ON THE f – AND K– PROPERTIES OF CERTAIN FUNCTION SPACES

Håkan Hedenmalm¹

I will assume that the reader is familiar with the Hardy spaces H^p on the open unit disc D for 0 , the spaces <math>BMO(T) and VMO(T) over the unit circle $T = \partial D$, and their analytic counterparts $BMOA = BMO(T) \cap H^2$ and $VMOA = VMO(T) \cap H^2$. Let P denote the (orthogonal) Riesz projection $L^2 = L^2(T) \to H^2$. For $\varphi \in L^\infty$, introduce the associated Toeplitz operator $T_{\varphi}(f) = P(\varphi f)$, $f \in H^2$. The Riesz projection P has a natural extension to the space M(T) of Borel measures on T, and the range P(M(T)) is contained in $\cap \{H^p: p < 1\}$. This makes it possible to define $T_{\varphi}(f)$ for $f \in H^1$.

DEFINITION. A subspace X of H^1 is said to have the

- (a) f-property if for any $f \in X$ and any inner function u such that $f/u \in H^1$, it follows that $f/u \in X$.
- (b) K_i —property if $T_{\bar{u}}(f) \in X$ for any $f \in X$ and any inner function u,
- (c) K-property if $T_{\overline{g}}(f) \in X$ for any $f \in X$ and any $g \in H^{\infty}$.

Observe that $K \implies K_i \implies f$, that is, if X has the K_i -property, it also enjoys the f-property, and if X has the K-property, it also has the K_i -property.

PROPOSITION 1. The spaces VMOA and BMOA both have the K-property.

PROOF. It is standard to make the identifications $VMOA^* = H^1$ and $(H^1)^* = BMOA$. Let $f \in BMOA$, $g \in H^{\infty}$, and $h \in H^2$. Then the formula

$$\langle h, T_{\overline{g}}(f) \rangle = \langle gh, f \rangle$$

-

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47B35, 46J15. Secondary 30H05.

¹This research was supported by the Swedish Natural Science Research Council.

90 HEDENMALM

and the entailing estimate

$$\left|\left\langle h,T_{\overline{g}}\left(f\right)\right\rangle \right|\ \leq\ \left\|\,g\,\right\|_{H^{\infty}}\cdot\,\left\|\,h\,\right\|_{H^{1}}\cdot\,\left\|\,f\,\right\|_{\mbox{\footnotesize BMOA}}$$

show that $T_{\overline{g}}(f) \in (H^1)^* = BMOA$. If f is a polynomial, $T_{\overline{g}}(f)$ is a polynomial, too, and since VMOA equals the closure of the polynomials in BMOA, it follows that $T_{\overline{g}}(VMOA) \subseteq VMOA$. The proof is complete. \Box

In [1,2], J. M. Anderson posed the following question: Does $QA = VMOA \cap H^{\infty}$ have the f- or K-property? With what we have done so far, the answer to the first part of this question is trivial.

PROPOSITION 2. QA has the f-property.

PROOF. Let $f \in QA$ and let u be an inner function such that $f/u \in H^1$. It follows that $f/u \in H^\infty$ by the Hardy space theory, and by Proposition 1, $f/u = P(\bar{u}f) \in VMOA$, and so $f/u \in QA$. \square

REMARK. It appears that Proposition 2 was first discovered by P. Gorkin [3], apparently unaware of Anderson's question.

The fact that no subspace of H^{∞} containing the disc algebra A, in particular QA, has the K_i —property (and hence not the K-property either), is a consequence of the following deep result, due to S. V. Hruščev and S. A. Vinogradov [4]. An infinite Blaschke product is said to be a Frostman Blaschke product if its associated zero sequence $\{a_n\}_{1}^{\infty}$, counted with respect to multiplicity, satisfies

$$\sup_{w \in T} \sum_{n=1}^{\infty} \frac{1 - |a_n|^2}{|w - a_n|} < +\infty$$

All finite Blaschke products are also included in the collection of Frostman Blaschke products.

THEOREM 1. Let $u \in H^{\infty}$ be an inner function. Then $T_{\overline{u}}$ is a bounded operator on A or H^{∞} if and only if u is a Frostman Blaschke product.

COROLLARY. If u is an inner function, but not a Frostman Blaschke product, then $T_{\overline{u}}(A) \not\subset H^{\infty}$.

PROOF. Suppose $T_{\overline{u}}(A) \subseteq H^{\infty}$. We know $T_{\overline{u}}$ is a bounded operator $H^2 \to H^2$. Assume $f_n \to f$ in A and $T_{\overline{u}}(f_n) \to g$ in H^{∞} . Since $T_{\overline{u}}$ is continuous on H^2 , $T_{\overline{u}}(f) = g$. By the closed

graph theorem, $T_{\bar{u}}$ is bounded $A \to H^{\infty}$. Now since $T_{\bar{u}}$ maps polynomials into polynomials, and the closure in H^{∞} of the polynomials is A, $T_{\bar{u}}(A) \subseteq A$, so by Theorem 1, u must be a Frostman Blaschke product, which is a contradiction. \square

COROLLARY. No subspace of H^{∞} containing A has the K_i -property, and therefore not the K-property either.

COROLLARY. The spaces H^{∞} , A, and QA do not have the K_i -property.

REMARK. Early in 1987 I wrote a letter to J. M. Anderson mentioning that I had solved his problems. He later informed me that K. Izuchi [5] had solved the problems independently, and that Izuchi's letter about his solution arrived at approximately the same time as mine. However, it appears that my proofs are a lot shorter, and since I obtain a stronger result, a separate publication seems motivated.

REFERENCES

- J. M. Anderson, On division by inner factors, Comm. Math. Helv. 54.2 (1979), 309–317.
- J. M. Anderson, Algebras contained within H[∞], Linear and Complex Analysis Problem Book, Lecture Notes in Mathematics, Vol. 1043, pp. 339–340. Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1984.
- P. Gorkin, Prime ideals in closed subalgebras of L[∞], Michigan Math. J. 33 (1986), 315–323.
- 4. S. V. Hruščev and S. A. Vinogradov, Inner functions and multipliers of Cauchy type integrals, Ark. Mat. 19 (1981), 23-42.
- 5. K. Izuchi, VMOA has the K-property. Preprint.

Department of Mathematics Uppsala University S-75238 Uppsala Sweden

Current address:
Department of Mathematics
Michigan State University
East Lansing, Michigan 48824