problem” which was explored
above in Section 3.2. In particular, Lemma 3.2 shows that this problem always
admits a solution, and moreover that the solution is unique up to the addition of a
bounded harmonic function on C \ K. Due to cancellations between the terms Λτ

and Ω, the apparent freedom that arises from this non-uniqueness is illusory, and
we may choose the initial conditions at will. A quick inspection shows that one
solution is supplied by Ω0 = 2Q and Λ0,τ = 2Q̆τ . Once Λ0,τ and Ω0 are determined
we obtain Σ0,τ from (4.7), giving the explicit formula

Σ0,τ =
2Q̆τ − 2Q

2Vτ
= −Vτ .

Finally, solving for Ξ1,τ in (4.9), we obtain

Ξ1,τ =
Σ0,τ

2Vτ
= −1

2
.
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With the functions Ξ1,τ and Λ0,τ , Ω0 and Στ,0 determined, we write

(4.10)


Ξτ = −1

2m
−1 +m−2Ξ

(2)
τ ,

Λτ = 2Q̆τ +m−1Λ
(1)
τ

Ω = 2Q+m−1Ω(1),

Στ = −Vτ +m−1Σ
(1)
τ ,

where all the functions Ξ(2)
τ , Λ(1)

τ Ω(1) and Σ
(1)
τ admits asymptotic expansions in non-

negative powers of m−1. The former admits an expansion up to order O(m−κ−2),
and the latter three to order O(m−κ−1). The conclusion from (4.9) is that (4.6) is
equivalent to having (4.10), where Ξ

(2)
τ , Ω(1) and Σ

(1)
τ satisfy

(4.11) V 2
τ AτΞ

(2)
τ + VτBτΣ

(1)
τ +Qτ = ehτ +O(m−κ−1).

The operator Qτ and the final reduction. It now only remains to rewrite the
expression (4.8) for Qτ in a more illuminating form. Since the right-hand side of
(4.4) positive for any choice of hτ , it will be important to show that the left-hand
side is positive as well. To that end, we note that

m2V 2
τ AτΞτ +mVτBτΣτ − 2∂τVτ∆Ω+Qτ

∣∣∣
∂Sτ

= −4∂τVτ∆Ω+Qτ

∣∣∣
∂Sτ

.

Since Ω = 2Q+O(m−1) and since −∂τVτ∆Q > 0, it would suffice to show that Qτ

vanishes to leading order along ∂Sτ . For the reader’s convenience, we recall that

Qτ = −16Vτ∂τVτRe
{
∂Ξ(1)

τ ∂̄Vτ

}
− 8Vτ∂τVτΞ

(1)
τ ∆Vτ − 8∂τ

(
Ξ(1)
τ Vτ |∂Vτ |2

)
− 4Vτ∂τVτ∆Στ + 2∂τ

(
2Στ |∂̄Vτ |2 + 2Re {∂Ξτ ∂̄Vτ}+ Ξτ∆Vτ

)
+m−1∂τ∆Στ ,

Separating out the terms of leading order, we get the expression

(4.12) Qτ = −16Vτ∂τVτRe
{
∂Ξ1,τ ∂̄Vτ

}
− 8Vτ∂τVτΞ1,τ∆Vτ

− 8∂τ

(
Ξ1,τVτ |∂Vτ |2

)
− 4Vτ∂τVτ∆Σ0,τ + 4∂τΣ0,τ |∂̄Vτ |2 +m−1Rτ ,

where Rτ is a (bounded) affine expression in the coefficient functions, explicitly
given by

Rτ = −4Vτ∂τVτ∆Σ(1)
τ − 8∂τ

(
Ξ(2)
τ Vτ |∂Vτ |2

)
− 16Vτ∂τVτRe

{
∂Ξ(2)

τ ∂̄Vτ

}
+ 4∂τΣτ |∂̄Vτ |2 + 2∂τ

(
2Re {∂Ξ(1)

τ ∂̄Vτ}+ Ξ(1)
τ ∆Vτ

)
+ ∂τ∆Στ .

Simplifying the main term of (4.12) using the known expressions for Ξ1,τ and Σ0,τ

(see (4.10)), we arrive at

Qτ = 4Vτ∂τ |∂Vτ |2 + 8Vτ∂τVτ∆Vτ +m−1Rτ

= 4Vτ

(
∂τ |∂Vτ |2 + 2∂τVτ∆Vτ

)
+m−1Rτ

(4.13)
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From the representation (4.13), it is clear that Qτ vanishes to leading order along
the boundary ∂Sτ .

The expression for Rτ is readily rewritten using (4.10), which yields an expres-
sion solely in terms of Ξ

(2)
τ , Ω(1), Σ

(1)
τ and known functions. More specifically, it

gives that

(4.14) Rτ = −4Vτ∂τVτ∆Σ(1)
τ − 8∂τ

(
Ξ(2)
τ Vτ |∂Vτ |2

)
− 16Vτ∂τVτRe

{
∂Ξ(2)

τ ∂̄Vτ

}
+

1

m

(
4∂τΣ

(1)
τ |∂̄Vτ |2 + 2∂τ

(
2Re {∂Ξ(2)

τ ∂̄Vτ}+ Ξ(2)
τ ∆Vτ

)
+ ∂τ∆Σ(1)

τ

)
− 4∂τVτ |∂̄Vτ |2 − 2∂τ∆Vτ .

Note also that despite the appearance of Σ(1)
τ in its definition we can interpret Rτ

as an affine operator acting only on the pair (Ξ
(2)
τ ,Ω(1)). Indeed, it holds that that

Ξ
(1)
τ = Λ

(1)
τ − Ω(1) along the boundary, whence

Λ(1)
τ = Pτ

[
Ω(1) + Ξ(1)

τ

]
= PτΩ

(1) +m−1PτΞ
(2)
τ .

Solving for Σ
(1)
τ , we find that

(4.15) Σ(1)
τ =

(I−Pτ )Ω
(1)

Vτ
+m−1 (I−Pτ )Ξ

(2)
τ

Vτ
,

which can be substituted into (4.14) to give the conclusion.
The following proposition summarizes our progress so far.

Proposition 4.2. The approximate potential equation (4.4) is equivalent to the
reduced problem

V 2
τ AτΞ

(2)
τ + VτBτ

(I−Pτ )Ω(1)

Vτ
+ fτ +m−1Sτ = ehτ +O(m−κ−1)

for the functions Ξ
(2)
τ , Ω(1) and hτ along with the condition (4.10). Here, fτ is a

strictly positive real-analytic function given explicitly by

fτ = −4∂τVτ∆Q− 4Vτ

(
∂τ |∂Vτ |2 + 2∂τVτ∆Vτ

)
+m−1

(
4∂τVτ |∂̄Vτ |2 + 2∂τ∆Vτ

)
,

and Sτ is a bounded affine expression in the coefficients Ξ
(2)
τ and Ω

(1)
τ , given by

(4.16) Sτ = Rτ +Bτ (I−Pτ )Ω
(1) − 2∂τVτ∆Ω(1).

Proof. The equation (4.11) asserts that the approximate potential equation (4.4) is
equivalent to the problem

(4.17) V 2
τ AτΞ

(2)
τ + VτBτΣ

(1)
τ − 2∂τVτ∆Ω+Qτ = ehτ +O(m−κ−1),
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provided that we subscribe to (4.10). Rewriting the left-hand side using the formula
(4.13), we arrive at the identity

V 2
τ AτΞ

(2)
τ + VτBτΣ

(1)
τ − 2∂τVτ∆Ω+Qτ = V 2

τ AτΞ
(2)
τ + VτBτΣ

(1)
τ +m−1Rτ

− 2∂τVτ∆Ω+ 4Vτ

(
∂τ |∂Vτ |2 + 2∂τVτ∆Vτ

)
.

The desired formulas now follow by inserting the expressions (4.10) and (4.15) for
Ω and Σ

(1)
τ into the right-hand side of (4.17).

It only remains to prove that the function fτ defined above is strictly positive.
Since we have obtained that

fτ = −4∂τVτ∆Q− 4Vτ

(
∂τ |∂Vτ |2 + 2∂τVτ∆Vτ

)
+O(m−1)

= −4∂τVτ∆Q+O(m−1 + |Vτ |),

it suffices to show that −4∂τVτ∆Q > 0. To that end, we argue that ∂τVτ is strictly
negative along ∂Sτ . Indeed, this follows e.g. by an application of the implicit function
theorem along with the expansion of the sets {z ∈ C \ K : Vτ (z) = 0} with τ . Since
the boundaries ∂Sτ deform according to a weighted Laplacian growth flow with
weight 2∆Q, these sets expand at a speed proportional to (∆Q)−1|ϕ′

τ |, where ϕτ are
the conformal mappings from C\Sτ onto the exterior unit disk (see, e.g., Lemma 2.5
in [18]). The claim then follows by combining the above observation with the strict
subharmonicity of Q. □

5 PROOF OF THE MAIN THEOREM

5.1 The approximate potential

We are now ready to supply the approximate solution to Problem 2.4.

Lemma 5.1. For any fixed κ ∈ Z>0, there exist bounded harmonic functions
{hj,τ}0≤j≤κ on C \ K as well as coefficient functions {Ωj}0≤j≤κ+2, {Σj,τ}0≤j≤κ+2,
{Λj,τ}0≤j≤κ+2 with the properties detailed in Section 2.4 such that if Uτ is given by
(2.8), we have that

∂τ∆Uτ =

√
m

2π
ehτ−2mV 2

τ

(
1 + O

(
m−κ−1

))
where implicit constant is uniformly bounded in τ ∈ I0 on any compact subset of
V \ K. Moreover, the coefficients all belong to H ∞

1
2
σ, 1

2
δ
, with a norm depending only

on κ, Q, τ0, and the initial parameters σ, δ and ϵ.

Proof. By Proposition 4.2, the approximate potential equation is equivalent to the
semiclassical problem

V 2
τ AτΞ

(2)
τ + VτBτ

(I−Pτ )Ω(1)

Vτ
+ fτ +m−1Sτ = ehτ +O(m−κ−1),
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where Aτ , Bτ , fτ and Sτ are as in the proposition. Note that Aτ and Bτ are fixed
and non-vanishing elements of H ∞

σ,δ , and that fτ is strictly positive for m large
enough. By rearranging the terms and putting Eτ = −AτΞ

(2)
τ , Fτ = Hτ

(I−Pτ )f
Vτ

where f = Ω(1) and Hτ = −Bτ , and finally G = ehτ , we bring the approximate
potential equation to the form

V 2
τ Eτ + VτFτ + Gτ = fτ +m−1Tτ

(
Eτ ,Fτ

)
,

where Tτ = −Sτ . An inspection of the definition (4.16) of Sτ and the auxiliary
definition (4.14) of Rτ shows that Tτ satisfies the required Lipschitz-bound (3.11).
Hence the claim follows by an application of Lemma 3.4. This completes the proof.

□

5.2 The single wave potential

We let Λj,τ , Ωj , Σj,τ and hj,τ be the coefficients produced by applying Lemma 5.1,
and put as before

Λτ =
κ+2∑
j=0

m−jΛj,τ , Ω =
κ+2∑
j=0

m−jΩj ,

Στ =

κ+2∑
j=0

m−jΣj,τ , hτ =

κ∑
j=0

m−jhj,τ .

Recall that K and V denote compact and open sets, respectively, subject to the
inclusions

Sτ0−2ϵ ⊂ K ⊂ S◦
τ0−ϵ ⊂ Sτ0+ϵ ⊂ V ⊂ Sτ0+2ϵ.

We denote by χ(z) and χ′(z) two cut-off functions with the following properties:
We ask that χ vanishes identically on K while it equals 1 on Sτ0−ϵ. The function χ′

instead vanishes on Vc, while it equals 1 on Sτ0+ϵ.

Lemma 5.2. The n-th orthogonal polynomial in L2(C, e−2mQ) satisfies

|Pm,n(z)|2e−2mQ(z) = χ(z)

√
m

2π
ehτ (z)−2mV 2

τ (z) +O
(
m−κ−1

)
as n = τm → ∞ with τ ∈ I0.

Proof sketch. The proof is based on introducing the truncated potential

(5.1) Uτ = χΛτ erf
(
2
√
mVτ

)
+ χχ′Ωerf

(
−2

√
mVτ

)
+ χχ′ Στ√

2πm
e−2mV 2

τ .

Thanks to the truncation it is readily checked that the potential satisfies

(5.2) ∂τ∆Uτ (z) = χ(z)

√
m

2π
ehτ (z)−2mV 2

τ (z)
(
1 + O(m−κ−1)

)
throughout the plane. This means that ∂τ Uτ is an approximate potential for a
single wave as treated in [19]. Specifically, the claim follows by repeating verbatim
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the proof of Theorem 8.2 in [19], but with a less precise error term. We skip the
necessary details. □

5.3 The Euler MacLaurin formula

We need means to convert integration in τ into summation over the orthogonal
polynomials. At hand we have the Euler-MacLaurin formula, which we need in the
following form. For the formulation, we use the notation [f(t)]BA = f(B)− f(A) and
denote by (Bk)k≥0 the Bernoulli numbers.

Proposition 5.3. Assume that F (z, τ) ∈ H ∞
σ′,δ′ for some 1

2σ ≤ σ′ ≤ σ and 1
2σ ≤

δ′ ≤ δ. Then, for any fixed κ ∈ Z>0, we have

n1−1∑
j=n0

F (z, j/m)e
−2mV 2

j/m
(z)

= m

∫ n1/m

n0/m
F (z, τ)e−2mV 2

τ (z)dτ − 1

2

[
F (z, τ)e−2mV 2

τ (z)
]n1/m

τ=n0/m

+
κ∑

j=1

m−2j+1 B2j

(2j)!

[
∂2j−1
τ

(
F (z, τ)e−2mV 2

τ (z)
)]n1/m

τ=n0/m
+O(m−κ+ 1

2 ).

The implicit constant is uniform as m → +∞ provided that n1/m and m2/m are
confined to compact subsets of I0 and z ∈ ϕ−1

τ0 (A(
1
2σ)). Moreover, the expansion on

the right-hand side belongs to H ∞
σ′,δ′′ for any δ′′ < δ′.

Proof. The classical Euler-MacLaurin formula asserts that
n1−1∑
n=n0

f(n) =

∫ n1

n0

f(t)dt− 1

2
[f(t)]n1

n0
+

κ∑
k=1

B2k

(2k)!

[
f (2k−1)(t)

]n1

n0
+Rκ,n1,n2(f),

where the error enjoys the bound

|Rκ,n1,n2(f)| ≤ C(n2 − n1)∥∂2κ+1f∥∞

for some constant C depending only on κ. Applying it to our situation, we obtain

n1−1∑
j=n0

F (j/m, z)e
−2mV 2

j/m
(z)

=

∫ n1

n0

F (s/m, z)e
−2mV 2

s/m
(z)

ds− 1

2

[
F
(

s
m , z

)
e
−2mV 2

s/m
(z)]n1

n0

+
κ∑

j=1

B2j

(2j)!

[
∂2j−1
s

(
F (z, s

m)e
−2mV 2

s/m
(z)

)]n1

n0

+O
(
n
∥∥∥∂2κ+1

s

(
F (z, s

m)e
−2mV 2

s/m
(z)

)∥∥∥
L∞(C×I0)

)
,
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where we again recall the notation [f(s)]BA = f(B)−f(A). By the change of variables
τ = s/m we have that∫ n1

n0

F (s/m, z)e
−2mV 2

s/m
(z)

ds = m

∫ n1/m

n0/m
F (τ, z)e−2mV 2

τ (z)dτ,

and likewise that
κ∑

j=1

B2j

(2j)!

[
∂2j−1
s

(
F (z, s

m)e
−2mV 2

s/m
(z)

)]n1

n0

=

κ∑
j=1

m−2j+1 B2j

(2j)!

[
∂2j−1
t

(
F (z, t)e−2mV 2

t (z)
)]n1/m

t=n0/m
.

Hence, it only remains to prove that the O-term is in fact of the order claimed in
the lemma, which amounts to∣∣∣∂2κ+1

s

(
F (z, s/m)e

−2mV 2
s/m

(z)
)∣∣∣ = O(m−κ− 1

2 ).

Suppressing some (for now) unimportant details, we realize that, for some sequence
(Cκ,j)

2κ+1
j=0 of smooth bounded coefficient functions, it holds that

∂2κ+1
s

(
F (z, s/m)e

−2mV 2
s/m

(z)
)
=

2κ−1∑
j=1

Cκ,j(z)m
−2κ+j

(
Vτ (z)

)j
e−2mV 2

τ (z)
∣∣∣
τ=s/m

.

Moreover, it is a standard calculus exercise to show that

sup
x∈R

|x|je−2mx2
=

1

2
j

j
2 e−2jm− j

2 = O(m− j
2 ).

Applying this with x = Vτ (z) we obtain the estimate∣∣∣∂2κ+1
s

(
F (·, s/m)e

−2mV 2
s/m

)∣∣∣ = O
( 2κ−1∑

j=0

m−2κ+jm−j/2
)
= O(m−κ− 1

2 )

which completes the proof. □

5.4 Global asymptotics of the polynomial kernel

We recall the truncated potential Uτ defined above in (5.1). Theorem 1.2 is now an
almost immediate corollary of Lemma 5.2 and the potential equation (5.2) for Uτ

and hτ . Before we proceed, we recall that by (2.12), we have

∆Uτ = ∆Ωerf
(
−2

√
mVτ

)
+

√
m

2π

(
mX0,τ +X1,τ +m−1X1,τ

)
e−2mV 2

τ .

where Xj,τ are given by (2.13). As the Xj-s still depend on m, they are not the
terms in a bona fide asymptotic expansion. To obtain such an expansion, we rewrite
the equation (2.12) as

(5.3) ∆Uτ = ∆Ω erf
(
2
√
mVτ

)
+

√
m

2π

κ∑
j=0

m−jXj,τ e
−2mV 2

τ
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where the coefficients in the asymptotic expansion are given by
X0,τ = −8Ξ0,τVτ |∂̄Vτ |2

X1,τ = −8Ξ1,τVτ |∂̄Vτ |2 + 4Σ0,τ |∂̄Vτ |2 + 4Re {∂Ξ0,τ ∂̄Vτ}+ 2Ξ0,τ∆Vτ

Xj,τ = −8Ξj,τVτ |∂̄Vτ |2 + 4Σj−1,τ |∂̄Vτ |2 + 4Re {∂Ξj−1,τ ∂̄Vτ}+ 2Ξj−1,τ∆Vτ +∆Σj−2,τ ,

the last line referring to indices j = 2, . . . , κ.

Proof of Theorem 1.2. We introduce the density

ρm,n,k(z) =
1

m

n−1∑
j=k

|Pm,j(z)|2e−2mQ(z)

where k = τ ′m and n = τm are such that

τ0 − ϵ < τ ′ < τ < τ0 + ϵ.

For integers j = tm, t ∈ I0, we have by Lemma 5.2 that

|Pm,j(z)|2e−2mQ(z) = χ

√
m

2π
eht(z)−2mV 2

t (z) +O
(
m−κ−1

)
.

Inserting this asymptotic formula into the above definition of ρm,n,k, we obtain

ρm,n,k(z) =
1

m

n−1∑
j=k

χ

√
m

2π
e
hj/m(z)−2mV 2

j/m
(z)

+O
(
m−κ− 1

2
)
.

The right-hand side is in a form suitable for the application of the Euler-MacLaurin
summation formula. Specifically, by applying Proposition 5.3 we find that

ρm,n,k(z) =

∫ τ

τ ′
χ

√
m

2π
eht(z)−2mV 2

t (z)dt+
χ√
8πm

[
eht(z)−2mV 2

t (z)
]τ
t=τ ′

+
1√
2πm

κ∑
j=1

m−2j+1 B2j

(2j)!

[
∂2j−1
t eht(z)−2mV 2

t (z)
]τ
t=τ ′

+O
(
m−κ− 1

2
)
,

which when combined with the potential equation (5.2) gives the representation

ρm,n,k(z) =

∫ τ

τ ′
∂t∆Utdt+

χ√
8πm

[
eht(z)−2mV 2

t (z)
]τ
t=τ ′

+
χ√
2πm

κ∑
j=1

B2j

(2j)!
m−2j+1

[
∂2j−1
t eht−2mV 2

t (z)
]τ
t=τ ′

+O
(
m−κ− 1

2
)

= ∆

∫ τ

τ ′
∂t Utdt+

χ√
8πm

[
eht(z)−2mV 2

t (z)
]τ
t=τ ′

+
χ√
2πm

κ∑
j=1

m−2j+1 B2j

(2j)!

[
∂2j−1
t eht−2mV 2

t (z)
]τ
t=τ ′

+O
(
m−κ− 1

2
)
.
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An application of the fundamental theorem of calculus then shows that

ρm,n,k(z) = ∆Uτ −∆Uτ ′ +
χ√
8πm

[
eht(z)−2mV 2

t (z)
]τ
t=τ ′

+
χ√
2πm

κ∑
j=1

m−2j+1 B2j

(2j)!

[
∂2j−1
t eht−2mV 2

t (z)
]τ
t=τ ′

+O
(
m−κ− 1

2
)
.

(5.4)

Next, we observe that wherever the cut-off functions χ and χ′ both equal to 1, it
holds that Uτ = Uτ . In particular this is true on the set V \ K. Recall that the
classical Bernstein-Walsh lemma implies that

(5.5) ρm,k(z) ≤ Ce−2m(Q−Q̌τ ′ )(z), τ ′ =
k

n
.

By writing ρm,n,k = ρm,n−ρm,k and combining (5.4) with (5.5) and (5.3), we obtain
the asymptotic representation

(5.6) ρm,n(z) = ∆Ωerf
(
2
√
mVτ (z)

)
+

κ∑
j=0

m−jXj−2,τ +
χ√
8πm

ehτ (z)−2mV 2
τ (z)

+
χ√
2πm

κ∑
j=1

m−2j+1 B2j

(2j)!
∂2j−1
τ ehτ−2mV 2

τ (z) +O
(
m−κ− 1

2
)
,

as n = τm → ∞, where the error term is uniformly bounded provided that τ ∈ I0

and z ∈ C.
It remains to relate the expansion (5.6) to the full Bergman density ρm. To

that end, observe that on fixed compact subsets of S◦
τ , the polynomial truncation

of the Bergman density has essentially no effect. More precisely, using Hörmander’s
estimate for the ∂̄-operator, it is easy see that the asymptotic expansions of ρm,n(z)

and ρm(z) agree on compact subsets of Sτ . In particular for z ∈ Sτ0−ϵ \ K we have

ρm(z) = ρm,n(z) + O(m−κ−1) = ∆Ω(z) + O(m−κ−1),

which implies that

ρm(z) = ∆Ω+O(m−κ−1), z ∈ Sτ0−ϵ \ K.

As ρm(z) admits a full asymptotic expansion throughout the plane with real-analytic
coefficients, we find that this must hold for ∆Ω(z) as well, and the coefficients must
agree. The theorem thus follows by calculating the ∂τ -derivatives in (5.6) using
Lebniz’ formula. This completes the proof. □

Remark 5.4. (a) While initially designed as a method for dealing with boundary
effects, the technique presented here gives a genuinely new algorithm for computing
the bulk asymptotics at a point z, at least under the given conditions on the spectral
boundaries for τ near τ(z). Note however that in contrast to e.g. [8], our method is
specific to one complex variable and requires non-local assumptions.
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(b) In the above proof, we found in the last step that ∆Ω equals ρm up to an error
of order O(m−κ−1). It should be possible to implement this at an earlier stage,
thus bypassing some steps in the main algorithm. This minor shortcut may be
useful for computational purposes in the upcoming analysis of the free energy for
determinantal planar Coulomb gas ensembles.

6 PLANAR SZEGŐ LIMIT THEOREMS AND STATISTICAL
MECHANICS

Recall that for an absolutely continuous measure µ = ρ ds on the unit circle T with
log ρ ∈ L1(T, ds), the classical Szegő limit theorems descibe the asymptotic behavior
of the associated Toeplitz determinants detTm(ρ), where

Tm(ρ) =
(∫

T
tj−kρ(t) ds(t)

)
0≤j,k≤m−1

.

Under the additional assumption that ρ′ is Hölder continuous, Szegő proved in his
strong limit theorem that

detTm(ρ) = exp
(
m

∫
T
log ρ ds + E(ρ) + o(1)

)
as m → +∞, where E(ρ) is the squared H1/2(T)-norm of log ρ.

For a potential Q as above, we consider instead the Gram matrices of complex
moments

Gm,n(Q) =
(∫

C
zj z̄ke−2mQ(z)dA

)
0≤j,k≤n−1

and the large m-asymptotics of the Gram determinants detGm,n(Q). If Qλ is a
smoothly varying family of potentials and ρλm,n denotes the associated polynomial
densities, we have the remarkable variational identity

(6.1) ∂λ log detGm,n(Qλ) = −2m2

∫
C
∂λQλ(z)ρ

λ
m,n(z)dA(z),

(see the proof of Theorem 1.4 below). This connects the Gram determinants with the
polynomial Bergman densities, and we may apply Theorem 1.2 to extract asymptotic
information. More specifically, if we can find a smooth deformation of a given
potential Q into the radial potential Q0(z) =

1
2 |z|

2, we may apply Theorem 1.2 to
each ρλm,n and then integrate in λ to obtain a the strong Szegő limit theorem for Q.

Already at this stage, it follows without much effort that the right-hand side of
(6.1) admits a full asymptotic expansion in negative powers of m. Hence, for some
coefficients Aj,τ = Aj,τ (Q), this gives

(6.2) log detGm,n(Q1)− log detGm,n(Qλ) =
∑
j≥−2

Aj,τm
−j +O(m−κ−1).

However, making this representation explicit involves non-trivial challenges. We
hope to carry out this program in future work.
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Before we proceed, we recall an interpretation of detGm,n(Q) in terms of sta-
tistical mechanics. For parameters m,n and Q as above, we consider the random
n-point process with joint density on Cn given by

fm,n(z1, . . . , zn) =
1

Zm,n

∏
1≤j<k≤n

|zj − zk|2e−2m
∑n

j=1 Q(zj).

Here, Zm,n = Zm,n(Q) is the normalizing constant given by

Zm,n =

∫
Cn

∏
1≤j<k≤n

|zj − zk|2e−2m
∑n

j=1 Q(zj)dA(z1) · · · dA(zn).

This point process has the interpretation of n charged particles in the plane at
a particular “inverse temperature”, interacting with Coulomb’s law (in 2D) and
confined by the external field mQ. The connection with Gram determinants is the
well-known identity

Zm,n(Q) = n! detGm,n(Q).

The asymptotic expansion (6.2) thus states that, disregarding the combinatorial
constant n!, the free energy logZm,n admits a full asymptotic expansion, starting
with terms of order m2. While the literature on partition functions is too extensive
to review here, we mention that asymptotic expansions of logZm,n(Q) are known
in explicit form for radially symmetric potentials up to and including the O(1)-
term. This includes cases when the droplet Sτ has non-trivial topology [1] as well as
hard-wall constraints [2]. In these cases, the expansions exhibit different behavior
including an oscillatory term in the former case, and terms of non-integer order in
the latter. For regular but non-radially symmetric potentials with regular simply
connected droplet, the first two terms in the Gram determinant expansion are known
(see, e.g., [7, 21] which pertain to general β), and they coincide with the weighted
logarithmic energy and the entropy of the equilibrium measure µQ, respectively.
The full expansion was predicted in [27], including an explicit formula for the very
interesting constant term in terms of ζ-regularized determinants of a certain Laplace-
Beltrami operator associated to Q. The expansion up to the constant term was
recently obtained in [10] for the non-radial potential Q(z) = 1

2 |z|
2 − c log |z − a|,

using connections to non-Hermitian orthogonality established in [6].

6.1 Gram determinant asymptotics for Hele-Shaw potentials

We conclude this paper with a proof of Theorem 1.4, which supplies a simple ex-
pansion formula for Gram determinants associated to Hele-Shaw potentials of the
form

Q(z) = Qµ(z) =
1

2
|z|2 − Uµ(z),
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where µ is a finite (possibly signed) measure. For this class, a canonical deformation
chain is given by

Qλ(z) =
1

2
|z|2 − λUµ(z)

for 0 ≤ λ ≤ 1. We will denote objects pertaining to the potential Qλ with the
upper subscript λ, so thath e.g. the harmonic coefficient functions from Section 2.4
corresponding to Qλ are denoted by Λλ

j,τ .
Recall that we assume that Qλ remains admissible and Sλ

τ remains bounded
away from supp(µ) throughout the deformation chain. Theorem 1.4, then asserts
that, for any fixed accuracy parameter κ ∈ Z>0, we have the asymptotics

log detGm,n(Q) = log detGm,n(
1
2 |z|

2) + 2m2

∫ 1

0

∫
C
Υλ

τ (z)dµ(z)dλ+O(m−κ−1)

as n = τm → +∞, where Υλ
τ is defined by (1.8).

Sketch of proof of Theorem 1.4. We first prove the variational formula (6.1). To
that end, it is more convenient to use the Coulomb gas formalism. The logarithmic
derivative of Gm,n(Q

λ) coincides with that of Zλ
m,n. Computing the latter, we find

that

∂λ logZ
λ
m,n =

∂λZ
λ
m,n

Zλ
m,n

= −2m
n∑

j=1

∫
Cn

∂λQ
λ(zj)fm,n(z1, . . . , zn)dA(z1) · · · dA(zn).

We recognize the right-hand side as −2m times the expected value of the linear
statistic

n∑
j=1

∂λQ
λ(zj),

which by the interpretation of nρm,n as the one-point function for the Coulomb gas
ensemble is given by

E
[ n∑
j=1

∂λQ
λ(zj)

]
= m

∫
C
∂λQ

λ(z) ρλm,n(z) dA(z).

The first claim follows.
We turn to the claim of the theorem. The simple structure of the deformation

chain shows that ∂λQ
λ = −Uµ. We combine this with (6.1) to obtain

∂λ logG
λ
m,n = 2m2

∫
C
Uµ(z) ρλm,n(z) dA(z)

= 2m2

∫
C

(∫
C
log |z − w| ρλm,n(z) dA(z)

)
dµ(w),

where the change in the order of integration is justified by the regularity of ρλm,n.
Integrating over λ, we obtain the representation

(6.3) logGm,n(Q) = logGm,n(Q
0) + 2m2

∫ 1

0

∫
C
Uρλm,n(w) dµ(w) dλ,
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where we tacitly identify ρλm,n with the weighted area measure ρλm,ndA. It only
remains to identify the potential on the right-hand side. Let us define

V λ
τ = Uλ

τ +
1

2m
∂τU

λ
τ +

⌈κ
2
⌉∑

ℓ=1

m−2κ B2ℓ

(2ℓ)!
∂2ℓ
τ U ℓ

τ .

It is then readily verified that ∆V λ
τ coincides up to order O(m−κ− 1

2 ) with the right-
hand side of the asymptotic expansion of ρλm,n, obtained by applying in (5.6) to
Q = Qλ. In other words,

∆V λ
τ = ρλn,m +O(m−κ− 1

2 ).

Moreover, on closed subsets of Sc
τ we have that

(6.4) V λ
τ = Υλ

τ + Cλ
τ ,

where Υλ
τ and Cλ

τ were defined in connection the statement of the theorem. It follows
from the definition of Cλ

τ that the logarithmic potential of ρλm,n is given by

(6.5) Uρλm,n = V λ
τ − Cλ

τ +O(m−κ− 1
2 ).

The claim then follows by combining (6.3), (6.4) and (6.5) with the assumption that
µ is supported away from Sλ

τ . □
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