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Superalgebras and closed ideals

Abstract. Let 4 be a Banach algebra (complex, commutative, unital) which is equipped
with a colletion y of closed ideals whose intersection is |0]. For Banach superalgebras B
containing 4 as a dense subalgebra, we define what it should mean that B inherits F from A
The main result is that there exists a pseudo-Banach superalgebra (#) of A such that B
inherits # from A if and only if the injection mapping A — </ (.#) extends to a bounded
monomorphism B — o7 ( #).

Introduction. All algebras we will consider are assumed complex, com-
mutative, and unital. For a Banach algebra, an ideal theory is a characteriza-
tion of its closed ideals and the corresponding quotient algebras. In Heden-
malm [2], [3], the ideal theories of closely related Banach algebras were
compared in some typical situations. Here, we will explore the same problem
from a different angle, namely when one of the algebras is a dense subalgebra
of the other.

1. Notation and basic concepts. An epimorphism is a surjective homo-
morphism, and a monomorphism is an injective homomorphism.

Let 4 be a Banach algebra. We will denote by .#(A4) the space of
complex homomorphisms on A4, endowed with the weak = topology induced
by the (topological) dual space A*: this is the Gelfand space or maximal

ideal space of A. Recall that a complex homomorphism is a nonzero’

homomorphism 4 — C, where C denotes the complex field.
We will denote by EUN(4) the set of all equivalent submultiplicative
unital norms, that is, those equivalent norms p which satisfy

p(xy)<p(x)p(), x,yed, and p(l)=1.

It is well known that this set is never empty.

Bornological algebras will appear in this paper. Good references are
Allan, Dales, and McClure [1] and Waelbroeck [4], [5].

The so-called pseudo-Banach algebras (Allan, Dales, McClure [1]) con-
stitute a particularly interesting subclass — they are roughly speaking unions
of Banach algebras that are directed with respect to inclusion, endowed
with the natural inductive limit bornology.
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A linear mapping between two bornological algebras is called bounded if
it maps bounded sets onto bounded sets.
A subalgebra A of a pseudo-Banach algebra B = {J B, (where B, is a

ael

Banach algebra for every « in the index set I) is said to be a Banach
subalgebra if it is equipped with a norm that makes A a Banach algebra and
the injection mapping A — B is bounded. By the way the bornology on B is
defined, a Banach subalgebra A of B must be contained in one of the Banach
algebras B,, and by the closed graph theorem, its norm is determined within
equivalence. We speak of B as a pseudo-Banach superalgebra of A, or in case
B is a Banach algebra, it is a Banach superalgebra of A. B is a minimal
Banach superalgebra of 4 if it is a Banach superalgebra of 4 and A is dense
in B. :

Let # be any family of ideals in an algebra A. For ease of notation, we
will use the convention of writing

rad(9) = IQ«L

2. Preliminaries. Let 4 be an arbitrary Banach algebra. The following
lemma will prove useful.

Lemma 2.1. Suppose pi, p,e EUN(A). Then there exists a pe EUN(4)
such that p < min(p;, P2)

Proof. Put
B, =pr'([0,1) and %= pz 1 ([0, 1]),

the respective closed unit balls. Since p, and p, are equivalent norms, there
exists a 4> 1 such that

/1_1.@1 C%z Clﬁl

Let # be the closed convex hull of %%, which is a subset of A%,
containing %, U %,. It is easily checked that Z is a convex balanced
neighborhood of 0 such that

(2.1 BB=2B.

Let p be the Minkowski functional of %, which is an equivalent norm on A.
Then 2 = p~* ([0, 1]), and, by (2.1), p is submultiplicative. Hence p(1) > 1,
but since 1€ &, N #,, p(1) must equal 1. We conclude that pe EUN(A); that
p < min(py, p) 18 obvious.

3. The problem and its solution. From now on, 4 is a fixed arbitrarily
chosen Banach algebra and 7 is a family of closed A-ideals such that

rad(#) = (1= {0}.
Ie ¥
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Let B be a minimal Banach superalgebra of A. &g d¢hotes the closure
operation in B. For every Ie ¢, ®5(I) is a (closed) B-deal, since A was dense
in B. We write #(B) for the image of # under the mapping &p.

Derinition 3.1. We say that B inherits ¢ from A if
(a) dp(I)nA =1 for all Ie ¢, which makes @5 a bijection ¢ — ¢ (B),
(b) rad(#(B)= () J=1{0}, and

)

Je #(B
(c) the quotient algebras A/I and B/®(I) are canonically isomorphic for

all Ie #. .

Remark 3.2. It should be observed that it follows from (¢) of Defini-
tion 3.1 that A+J = B for every Je #(B), and since (4+J)/J is canonically
isomorphic to A/(J N A), it follows that @z(I) " A = I for all Ie ¢. Hence (a)
is ‘a consequence of (c).

The object of this paper is to characterize those algebras B which inherit
F from A. Our main result, Theorem 3.8, states that there exists a pseudo-
Banach superalgebras .«/( #) of A such that B inherits ¢ from A if and only
if the canonical monomorphism A — .o/ (¢) extends to a (unique) bounded
monomorphism B — </ (_¢).

It is now our intention to introduce a family {/,},., of minimal
Banach superalgebras of A such that ./, inherits ¢ from A. The main
reason for doing so is that we will be able to show that every minimal
Banach superalgebra B of 4 which inherits ¢ from A is a (dense) Banach
subalgebra of some .o/, The pseudo-Banach algebra o/ ( #) will be the union
of all o7,

For all Ie ¢, we will consider the norms in EUN(A/I) as seminorms on
A. Let 2 = 2(¢#) be the family of all mappings p: 4 x ¢ — [0, 00) such that
p(:, De EUN(4/I) and '

p(, DS C|l'llyy for all Ie g,

for some constant C independent of I. One should observe that £ is
nonempty. By our condition rad(#) = {0}, the expression

Ixll, = supp(x, I)
Ie g
is an algebra norm on A4 for every pe 2. A, denotes the completion of 4 in
the ||||,-norm, which is a (minimal) Banach superalgebra of 4. Put
o, = A frad(F(4,), pe?.
If we can show that .
rad(#(4,))n A4 = {0},

the composition of the injection mapping 4 -> A4, and the canonical epi-
morphism A, =</, will be a bounded (= continuous). monomorphism
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A —.o/,. By the definition of the norm in A,, the canonical epimorphism
A — A/l has a unique bounded extension L;: A, —A/I, which is also an
epimorphism, for every I € ¢. Clearly, kerL; (DAP(I), and since L; is ca-
nonical on 4, ker L, N I. The assertion follows, and hence we may regard </,
as a minimal Banach superalgebra of A.

ProPOSITION 3.3. A minimal Banach superalgebra B of A inherits ¢ from
A if and only if the injection mapping A — </, extends boundedly to a mono-
morphism B — .o/, for some p€P.

Proof. We may assume without loss of generality. that the norms of 4
and B are chosen in EUN(4) and EUN(B), respectively.

Let us deal with the “only if” part of the assertion first. So, assume B
inherits ¢ from A. Since the norm of B belongs to EUN(B), the induced
norm on B/®,(I) belongs to EUN(B/®(I)), and by (c) of Definition 3.1, its
restriction to 4 is in EUN(A/I) for every Ie #. Put

p(x, ) = l|x+Pg(Dllgjogn, X€4, I€ 7.

In order to show that pe # it only remains to check that

p(, D<C| |l for all Te s
for some constant C independent of I. But evidently,

Il < Clixlls, x4,
for some constant C, since A is a Banach subalgebra of B, and consequently,
p(x, I) = llx+ P (Dllgjapy < C'lIx+ g, x€4, I€ f.
Hence pe 2, and since p(x, I) < ||xlls,
I, < lxlls. xe 4,

so the injection mapping 4 — A, extends to a (unique) bounded homo-
morphism j: B = A,. Our next step is to show that j is a monomorphism.
Let y ekerj be arbitrary. Then there exists a sequence {ya}& in A converging
to y in the norm of B. Since y ekerj, ||y,ll, =0 as n — o0, and consequently
ly,+Jllgs =0 as n—oo for all Je #(B). Hence yerad( ¢ (B)) = {0}, and
the assertion follows.

We will now show that the composition I: B—./, of j and the
canonical epimorphism 4, = </, is a monomorphism, too. Let us for simplic-
ity regard B as a subalgebra of A4,. By the definition of the norm in A4, the
canonical epimorphism B — B/J extends to a (unique) bounded epimorphism
Ay A, — BJJ for every Je #(B). Clearly, ker4; o (DAP(J), and since A; is
canonical on 8, ker A, "B = J. The assertion follows, since

ker |=rad(#(4)nB= (| @, ()nB= () J=0.
Je #(B) Je #(B)
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Let us turn to the “if” part of the assertion. So, assume B is a Banach
subalgebra of ./, for some pe.# We have mentioned before that the
canonical epimorphism A — A4/I has a unique bounded linear extension
L;: o/, — A/, an epimorphism which is canonical on 4. Denote by %, the
restriction to B of L;, which is bounded since B is a Banach subalgebra of
</,. We now intend to show that ker &, = &y (I) for all Ie_y. Obviously,
®p(I) = ker #;. Choose a B-Cauchy sequence |x,)i’ = A4 converging to an
arbitrary xeker #;. Then |lx,—ylla—0 as n— oo for some sequence
{Vu}& = I since ||x, + 1|4y — 0 as n— oo, and it follows that |y,}& is another
B-Cauchy sequence converging to x. We conclude that ker &, = @, (I). Since
&} 1s canonical on A4, ker #; A = I, and A4/I and B/ker &, are canonically
isomorphic. This shows that conditions (a) and (c) of Definition 3.1 are met.
(b) follows trivially, since rad (¢ (.«/,)) = {0}. The proof of the proposition is
complete.

Remark 34. A consequence of Proposition 3.3 is the following. Let ¥
be the set of all closed A-ideals which contain an ideal in #. Then a minimal
Banach superalgebra of A4 inherits ¢ from A if and only if it inherits y
from A.

Putting B = </,, Proposition 3.3 has the following consequence.
CoroLLarY 3.5. For every pe 2, <f, inherits ¢ from A.

There is a natural order relation on the set {.o7 } pipesp: fOT D, g€ P, write
s/, <X o/, if for some constant C,

IIxll, < Clixll,, xeA.

Clearly, {7,},., is partially ordered by “=<”. We have the following result.

Prorosition 3.6. For any two py, p,e P, there is a pe P such that
A, <X, and Ay XS,

Proof. For every Ie ¢, Lemma 2.1 tells us that there exists a
p(:, Ne EUN(A4/I) such that

p(‘, I) g min(pl(.’ I)’ Pz(', I))
Clearly this p will do.

The following proposition tells us that we may regard </, as a (dense
Banach) subalgebra of .+, if o/, </, and therefore the order relatlon “<”
is just ordinary mclus1on

Prorosirion 3.7. If o/, < o, for two p, qe P, the mjectzon mapping A
— ./, has a (unique) bounded extension o/, — s/, which is a monomorphism.

Proof. By the assumptions on p and g, the injection mapping 4 — A,
extends uniquely to a bounded homomorphism I: A, — A,. Clearly, this w111
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define a bounded monomorphism 7, — o/, which extends the canonical
monomorphism A — o/, if we can show that

(3.1 ’ l((bAq(I)) =, () and -
(3.2 It (di,,p(l) nIl(Ay)) = P, (D)
for all Ie ¢, since then

I(rad(#(4,)) crad(£(4,) and I7'(rad(F(4,) N 1(4) = rad (f (4,).

For Ie #, denote by L;, the bounded epimorphism A4, — A/I which
extends the canonical epimorphism A — A/I, and let L;,: A,— A/l be
defined analogously. It is easy to see that L; , = Ly, 0l; just check on A and
remember that A is dense in A4,. Thus

ker L; , = [ * (ker L; , N I(4,)),

and if we can show that ker L; , = QSAP(I) and kerL;, = @Aq(l), 3.1-(3.2)

will follow easily from this relation because [0]~ ! is the identity mapping on
the set of subsets of /(A4,). It suffices to verify the assertion for L; , orly, since
the proof for L;, would be identical. We will employ the same type of
argument as we used in the proof of Proposition 3.3. Obviously,
@ Ap(I) cker L; ,. Choose an Ap-Cauchy sequence {x,}& = A converging to
an arbitrary xeker L; ,. Then ||x,+ |4y — 0 as n— co, and hence there is a
sequence {y,}& = I such that ||x,—y,ll,— 0 as n— co. It follows that {y,}&
is another A4,-Cauchy sequence converging to x, and we conclude that
kerL;, = QDAP(I). The proof of the proposition is complete.

We will regard ./, as a subalgebra of o, if o/, <X, (p,qe?P). Let
A(f ) = U ﬁQ{m
pe?(F)
which is a pseudo-Banach algebra when endowed with its inductive limit
bornology. We are now ready to formulate our main result.

TueoreM 3.8. A minimal Banach superalgebra B of A inherits ¢ from A
if and only if the injection mapping A— /() extends boundedly to a
monomorphism B — o ( f).

Proof. The “only if” part is clear by Proposition 3.3. On the other
hand, if B is a Banach subalgebra of .</(#), then B must be contained in
some </, pe 2, by the way the bornology on </ (#) is defined, and therefore
Proposition 3.3 proves the other direction, too.

ExampLEs 3.9. (a) Let A be the disc algebra A(D), which consists of
those holomorphic functions on D = {ze C: |z| <1} that extend continuous-
ly to the boundary 0D, and let # consist of the ideals z"+ A(D), n = 0, where
» is the coordinate function z({)=¢, {eD. Then /(#)= C[[z]], the
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algebra of formal power series at the origin, and the sets

{i a"Zne C[[Z]] Ian, S Mn}a

n=0

where {M,}& ranges over all positive sequences, form a base of the born-
ology on /(7).

(b) Assume A4 is semisimple, and let F = A (A), the set of maximal
ideals. Regard A as a subalgebra of C (A (A)). Then /(¢) is the uniform
closure of A.
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