BOUNDARY PROPERTIES OF GREEN FUNCTIONS IN THE PLANE

H. Hedenmalm, A. Baranov

Introduction

 Ω – bounded simply connected domain in **C** which contains 0.

 $\varphi: \mathbf{D} \to \Omega$ – the conformal mapping with $\varphi(0) = 0$, $\varphi'(0) > 0$.

 $G_{\Omega}(z, w)$ is the Green function for Ω $(z, w \in \Omega)$.

We write $G_{\Omega}(z) = G_{\Omega}(z,0)$.

Wirtinger derivatives:

$$\partial_z = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \qquad \bar{\partial}_z = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Multiplicative counterparts:

$$\partial_z^{\times} = z \partial_z, \qquad \bar{\partial}_z^{\times} = \bar{z} \bar{\partial}_z.$$

PROBLEM. Compare, for complex τ and real α ,

$$\left| \left[\partial_z^{\times} G_{\Omega}(z) \right]^{\tau} \right| \text{ with } \left| G_{\Omega}(z) \right|^{-\alpha}.$$

More precisely, when do we have

(1)
$$\int_{\Omega} \left| \left[\partial_z^{\times} G_{\Omega}(z) \right]^{\tau} \right| |G_{\Omega}(z)|^{\alpha} dA(z) < +\infty?$$

We denote by $A_{\Omega}(\tau)$ the "best possible" α for a given τ .

MAIN THEOREM. We have

$$A_{\Omega}(\tau) \le -\operatorname{Re}\tau + \left[\frac{9e^2}{2} + o(1)\right] |\tau|^2 \log \frac{1}{|\tau|}$$

as $|\tau| \to 0$. The o(1) term is independent of the choice of the bounded simply connected domain Ω .

If $A_{\Omega}(\tau) + A_{\Omega}(-\tau) \leq 0$, our scheme of comparing the quantities in (1) in terms of L^1 integrals is very successful. It is therefore natural to view the quadraticlogarithmic remainder term in the Main Theorem as the amount by which the L^1 comparison might fail.

In terms of φ ,

$$G_{\Omega}(\varphi(z)) = \log(|z|^2), \qquad z \in \mathbf{D},$$

and we get

$$\int_{\Omega} \left| \left[\partial_z^{\times} G(z) \right]^{\tau} \right| |G(z)|^{\alpha} dA(z)$$

$$= \int_{\mathbf{D}} \left| \left[\frac{z \varphi'(z)}{\varphi(z)} \right]^{-\tau} \right| \left\{ \log \frac{1}{|z|^2} \right\}^{\alpha} |\varphi'(z)|^2 dA(z).$$

Integral means spectra. Let $B_{\varphi}(\tau)$ be "the best" β such that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \left[\frac{re^{i\theta} \varphi'(re^{i\theta})}{\varphi(re^{i\theta})} \right]^{\tau} \right| d\theta = O\left(\frac{1}{(1-r)^{\beta}} \right)$$

as $r \to 1^-$. It is possible to show that

$$B_{\varphi}(\tau) = A_{\Omega}(2 - \tau) + 1$$

for all complex τ . the universal integral means spectrum for the class of bounded univalent functions S_b is the function $B_b(\tau)$, obtained by taking the sup of $B_{\varphi}(\tau)$ over all φ . As a consequence of the Main Theorem, we get

$$B_b(2-\tau) \le 1 - \text{Re}\tau + \left[\frac{9e^2}{2} + o(1)\right] |\tau|^2 \log \frac{1}{|\tau|}$$

as $|\tau| \to 0$. For $real \tau$, P. W. Jones and N. G. Makarov obtained a smaller error term:

$$B_b(2-\tau) \le 1-\tau + O(\tau^2), \quad \mathbf{R} \ni \tau \to 0.$$

The Grunsky identity and generalizations

We need the Cauchy transform \mathcal{C}_{Ω} ,

$$C_{\Omega}[f](z) = \int_{\Omega} \frac{f(w)}{w - z} dA(w),$$

and the Beurling transform

$$\mathcal{B}_{\Omega}[f](z) = \partial_z \mathcal{C}_{\Omega}[f](z) = \text{pv} \int_{\Omega} \frac{f(w)}{(w-z)^2} \, \mathrm{d}A(w).$$

It is clear that in the sense of distribution theory,

$$\bar{\partial}_z \mathcal{C}_{\Omega}[f](z) = -f(z), \qquad z \in \Omega,$$

and

$$\partial_z \mathcal{C}_{\Omega}[f](z) = \mathcal{B}_{\Omega}f(z).$$

It is well-known that for $\Omega = \mathbb{C}$, $\mathcal{B}_{\mathbb{C}}$ is a unitary transformation $L^2(\mathbb{C}) \to L^2(\mathbb{C})$. In general, \mathcal{B}_{Ω} is a contraction $L^2(\Omega) \to L^2(\Omega)$.

We connect two functions f and g, on Ω and \mathbf{D} , respectively, via

$$g(z) = \bar{\varphi}'(z) f \circ \varphi(z),$$

and define the integral operator

$$C_{\varphi}[g](z) = (C_{\Omega}[f]) \circ \varphi(z)$$

$$= \int_{\mathbf{D}} \frac{\varphi'(w)}{\varphi(w) - \varphi(z)} g(w) \, dA(w), \qquad z \in \mathbf{D};$$

 \mathcal{C}_{φ} is then a contraction $L^2(\mathbf{D}) \to W^{1,2}(\mathbf{D})/\mathbf{C}$.

It is known that $\mathcal{B}_{\mathbf{C}}$ is bounded $L^p(\mathbf{C}) \to L^p(\mathbf{C})$, for all p with 1 . Let <math>K(p) be a positive constant such that

(2)
$$\|\mathcal{B}_{\mathbf{C}}f\|_{L^p(\mathbf{C})} \le K(p) \|f\|_{L^p(\mathbf{C})}, \quad f \in L^p(\mathbf{C}).$$

The optimal constant K(p) in (2) is not known; however, we may choose, e. g., $K(p) = 2(p^* - 1)$, where $p^* = \max\{p, p'\}$, and p' = p/(p-1) is the dual exponent (one expects $K(p) = p^* - 1$ is the optimal choice). For $0 \le \theta \le 2$, we introduce the θ -skewed Beurling transform, as defined by

$$\mathcal{B}_{\varphi}^{\theta}[f] = \operatorname{pv} \int_{\mathbf{D}} \frac{\varphi'(z)^{\theta} \varphi'(w)^{2-\theta}}{(\varphi(z) - \varphi(w))^{2}} f(w) \, \mathrm{d}A(w).$$

It follows from (2) that

$$\left\|\mathcal{B}_{\varphi}^{2/p}f\right\|_{L^{p}(\mathbf{D})} \leq K(p) \left\|f\right\|_{L^{p}(\mathbf{D})}, \qquad f \in L^{p}(\mathbf{D}),$$

for all p with $1 . In the symmetric case <math>\theta = 1$, we write \mathcal{B}_{φ} in place of $\mathcal{B}_{\varphi}^{1}$. We note that \mathcal{B}_{φ} is a contraction on $L^{2}(\mathbf{D})$.

BASIC IDENTITY. We have the identity

$$\log \frac{z(\varphi(z) - \varphi(\zeta))}{(z - \zeta)\varphi(z)} + \log(1 - \bar{z}\zeta)$$

$$= \int_{\mathbf{D}} \frac{\varphi'(w)}{\varphi(w) - \varphi(z)} \frac{\zeta}{1 - \bar{w}\zeta} \, \mathrm{d}A(w).$$

GRUNSKY IDENTITY (integral form). We have

$$\frac{\varphi'(z)\varphi'(\zeta)}{(\varphi(z)-\varphi(\zeta))^2} - \frac{1}{(z-\zeta)^2}$$

$$= \int_{\mathbf{D}} \frac{\varphi'(z)\varphi'(w)}{(\varphi(w)-\varphi(z))^2} \frac{1}{(1-\bar{w}\zeta)^2} \, \mathrm{d}A(w).$$

Let \mathcal{P} be the Bergman projection operator

$$\mathcal{P}[f](z) = \int_{\mathbf{D}} \frac{f(w)}{(1 - \bar{w}z)^2} \, \mathrm{d}A(w),$$

which is the orthogonal projection $L^2(\mathbf{D}) \to A^2(\mathbf{D})$. Let $\mathcal{B} = \mathcal{B}_{\mathbf{D}}$.

GRUNSKY IDENTITY (operator form).

$$\mathcal{B}_{\varphi} - \mathcal{B} = \mathcal{P}\mathcal{B}_{\varphi} = \mathcal{B}_{\varphi}\bar{\mathcal{P}} = \mathcal{P}\mathcal{B}_{\varphi}\bar{\mathcal{P}}.$$

The strong Grunsky inequality is equivalent to the statement that $\mathcal{B}_{\varphi} - \mathcal{B}$ is a contraction on $L^2(\mathbf{D})$, which immediately follows from the above.

Let \mathcal{D} denote the operator

$$\mathcal{D}[f](z) = \int_{\mathbf{D}} \frac{f(w)}{(w-z)(1-\bar{w}z)} \, \mathrm{d}A(w),$$

and \mathcal{M}_F the operator of multiplication by F.

SKEWED GRUNSKY IDENTITY. $(0 < \theta < 2)$

$$\mathcal{B}_{\varphi}^{\theta} - \mathcal{B} + (\theta - 1)\mathcal{D}\mathcal{M}_{1-|z|^2}\mathcal{M}_{\varphi''/\varphi'} = \mathcal{P}\mathcal{B}_{\varphi}^{\theta}.$$

The skewed Grunsky identity is suitable for the space $L^p(\mathbf{D})$, provided $\theta = 2/p$.

VARIANT OF BASIC IDENTITY. We have

$$\log \frac{z(\varphi(z) - \varphi(\zeta))}{(z - \zeta)\varphi(z)}$$

$$-\zeta(1 - |\zeta|^2) \left[\frac{\varphi'(\zeta)}{\varphi(\zeta) - \varphi(z)} - \frac{1}{\zeta - z} \right]$$

$$+ \log \left(1 - \bar{z}\zeta \right) + \bar{z}\zeta \frac{1 - |\zeta|^2}{1 - \bar{z}\zeta}$$

$$= \zeta^2 \int_{\mathbf{D}} \frac{\varphi'(w)}{\varphi(w) - \varphi(z)} \frac{\bar{\zeta} - \bar{w}}{(1 - \bar{w}\zeta)^2} \, \mathrm{d}A(w).$$

LEMMA.

$$(1-|\zeta|^2)\left|\frac{\varphi'(\zeta)}{\varphi(\zeta)-\varphi(z)}-\frac{1}{\zeta-z}\right|\leq C.$$

COROLLARY.

$$\log \frac{z\varphi'(z)}{\varphi(z)} + \log \left(1 - |z|^2\right)$$

$$= z^2 \int_{\mathbf{D}} \frac{\varphi'(w)}{\varphi(w) - \varphi(z)} \frac{\bar{z} - \bar{w}}{(1 - \bar{w}z)^2} dA(w) + O(1).$$

Marcinkiewicz-Zygmund integrals

Suppose $0 < \kappa < 1$. Let $\delta(w)$ be the Euclidean distance from w to $\mathbb{C} \setminus \Omega$. Pick a real parameter γ ,

confined to the interval $0 < \gamma < 1$. The Marcinkiewicz-Zygmund integral is defined by the formula

$$I_{\kappa}(z) = \int_{\Omega} \min \left\{ \frac{\delta(w)^{\kappa}}{|z - w|^{2 + \kappa}}, \frac{\gamma^{-2 - \kappa}}{\delta(w)^{2}} \right\} dA(w).$$

Zygmund showed (essentially) in 1969 that

$$\|e^{\lambda I_{\kappa}} - 1\|_{L^{1}(\mathbf{C})} \le \frac{\kappa |\Omega|_{A}}{\kappa - 9e|\lambda|\gamma^{-\kappa}(2+\kappa)} - |\Omega|_{A}$$

for complex λ with

$$|\lambda| < \frac{\kappa \, \gamma^{\kappa}}{9e(2+\kappa)}.$$

Uniform Sobolev imbedding

We work with

(3)
$$\widetilde{\mathcal{C}}_{\varphi}[f](z) = \int_{\mathbf{D}} \frac{\varphi'(w)}{\varphi(w) - \varphi(z)} \frac{\overline{z} - \overline{w}}{1 - \overline{w}z} f(w) \, \mathrm{d}A(w).$$

For $0 < \kappa < 1$, we consider the Lebesgue space

$$X_{\kappa}(\mathbf{D}) = L^{p}(\mathbf{D}, \mu),$$

where

$$p = \frac{2+\kappa}{1+\kappa}, \quad d\mu(z) = (1-|z|^2)^{-\kappa/(1+\kappa)} dA(z).$$

By Hölder's inequality, we get

$$\begin{aligned} \left| \widetilde{C}_{\varphi}[f](z) \right| &\leq \left\{ \int_{\mathbf{D}} \left| \frac{(w - z)\varphi'(w)}{(1 - \bar{w}z)(\varphi(w) - \varphi(z))} \right|^{2 + \kappa} \right. \\ &\times (1 - |w|^{2})^{\kappa} \, \mathrm{d}A(w) \right\}^{1/(2 + \kappa)} \\ &\times \left\| f \right\|_{X_{\kappa}(\mathbf{D})}. \end{aligned}$$

The function

$$J_{\kappa}[\varphi](z) = \int_{\mathbf{D}} \left| \frac{(w-z)\varphi'(w)}{(1-\bar{w}z)(\varphi(w)-\varphi(z))} \right|^{2+\kappa} (1-|w|^2)^{\kappa} dA(w)$$

is essentially the familiar Marcinkiewicz-Zygmund integral:

$$J_k[\varphi](z) \le 4^{\kappa} I_{\kappa}(\varphi(z)) + O(1), \qquad z \in \mathbf{D}.$$

We get:

UNIFORM SOBOLEV IMBEDDING. For complex λ with

$$|\lambda| < \frac{\kappa 4^{-\kappa}}{9e(2+\kappa)},$$

we have

$$\int_{\mathbf{D}} \exp \left\{ |\lambda| \sup_{f \in \text{ball}(X_{\kappa}(\mathbf{D}))} \left| \widetilde{\mathcal{C}}_{\varphi} [f](z) \right|^{2+\kappa} \right\} \times |\varphi'(z)|^{2} dA(z) < +\infty.$$

The proof of the main theorem

By the Corollary on p. 7,

$$\log \frac{z\varphi'(z)}{\varphi(z)} + \log(1-|z|^2) = z^2 \widetilde{\mathcal{C}}_{\varphi}[g_z](z) + O(1),$$

where

$$g_z(w) = \frac{1}{1 - \bar{w}z}.$$

We plan to apply the Uniform Sobolev Imbedding to the function $f = f_z = g_z/\|g_z\|_{X_{\kappa}(\mathbf{D})}$. We get

$$||g_z||_{X_{\kappa}(\mathbf{D})}^{2+\kappa} \sim \left[\frac{\Gamma(\frac{1-\kappa}{1+\kappa})}{\Gamma(\frac{1}{1+\kappa})^2} \log \frac{1}{1-|z|^2}\right]^{1+\kappa}.$$

Let Λ be such that

$$\Lambda > \left[\frac{\Gamma\left(\frac{1-\kappa}{1+\kappa}\right)}{\Gamma\left(\frac{1}{1+\kappa}\right)^2} \right]^{1+\kappa}.$$

We now find that for

$$|\lambda| < \frac{\kappa 4^{-\kappa}}{9e(2+\kappa)},$$

$$\int_{\mathbf{D}} \exp\left\{\frac{|\lambda|}{\Lambda} \left| 1 - \frac{\log \frac{z\,\varphi'(z)}{\varphi(z)}}{\log \frac{1}{1-|z|^2}} \right|^{2+\kappa} \log \frac{1}{1-|z|^2}\right\} \times |\varphi'(z)|^2 \mathrm{d}A(z) < +\infty.$$

It remains to apply a linear approximation argument. We apply the convexity estimate (a, b complex)

$$|a|^{2+\kappa} = |\bar{a}|^{2+\kappa}$$

$$\geq |b|^{2+\kappa} - (2+\kappa)|b|^{\kappa} \operatorname{Re}[b(\bar{b}-a)]$$

$$= |b|^{2+\kappa} + (2+\kappa)|b|^{\kappa} \left[\operatorname{Re}b - |b|^{2}\right]$$

$$- (2+\kappa)|b|^{\kappa} \operatorname{Re}[b(1-a)],$$

to

$$a = 1 - \log \frac{z\varphi'(z)}{\varphi(z)} \log \frac{1}{1 - |z|^2},$$

and obtain

$$\left| 1 - \frac{\log \frac{z \varphi'(z)}{\varphi(z)}}{\log \frac{1}{1 - |z|^2}} \right|^{2 + \kappa} \log \frac{1}{1 - |z|^2}$$

$$\geq \left[|b|^{2 + \kappa} + (2 + \kappa)|b|^{\kappa} \left[\operatorname{Re}b - |b|^2 \right] \right] \log \frac{1}{1 - |z|^2}$$

$$- (2 + \kappa)|b|^{\kappa} \operatorname{Re} \left[b \log \frac{z \varphi'(z)}{\varphi(z)} \right]$$

for any $b \in \mathbb{C}$. We now insert this estimate into the estimate we got from the Uniform Sobolev Imbedding, and find that

$$\int_{\mathbf{D}} \exp\left\{\frac{|\lambda|}{\Lambda} \left[|b|^{2+\kappa} + (2+\kappa)|b|^{\kappa} \left[\operatorname{Re}b - |b|^{2}\right]\right] \right.$$

$$\times \log \frac{1}{1 - |z|^{2}}$$

$$-\frac{|\lambda|}{\Lambda} (2+\kappa)|b|^{\kappa} \operatorname{Re}\left[b \log \frac{z\varphi'(z)}{\varphi(z)}\right]\right\}$$

$$\times |\varphi'(z)|^{2} dA(z) < +\infty.$$

Next, we assume $b \neq 0$, and put $\tau = \Lambda^{-1} |\lambda| (2+\kappa) |b|^{\kappa} b$. Note also that

$$\exp\left\{-\frac{|\lambda|}{\Lambda}\left(2+\kappa\right)|b|^{\kappa}\operatorname{Re}\left[b\log\frac{z\varphi'(z)}{\varphi(z)}\right]\right\}$$
$$=\left|\left[\frac{z\varphi'(z)}{\varphi(z)}\right]^{-\tau}\right|.$$

We now get that (in view of the restrictions on λ, Λ)

$$\int_{\mathbf{D}} \left| \left[\frac{z\varphi'(z)}{\varphi(z)} \right]^{-\tau} \right| \left(1 - |z|^2 \right)^{-\operatorname{Re}\tau + R(\tau)} \times |\varphi'(z)|^2 dA(z) < +\infty$$

holds so long as $R(\tau)$ satisfies

$$R(\tau) > R_0(\tau) := \inf_{0 < \kappa < 1} \left(\frac{9e4^{\kappa}}{\kappa} \right)^{1/(1+\kappa)} \frac{(1+\kappa)\Gamma(\frac{1-\kappa}{1+\kappa})}{(2+\kappa)\Gamma(\frac{1}{1+\kappa})^2} |\tau|^{(2+\kappa)/(1+\kappa)}.$$

The choice (for small $|\tau|$)

$$\kappa = \frac{1}{\log \frac{1}{|\tau|}},$$

yields the asserted asymptotics.