HÅKAN HEDENMALM (Uppsala, Sweden)

Superalgebras and closed ideals

Abstract. Let A be a Banach algebra (complex, commutative, unital) which is equipped with a colletion $\mathcal I$ of closed ideals whose intersection is $\{0\}$. For Banach superalgebras B containing A as a dense subalgebra, we define what it should mean that B inherits $\mathcal I$ from A. The main result is that there exists a pseudo-Banach superalgebra $\mathscr A(\mathcal I)$ of A such that B inherits $\mathcal I$ from A if and only if the injection mapping $A \to \mathscr A(\mathcal I)$ extends to a bounded monomorphism $B \to \mathscr A(\mathcal I)$.

Introduction. All algebras we will consider are assumed complex, commutative, and unital. For a Banach algebra, an *ideal theory* is a characterization of its closed ideals and the corresponding quotient algebras. In Hedenmalm [2], [3], the ideal theories of closely related Banach algebras were compared in some typical situations. Here, we will explore the same problem from a different angle, namely when one of the algebras is a dense subalgebra of the other.

1. Notation and basic concepts. An epimorphism is a surjective homomorphism, and a monomorphism is an injective homomorphism.

Let A be a Banach algebra. We will denote by $\mathcal{M}(A)$ the space of complex homomorphisms on A, endowed with the weak * topology induced by the (topological) dual space A^* ; this is the Gelfand space or maximal ideal space of A. Recall that a complex homomorphism is a nonzero homomorphism $A \to C$, where C denotes the complex field.

We will denote by EUN(A) the set of all equivalent submultiplicative unital norms, that is, those equivalent norms p which satisfy

$$p(x \cdot y) \le p(x) p(y), \quad x, y \in A, \quad \text{and} \quad p(1) = 1.$$

It is well known that this set is never empty.

Bornological algebras will appear in this paper. Good references are Allan, Dales, and McClure [1] and Waelbroeck [4], [5].

The so-called *pseudo-Banach algebras* (Allan, Dales, McClure [1]) constitute a particularly interesting subclass — they are roughly speaking unions of Banach algebras that are directed with respect to inclusion, endowed with the natural inductive limit bornology.

A linear mapping between two bornological algebras is called bounded if it maps bounded sets onto bounded sets.

A subalgebra A of a pseudo-Banach algebra $B = \bigcup_{\alpha \in I} B_{\alpha}$ (where B_{α} is a

Banach algebra for every α in the index set I) is said to be a Banach subalgebra if it is equipped with a norm that makes A a Banach algebra and the injection mapping $A \to B$ is bounded. By the way the bornology on B is defined, a Banach subalgebra A of B must be contained in one of the Banach algebras B_{α} , and by the closed graph theorem, its norm is determined within equivalence. We speak of B as a pseudo-Banach superalgebra of A, or in case B is a Banach algebra, it is a Banach superalgebra of A. B is a minimal Banach superalgebra of A if it is a Banach superalgebra of A and A is dense in B.

Let \mathscr{J} be any family of ideals in an algebra A. For ease of notation, we will use the convention of writing

$$rad(\mathcal{J}) = \bigcap_{I \in \mathcal{J}} I.$$

2. Preliminaries. Let A be an arbitrary Banach algebra. The following lemma will prove useful.

Lemma 2.1. Suppose p_1 , $p_2 \in EUN(A)$. Then there exists a $p \in EUN(A)$ such that $p \leq \min(p_1, p_2)$.

Proof. Put

$$\mathcal{B}_1 = p_1^{-1}([0, 1])$$
 and $\mathcal{B}_2 = p_2^{-1}([0, 1]),$

the respective closed unit balls. Since p_1 and p_2 are equivalent norms, there exists a $\lambda \ge 1$ such that

$$\lambda^{-1} \mathcal{B}_1 \subset \mathcal{B}_2 \subset \lambda \mathcal{B}_1.$$

Let \mathcal{B} be the closed convex hull of $\mathcal{B}_1 \cdot \mathcal{B}_2$, which is a subset of $\lambda \mathcal{B}_1$ containing $\mathcal{B}_1 \cup \mathcal{B}_2$. It is easily checked that \mathcal{B} is a convex balanced neighborhood of 0 such that

$$\mathscr{B} \cdot \mathscr{B} = \mathscr{B}.$$

Let p be the Minkowski functional of \mathcal{B} , which is an equivalent norm on A. Then $\mathcal{B} = p^{-1}([0, 1])$, and, by (2.1), p is submultiplicative. Hence $p(1) \ge 1$, but since $1 \in \mathcal{B}_1 \cap \mathcal{B}_2$, p(1) must equal 1. We conclude that $p \in \text{EUN}(A)$; that $p \le \min(p_1, p_2)$ is obvious.

3. The problem and its solution. From now on, A is a fixed arbitrarily chosen Banach algebra and $\mathscr J$ is a family of closed A-ideals such that

$$\mathrm{rad}(\mathcal{J}) = \bigcap_{I \in \mathcal{J}} I = \{0\}.$$

Let B be a minimal Banach superalgebra of A. Φ_B denotes the closure operation in B. For every $I \in \mathcal{J}$, $\Phi_B(I)$ is a (closed) B-deal, since A was dense in B. We write $\mathcal{J}(B)$ for the image of \mathcal{J} under the mapping Φ_B .

DEFINITION 3.1. We say that B inherits \mathcal{J} from A if

- (a) $\Phi_B(I) \cap A = I$ for all $I \in \mathcal{J}$, which makes Φ_B a bijection $\mathcal{J} \to \mathcal{J}(B)$,
- (b) $\operatorname{rad}(\mathcal{J}(B)) = \bigcap_{J \in \mathcal{J}(B)} J = \{0\}, \text{ and }$
- (c) the quotient algebras A/I and $B/\Phi_B(I)$ are canonically isomorphic for all $I \in \mathcal{J}$.

Remark 3.2. It should be observed that it follows from (c) of Definition 3.1 that A+J=B for every $J\in \mathscr{J}(B)$, and since (A+J)/J is canonically isomorphic to $A/(J\cap A)$, it follows that $\Phi_B(I)\cap A=I$ for all $I\in \mathscr{J}$. Hence (a) is a consequence of (c).

The object of this paper is to characterize those algebras B which inherit \mathcal{J} from A. Our main result, Theorem 3.8, states that there exists a pseudo-Banach superalgebras $\mathcal{A}(\mathcal{J})$ of A such that B inherits \mathcal{J} from A if and only if the canonical monomorphism $A \to \mathcal{A}(\mathcal{J})$ extends to a (unique) bounded monomorphism $B \to \mathcal{A}(\mathcal{J})$.

It is now our intention to introduce a family $\{\mathscr{A}_p\}_{p\in\mathscr{P}}$ of minimal Banach superalgebras of A such that \mathscr{A}_p inherits \mathscr{J} from A. The main reason for doing so is that we will be able to show that every minimal Banach superalgebra B of A which inherits \mathscr{J} from A is a (dense) Banach subalgebra of some \mathscr{A}_p . The pseudo-Banach algebra $\mathscr{A}(\mathscr{J})$ will be the union of all \mathscr{A}_p .

For all $I \in \mathcal{J}$, we will consider the norms in EUN(A/I) as seminorms on A. Let $\mathcal{P} = \mathcal{P}(\mathcal{J})$ be the family of all mappings $p: A \times \mathcal{J} \to [0, \infty)$ such that $p(\cdot, I) \in \text{EUN}(A/I)$ and

$$p(\cdot, I) \leq C \cdot ||\cdot||_{A/I}$$
 for all $I \in \mathcal{J}$,

for some constant C independent of I. One should observe that \mathscr{P} is nonempty. By our condition rad $(\mathscr{I}) = \{0\}$, the expression

$$||x||_p = \sup_{I \in \mathcal{J}} p(x, I)$$

is an algebra norm on A for every $p \in \mathcal{P}$. A_p denotes the completion of A in the $\|\cdot\|_p$ -norm, which is a (minimal) Banach superalgebra of A. Put

$$\mathscr{A}_p = A_p/\mathrm{rad}(\mathscr{J}(A_p)), \quad p \in \mathscr{P}.$$

If we can show that

$$\operatorname{rad}(\mathscr{J}(A_p)) \cap A = \{0\},$$

the composition of the injection mapping $A \to A_p$ and the canonical epimorphism $A_p \to \mathcal{A}_p$ will be a bounded (= continuous) monomorphism

 $A \to \mathcal{A}_p$. By the definition of the norm in A_p , the canonical epimorphism $A \to A/I$ has a unique bounded extension L_I : $A_p \to A/I$, which is also an epimorphism, for every $I \in \mathcal{I}$. Clearly, $\ker L_I \supset \Phi_{A_p}(I)$, and since L_I is canonical on A, $\ker L_I \cap I$. The assertion follows, and hence we may regard \mathcal{A}_p as a minimal Banach superalgebra of A.

PROPOSITION 3.3. A minimal Banach superalgebra B of A inherits \mathcal{J} from A if and only if the injection mapping $A \to \mathcal{A}_p$ extends boundedly to a monomorphism $B \to \mathcal{A}_p$ for some $p \in \mathcal{P}$.

Proof. We may assume without loss of generality that the norms of A and B are chosen in EUN(A) and EUN(B), respectively.

Let us deal with the "only if" part of the assertion first. So, assume B inherits \mathscr{J} from A. Since the norm of B belongs to EUN(B), the induced norm on $B/\Phi_B(I)$ belongs to EUN($B/\Phi_B(I)$), and by (c) of Definition 3.1, its restriction to A is in EUN(A/I) for every $I \in \mathscr{J}$. Put

$$p(x, I) = ||x + \Phi_B(I)||_{B/\Phi_B(I)}, \quad x \in A, I \in \mathcal{J}.$$

In order to show that $p \in \mathcal{P}$ it only remains to check that

$$p(\cdot, I) \leqslant C \|\cdot\|_{A/I}$$
 for all $I \in \mathscr{J}$

for some constant C independent of I. But evidently,

$$||x||_{B} \leqslant C ||x||_{A}, \quad x \in A,$$

for some constant C, since A is a Banach subalgebra of B, and consequently,

$$p(x, I) = ||x + \Phi_B(I)||_{B/\Phi_B(I)} \le C \cdot ||x + I||_{A/I}, \quad x \in A, I \in \mathcal{J}.$$

Hence $p \in \mathcal{P}$, and since $p(x, I) \leq ||x||_B$,

$$||x||_p \leqslant ||x||_B, \quad x \in A,$$

so the injection mapping $A \to A_p$ extends to a (unique) bounded homomorphism $j \colon B \to A_p$. Our next step is to show that j is a monomorphism. Let $y \in \ker j$ be arbitrary. Then there exists a sequence $\{y_n\}_0^\infty$ in A converging to y in the norm of B. Since $y \in \ker j$, $\|y_n\|_p \to 0$ as $n \to \infty$, and consequently $\|y_n + J\|_{B/J} \to 0$ as $n \to \infty$ for all $J \in \mathcal{J}(B)$. Hence $y \in \operatorname{rad}(\mathcal{J}(B)) = \{0\}$, and the assertion follows.

We will now show that the composition $l\colon B\to \mathcal{A}_p$ of j and the canonical epimorphism $A_p\to \mathcal{A}_p$ is a monomorphism, too. Let us for simplicity regard B as a subalgebra of A_p . By the definition of the norm in A_p , the canonical epimorphism $B\to B/J$ extends to a (unique) bounded epimorphism $A_J\colon A_p\to B/J$ for every $J\in \mathcal{J}(B)$. Clearly, $\ker A_J\supset \Phi_{A_p}(J)$, and since A_J is canonical on B, $\ker A_J\cap B=J$. The assertion follows, since

$$\ker\ l=\mathrm{rad}\left(\mathcal{J}(A_p)\right)\cap B=\bigcap_{J\in\mathcal{J}(B)}\Phi_{A_p}(J)\cap B=\bigcap_{J\in\mathcal{J}(B)}J=0.$$

Let us turn to the "if" part of the assertion. So, assume B is a Banach subalgebra of \mathscr{A}_p for some $p \in \mathscr{P}$. We have mentioned before that the canonical epimorphism $A \to A/I$ has a unique bounded linear extension $L_I \colon \mathscr{A}_p \to A/I$, an epimorphism which is canonical on A. Denote by \mathscr{L}_I the restriction to B of L_I , which is bounded since B is a Banach subalgebra of \mathscr{A}_p . We now intend to show that $\ker \mathscr{L}_I = \Phi_B(I)$ for all $I \in \mathscr{I}$. Obviously, $\Phi_B(I) \subset \ker \mathscr{L}_I$. Choose a B-Cauchy sequence $\{x_n\}_0^\infty \subset A$ converging to an arbitrary $x \in \ker \mathscr{L}_I$. Then $\|x_n - y_n\|_A \to 0$ as $n \to \infty$ for some sequence $\{y_n\}_0^\infty \subset I$ since $\|x_n + I\|_{A/I} \to 0$ as $n \to \infty$, and it follows that $\{y_n\}_0^\infty$ is another B-Cauchy sequence converging to x. We conclude that $\ker \mathscr{L}_I = \Phi_B(I)$. Since \mathscr{L}_I is canonical on A, $\ker \mathscr{L}_I \cap A = I$, and A/I and $B/\ker \mathscr{L}_I$ are canonically isomorphic. This shows that conditions (a) and (c) of Definition 3.1 are met. (b) follows trivially, since $\operatorname{rad}(\mathscr{I}(\mathscr{A}_p)) = \{0\}$. The proof of the proposition is complete.

Remark 3.4. A consequence of Proposition 3.3 is the following. Let \hat{y} be the set of all closed A-ideals which contain an ideal in \mathcal{I} . Then a minimal Banach superalgebra of A inherits $\hat{\mathcal{I}}$ from A if and only if it inherits \mathcal{I} from A.

Putting $B = \mathcal{A}_p$, Proposition 3.3 has the following consequence.

Corollary 3.5. For every $p \in \mathcal{P}$, \mathcal{A}_p inherits \mathcal{J} from A.

There is a natural order relation on the set $\{\mathscr{A}_p\}_{p\in\mathscr{P}}$: for $p,\ q\in\mathscr{P}$, write $\mathscr{A}_q \leqslant \mathscr{A}_p$ if for some constant C,

$$||x||_p \leqslant C ||x||_q, \quad x \in A.$$

Clearly, $\{\mathscr{A}_p\}_{p\in\mathscr{P}}$ is partially ordered by " \leq ". We have the following result.

PROPOSITION 3.6. For any two p_1 , $p_2 \in \mathcal{P}$, there is a $p \in \mathcal{P}$ such that $\mathcal{A}_{p_1} \leq \mathcal{A}_p$ and $\mathcal{A}_{p_2} \leq \mathcal{A}_p$.

Proof. For every $I \in \mathcal{J}$, Lemma 2.1 tells us that there exists a $p(\cdot, I) \in \text{EUN}(A/I)$ such that

$$p(\cdot, I) \leq \min(p_1(\cdot, I), p_2(\cdot, I)).$$

Clearly this p will do.

The following proposition tells us that we may regard \mathcal{A}_q as a (dense Banach) subalgebra of \mathcal{A}_p if $\mathcal{A}_q \leq \mathcal{A}_p$, and therefore the order relation " \leq " is just ordinary inclusion.

PROPOSITION 3.7. If $\mathcal{A}_q \leq \mathcal{A}_p$ for two p, $q \in \mathcal{P}$, the injection mapping $A \to \mathcal{A}_p$ has a (unique) bounded extension $\mathcal{A}_q \to \mathcal{A}_p$, which is a monomorphism.

Proof. By the assumptions on p and q, the injection mapping $A \to A_p$ extends uniquely to a bounded homomorphism $l: A_q \to A_p$. Clearly, this will

define a bounded monomorphism $\mathcal{A}_q \to \mathcal{A}_p$ which extends the canonical monomorphism $A \to \mathcal{A}_p$ if we can show that

(3.1)
$$l(\Phi_{A_q}(I)) \subset \Phi_{A_p}(I) \quad \text{and} \quad$$

$$(3.2) l^{-1}\left(\Phi_{A_p}(I) \cap l(A_q)\right) \subset \Phi_{A_q}(I)$$

for all $I \in \mathcal{J}$, since then

$$l(\operatorname{rad}(\mathscr{J}(A_q))) \subset \operatorname{rad}(\mathscr{J}(A_p))$$
 and $l^{-1}(\operatorname{rad}(\mathscr{J}(A_p)) \cap l(A_q)) \subset \operatorname{rad}(\mathscr{J}(A_q))$.

For $I \in \mathcal{J}$, denote by $L_{I,p}$ the bounded epimorphism $A_p \to A/I$ which extends the canonical epimorphism $A \to A/I$, and let $L_{I,q} \colon A_q \to A/I$ be defined analogously. It is easy to see that $L_{I,q} = L_{I,p} \circ I$; just check on A and remember that A is dense in A_q . Thus

$$\ker L_{I,q} = l^{-1} (\ker L_{I,p} \cap l(A_q)),$$

and if we can show that $\ker L_{I,p} = \Phi_{A_p}(I)$ and $\ker L_{I,q} = \Phi_{A_q}(I)$, (3.1)-(3.2) will follow easily from this relation because $l \circ l^{-1}$ is the identity mapping on the set of subsets of $l(A_q)$. It suffices to verify the assertion for $L_{I,p}$ only, since the proof for $L_{I,q}$ would be identical. We will employ the same type of argument as we used in the proof of Proposition 3.3. Obviously, $\Phi_{A_p}(I) \subset \ker L_{I,p}$. Choose an A_p -Cauchy sequence $\{x_n\}_0^\infty \subset A$ converging to an arbitrary $x \in \ker L_{I,p}$. Then $||x_n + I||_{A/I} \to 0$ as $n \to \infty$, and hence there is a sequence $\{y_n\}_0^\infty \subset I$ such that $||x_n - y_n||_A \to 0$ as $n \to \infty$. It follows that $\{y_n\}_0^\infty$ is another A_p -Cauchy sequence converging to x, and we conclude that $\ker L_{I,p} = \Phi_{A_p}(I)$. The proof of the proposition is complete.

We will regard \mathscr{A}_q as a subalgebra of \mathscr{A}_p if $\mathscr{A}_q \leqslant \mathscr{A}_p$ $(p, q \in \mathscr{P})$. Let

$$A(\mathcal{J}) = \bigcup_{p \in \mathscr{P}(\mathcal{J})} \mathscr{A}_p,$$

which is a pseudo-Banach algebra when endowed with its inductive limit bornology. We are now ready to formulate our main result.

THEOREM 3.8. A minimal Banach superalgebra B of A inherits \mathcal{J} from A if and only if the injection mapping $A \to \mathcal{A}(\mathcal{J})$ extends boundedly to a monomorphism $B \to \mathcal{A}(\mathcal{J})$.

Proof. The "only if" part is clear by Proposition 3.3. On the other hand, if B is a Banach subalgebra of $\mathscr{A}(\mathscr{J})$, then B must be contained in some \mathscr{A}_p , $p \in \mathscr{P}$, by the way the bornology on $\mathscr{A}(\mathscr{J})$ is defined, and therefore Proposition 3.3 proves the other direction, too.

EXAMPLES 3.9. (a) Let A be the disc algebra A(D), which consists of those holomorphic functions on $D = \{z \in C : |z| < 1\}$ that extend continuously to the boundary ∂D , and let \mathscr{J} consist of the ideals $z^n \cdot A(D)$, $n \ge 0$, where z is the coordinate function $z(\zeta) = \zeta$, $\zeta \in D$. Then $\mathscr{A}(\mathscr{J}) = C[[z]]$, the

algebra of formal power series at the origin, and the sets

$$\left\{\sum_{n=0}^{\infty}a_nz^n\in C[[z]]\colon |a_n|\leqslant M_n\right\},\,$$

where $\{M_n\}_0^{\infty}$ ranges over all positive sequences, form a base of the bornology on $\mathcal{A}(\mathcal{I})$.

- (b) Assume A is semisimple, and let $\mathcal{J} = \mathcal{M}(A)$, the set of maximal ideals. Regard A as a subalgebra of $C(\mathcal{M}(A))$. Then $\mathcal{A}(\mathcal{J})$ is the uniform closure of A.
- 4. Acknowledgements. I should like to thank professor Yngve Domar, who aroused my interest in this type of questions. I should also like to thank the Sweden-America Foundation for financial support.

References

- [1] G. R. Allan, H. G. Dales, and J. P. McClure, Pseudo-Banach algebras, Studia Math. 15 (1971), 55-69.
- [2] H. Hedenmalm, A comparison between the closed modular ideals in $l^1(w)$ and $L^1(w)$, Math. Scand. 58 (1986), 275-300.
- [3] -, Bounded analytic functions and closed ideals, J. Analyse Math. 48 (1987), 142-165.
- [4] L. Waelbroeck, The holomorphic functional calculus and non-Banach algebras, Algebras in analysis, Academic Press (1975), 187-251.
- [5] -, The holomorphic functional calculus as an operational calculus, Banach Center Publications 8, Warsaw 1982, 513-552.

DEPARTMENT OF MATHEMATICS UPPSALA UNIVERSITY, SWEDEN