BOUNDARY PROPERTIES OF GREEN
FUNCTIONS IN THE PLANE

H. Hedenmalm, A. Baranov

Introduction

Q) — bounded simply connected domain in C which

contains 0.

¢ : D — Q — the conformal mapping with ¢(0) =

0, ¢'(0) > 0.
Ga(z,w) is the Green function for Q (z,w € Q).
We write Gq(z) = Ga(z,0).
Wirtinger derivatives:

3z:___1_<_52__i_5_’_> O :_1_<_§_+i_8_).
2\0x Oy)’ 2\ 0z Oy
Multiplicative counterparts:
0 = z0,, 0F = z0,. |
PROBLEM. Compare, for complex 7 and real «,
|18 Ga(z)]"| with |Ga(z)|™%

More precisely, when do we have
(1) / 162 Gal2)]"| [Gal2)|* dA(2) < +oo?
Q .
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We denote by Aq(7) the “best possible” o for a
given T.
MAIN THEOREM. We have
2
1
Aq(1) < —ReT + P—g—— + o(l)J 7] log F'—l

as |T| — 0. The o(1) term is independent of the choice
of the bounded simply connected domain .

If Aq(7) + Aq(—7) < 0, our scheme of comparing
the quantities in (1) in terms of L! integrals is very suc-
cesstul. It is therefore natural to view the quadratic-
logarithmic remainder term in the Main Theorem as
the amount by which the L' comparison might fail.

In terms of ¢,

Galp(2)) =log(|z[*),  z€D,

and we get

/l@x )] 1G(2)|* dA(2)

- L1122 {08 2} woraace).

()
Integral means spectra. Let B,(7) be “the best”

0 such that
1 (s ze /(,reze) 1
o [ o(re®?) J d("‘O((l——r)ﬂ)
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as r — 17. It is possible to show that
B,(t)=Aq(2—-71)+1

for all complex 7. the universal integral means spec-
trum for the class of bounded univalent functions S
is the function By(7), obtained by taking the sup of
B, (1) over all ¢. As a consequence of the Main The-
orem, we get

9e? 5. 1
By(2—7) <1—Rer+ > +o(1)| |7| logl—;,—

as |t| — 0. For real 7, P. W. Jones and N. G. Makarov
obtained a smaller error term:

By(2—7)<1-7+0(t%), R>37—-0.

The Grunsky identity and generalizations

We need the Cauchy transform Cgq,

Calfi(s) = [ 2 Y 4 A(w),

w.__

and the Beurling transform

Bal)(2) = 0.Calfl(2) = pv | T dA(w)

Q
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It is clear that in the sense of distribution theory,

0:Calfl(z) = —f(2), z€,

and

9:Calf|(z) = Baf(2).

It is well-known that for Q = C, B¢ is a unitary trans-
formation L?(C) — L?*(C). In general, Bq is a con-
traction L?(Q2) — L2?(Q).

We connect two functions f and g, on € and D,
respectively, via

9(z) = ¢'(2) f o p(2),

and define the integral operator

Colgl(2) =(Calf]) c ¢(2)

B /D @(w(p)liw;(z) g9(w) dA(w), z € D;

C, is then a contraction L*(D) — W1%(D)/C.

It is known that Bc is bounded! L?(C) — L?(C),
for all p with 1 < p < 400. Let K(p) be a positive
constant such that

(2) |Befllrec) < K(p) Ifllze(cy,  F € LP(C).
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The optimal constant K (p) in (2) is not known; how-
ever, we may choose, e. g., K(p) = 2(p* — 1), where
p* = max{p,p'}, and p’ = p/(p — 1) is the dual expo-
nent (one expects K (p) = p* —1 is the optimal choice).
For 0 < 0 < 2, we introduce the 0-skewed Beurling
transform, as defined by

i1y [ CEC@PE
TR o) — e T A

It follows from (2) that
IBZ?#ll ooy < K@) I flzoy,  f € LP(D),

for all p with 1 < p < 4co. In the symmetric case
0 =1, we write B, in place of B,. We note that B,, is
a contraction on L?(D).

BASIC IDENTITY. We have the identity

z(p(2) — 9(())
(z = Q)p(2)

_ ' (w) ¢ y
B /Dsa(w) —p(z) 1—w( dA(w).

GRUNSKY IDENTITY (integral form). We have

P'()e'() 1
(p(2) —())?  (2—()?

B o' ()¢ (w) 1 "
-/, (o(w) — p(2))? T —acp “AW):
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Let P be the Bergman projection operator

PLf1(2) = /D ( 1) g Aw),

1 —wz)
which is the orthogonal projection L?(D) — A?%(D).
Let B = Bp.
GRUNSKY IDENTITY (operator form).

B, — B =PB, = B,P = PB,P.

The strong Grunsky inequality is equivalent to the
statement that B,—B is a contraction on L?(D), which
immediately follows from the above.

Let D denote the operator

DUNE) = [ s dAGw)

and Mr the operator of multiplication by F'.
SKEWED GRUNSKY IDENTITY. (0 <6 < 2)

BY — B+ (0 — )DMy_pMyr ) = PB.

The skewed Grunsky identity is suitable for the
space LP(D), provided 6 = 2/p.
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VARIANT OF BASIC IDENTITY. We have
z(p(z) — ¢(C))

O = Oel2)
<0 kP e e
+log (1—2¢) + 2¢ 11_;@;
~¢ [ o T e0r A
LEMMA.
(= ) g ~ | <©

COROLLARY.

og 225 - 1og (1~ 2P

_ 2 ' (w Z—w "
=2 [ e o pap A+ 00

Marcinkiewicz-Zygmund integrals

Suppose 0 < k¥ < 1. Let d(w) be the Euclidean
distance from w to C\ Q. Pick a real parameter =,
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confined to the interval 0 < v < 1. The Marcinkiewicz-
Zygmund integral is defined by the formula

I.(z) = /Qmin { ® is—(zuu)];“’ 75—(—1:; } dA(w).

Zygmund showed (essentially) in 1969 that

k€24
—1 <
”Ll(c) T Kk —9e|A\[y 5 (2 + k)

| [0

for complex A with

KkYy"
A L]
Al < 9e(2 + k)

Uniform Sobolev imbedding

We work with

(3) Colfl(=) = /D Sp(ww)/iw;(z) 12: Wz

For 0 < kK < 1, we consider the Lebesgue space

X, (D) = L?(D, ),

where

2+ K

T ) =0- |2[2) 7/ ) dA(2).

p:




By Holder’s inequality, we get

Co[£1(2))

{/ l(l——wZ)—E:)w )w(z))
}1/(2-!-&)

2+kK

x (1= |w]*)" dA(w)

X “f“X,,v(D)'

The function

(1 — [w[*)"dA(w)

/ l(l - wz)(so :Z (w)so(z))

is essentially the familiar Marcinkiewicz-Zygmund in-
tegral:

Jilol(z) <47 I.(p(2)) + O(1),  zeD.

We get:

UNIFORM SOBOLEV IMBEDDING. For com-

plex A with
I S

9e(2 + k)’

Al <
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we have

[eo{nl  sp |G [

feball(x,. (D))
x |0 (2)]? dA(2) < +o0.

The proof of the main theorem

By the Corollary on p. 7,

z¢'(2) _1212) = 22C. .
log =255 + log(1 = ") = 2°Cylg:](2) + O(1),

where

1
9:(w) = 1 —wz

We plan to apply the Uniform Sobolev Imbedding to
the function f = f, = g. /9|l x.(m)- We get

14+x
F(l:_fi) 1
24Kk 1+k

l9=1%. o) { 7 log 1— |22 '

1+x

Let A be such that




We now find that for

I)\l < k4~

96(2 + K,) ’

AL ;?z) 1
ex lo
/D P { A & 1 —|z|?
x|’ (2)|*dA(z) < +oo.

g ;e
It remains to apply a linear approximation argument.
We apply the convexity estimate (a,b complex)
af+e = [af**
>[b]*t* — (2 + k) |b|*Re [b(E — a)]
= |b]**" + (2 + k)|b|* [Reb — |b]?]
— (2 + &) |b|*Re[b(1 — a)],

log

to

2¢'(2) 1
a=1-—log log ——,
p(z) 71—z
and obtain
zp'(z) |2tk
1— 08 74 log !
log 1—_—}—;{9— 1—|z|?
K K 1
> [lb|2+ + (24 £)[b|" |[Reb — 'blz]] log 1— |22

— (2 + &)|b|*Re [b log Z:;’éfj)}
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for any b € C. We now insert this estimate into the
estimate we got from the Uniform Sobolev Imbedding,

and find that

/D exp { i [Ib[z“‘ + (24 k)[b|® [Reb — |9] ]]

1
1 — |z

X log

A 5 2’ (2)
(2+ﬁ;)|b| Re[blog o02) }}

x|’ (2)|2dA(z) < +oo0.

Next, we assume b # 0, and put 7 = A~ \|(2+k) |b|*D.
Note also that

1Al . 2¢'(2)
exp{ n (2+ k) |b|" Re _blog o(2) ]}
_ [w’(Z)] -
p(2)

We now get that (in view of the restrictions on A, A)

bl

[zsa’(Z)} -7

1 oy —Rer+R(7)
o) [

x|’ (2)|*dA(2) < 400
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holds so long as R(7) satisfies
R(T) > Ro(7) :=

N\ 1/(14+k l—r
inf (964 ) /( ) (1 + H)F<l+n) ITI(Z—I—m)/(l—l-m).
0<kr<1 K (2 + H)F('ﬂliz)z |

The choice (for small |7])

yields the asserted asymptotics.
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