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A FACTORING THEOREM FOR A WEIGHTED BERGMAN SPACE

HAKAN HEDENMALM
Dedicated to the memory of Allen Lowell Shields

0. INTRODUCTION

Let D be the open unit disc in the complex plane C, T the unit circle. For
a>~—1, put
wa(2) =7 a+ 1)(1 - |zP)*,  zeD,
and write do,(z) = w,(z)do(z), where do is ordinary area measure on D. More-
over, let L2(D, da,) denote the Hilbert space of (equivalence classes of) Borel mea-
surable complex-valued functions on D satisfying

1M = [ 1P don(z) < o0,
supplied with the above norm and the associated inner product
(B = [ [(2E(2) dou2).

Let L2(D, do,) denote the subspace of L?(D, da,) consisting of all functions that
are holomorphic on D; this subspace is easily seen to be closed. We will refer to
the spaces L2(D, do,), a > —1, as weighted Bergman spaces. Note that the Hardy
space H?(D) may be regarded as the limiting case of L2(D, dao,) as a — —1.

In [1], the author discovered an analog of the Hardy space factoring theorem valid
for the standard (unweighted) Bergman space L2(D, day). We formulate it for finite
sequences, but it remains valid, mutatis mutandis, also for infinite zero sequences.

Factoring Theorem (Hedenmalm). Suppose A = {a;}} is a finite sequence of points
in the open unit disk D. Then there exists a function G4 € L2(D, daoy), unique up
to multiplication by a unimodular constant, such that

(a) G4 vanishes precisely on A in the open unit disk D,

(b) G4 has norm 1,

(¢) Every f € LX(D, day) that vanishes on A has a factoring f = G4+ g, where
g € LD, day) has ||gllzz0) < If Iz -

This function G4 has a holomorphic extension across the circle T, |G4| > 1 holds
on T, and |G4|*day is a representing measure for the origin, that is,

h(0) = /D h(2)|G4(2)]? doo(2)

holds for all bounded harmonic functions h on D,

Remark. We may choose to call these functions G4 finite zero-based inner functions
for the Bergman space, or why not finite Blaschke-type functions for the Bergman
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space. Another terminology, suggested by Peter Duren, Dmitry Khavinson, and
Harold Shapiro, is to call G, the canonical divisor associated with the set 4.

In view of the author’s joint work with Kehe Zhu [3], it is extremely likely that
this theorem can be generalized in the following way.

Conjecture. Fix a parameter value «, —1 < a < 1. Suppose A = {aj}{)" s a
finite sequence of points in the open unit disk D. Then there exists a function G €
L2(D, da,), unique up to multiplication by a unimodular constant, such that

(@) G% vanishes precisely on A in the open unit disk D,

(b) G% has norm 1,

(c) every f € L2(D, dao,) that vanishes on A has a factoring f = G4 - g, where
g € LZ(D, do,) has [8llra) < I/ lexw -

This function G5 has a holomorphic extension across the circle T, |G§| > 1 holds
on T, and |G%|*do, is a representing measure for the origin, that is,

h(0) = /D h(2)|G5(2)] doa(z2)

holds for all bounded harmonic functions h on D.

No such statement holds for parameter values « > 1 [3]. In this paper we shall
verify this conjecture in the special case a = 1.

1. A LEMMA

The following lemma, without being stated explicitly, was used several times in
[1]. This time we shall make even more extensive use of it. The assertion is proved
by checking that both sides of the equality have the same Laplacians and the same
boundary values. Given an L(T) function u, we denote by P[u] its harmonic
extension to the interior:

Plul(z) = /_ﬂ P, (e"u(e’®)do/2n, zeD.

Here, P,({) is the Poisson kernel

1 |¢zf?
1-Czp’
The Hardy space H2(D) consists of those functions f € L*(T) that have Poisson

extensions to the interior D that are analytic. One then frequently identifies the
space H?(D) with the space of Poisson extensions.

P (0) = zeD, (eT.

Lemma 1.1. If f € H>(D) has the power series expansion
f(z)=2c,,z”, zeD,
n=0

we have

o0

PIIfPI(2) = If ()P + (1 = |z]) Z

[e0)

n
Z Cntks1Z

R z e€D.

If we use the notation To(z) = (p(z) — qo(O)) / z, this expression takes the form

PISPRIZ) = 12 + (1= 1zP) ST f(2)?,  z€D.

k=1
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Note also that if
2

LY @per?,

r(z,c)=%1og I%———Zz'

is the Green function associated with the Laplace operator
A= H8%/0x? +8%/0y?),

and f € H*(D), then

PILIPNz) - 1£(2)P =~j) Nz, OIf(OPdo(C), zeD.

2. DEFINITION OF THE CANONICAL DIVISORS G‘/);

Definition 2.1. Fix the real parameter o, —1 < a@ < 1. Suppose A is a finite or
infinite zero sequence for the weighted Bergman space Lg(D, da,). Then if 0 is
not in the sequence A, G¢ is defined as the unique extremal function for the problem

sup{Rg(0): g € LXD, do,), g =0on 4, ||gllr2@ < 1}

More generally, if 0 belongs to the sequence 4 with multiplicity n, we define G4
as the unique extremal function solving

sup{Rg™(0): g € L2(D, da,), g =0o0n 4, | gl < 1}

The following result is a more or less immediate consequence of this definition.
The proof is analogous to the one for the case a = 0 presented in [1], and we see no
reason to duplicate the argument here.

Proposition 2.2. Fix the parameter o, —1 < a < 1. Suppose A = {a;}\ is a finite
or infinite zero sequence for the space L2(D, do,). Then G% is perpendicular to all
functions vanishing on the sequence AU {0} (counting multiplicities); in particular,
it is perpendicular to z"G, forall n=1,2,3,.... Consequently, |G3|*da, is a
representing measure for 0, meaning that

h(0) = /D h(2)|G3(2) dou(z)

holds for all bounded harmonic functions h on D.

3. STATEMENT OF RESULTS

To simplify our notation, let us write & and 0 instead of 8/9z and 0/0Z,
respectively. Writing z = x + iy, with > = —1, we shall use as the Laplacian A the
operator _

A, =A =008 = H(8%/0x*+02/9y?).
Introduce the Green function for the Laplacian
2
2Ll (g peD,
1-¢z

and put, for parameter values a, ~1 <a <1,

®z) =1 /D I(z, OGP - 1)dow((),  z€D.

[z, {) = - log
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Here, A denotes an arbitrary zero set for an L2(D, dog,) function. This function
@< has the property

A, ®G(2) = nwa(2)(GHOP - 1),  zeD.

Theorem 3.1. Suppose A = {a;}¥ is a finite sequence of points in D. Then the
function @Y extends to an infinitely differentiable function on the closed unit disk D,
and enjoys the properties

(a) O®@L/0n =0 and 2@ /0n? =0 on T, where 0/0n is differentiation in the
outward normal direction, and

(b) 0<DL(z) <2(1—|z|*)(3/4—|z|*/4) forall z€eD.

If we apply the same methods as in [1], with Green’s formula and an extremality
argument as the chief tools, we obtain from the above technical result the desired
factoring theorem, which we state here for completeness.

Theorem 3.2. Suppose A = {a;}} is a finite sequence of points in the open unit disk
D. Then the function G has the properties

(a) GY vanishes precisely on A in the open unit disk D,

(b) G has norm 1,

(c) every f € LYD, doy) that vanishes on A has a factoring [ = Gl - g, where
g€ LiD,day) has

”g”LZ(l) < “gHLZ(l) + /})@}4(2)|f’(z)|2 doo(z) = “G,lfig“LZ(l) = ”f”LZ(l)‘

This function G has a holomorphic extension across the circle T, and |GY| > 1
holds on T.

Remark. When we allow A4 to be a general zero set for the space L2(D, do), some
of the statements in the above theorem must be modified. Parts (a) and (b) remain
the same, but in (¢) an equality is replaced by an inequality:

llgll 21y < g2y + /I)®}4(z)|f’(z)|2 doy(z) < “G,I;g“LZ(ly

The inequality appears when we apply Fatou’s lemma in an approximation argu-
ment; it is not clear whether it is ever strict. Also, we clearly no longer can expect the
function G to extend holomorphically across a portion of T containing an accu-
mulation point of 4. One can show, however, that it does extend holomorphically
across any arc of T containing no accumulation point for the sequence A .

As in [1], the function G is a contractive multiplier H*(D) — L%(D, do;). This
is a consequence of the estimate from above of the function ®!, in Theorem 3.1(b).

Corollary 3.3. For all L2(D, do\)-zero sequences A in D, the function G is a
contractive multiplier H*(D) — L(D, day). From this it follows that we have the
estimate
IGY(z)| < (1 —|z]»)7 T, z e D.
The size estimate follows from [6}, p. 232.

Proof of Theorem 3.1. Let us for convenience of notation write G, instead of G}, ,
and @, instead of ®). Note that by the regularity up to the boundary T of the
function

A, ®(2) = nwy(2)(|Gy(2)]* - 1),  zeD,
the function @ itself must be C*° (even real analytic) on the closed unit disk, with
value 0 on the unit circle. Let ¥ be the real analytic function on D which has
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value 0 on T, and solves the partial differential equation A¥(z) = —nw,;(z) inside
D. One checks that ¥ is given by the formula

¥(z) =2(1 —|z[>)(3/4 - |z|*/4), zeD.

Clearly, ®, — ¥ <0 on D, since the left-hand side is subharmonic with boundary
values 0. This proves the upper estimate of @, in (b).

For technical reasons, we are going to prove the positivity of the function @,
under the additional assumption that the points of the sequence A are distinct, and
all different from 0. An approximation argument similar to the one used in [1] shows
that we may do so without loss of generality. By Lemma 2.2, G4 is perpendicular
to all functions in L2(D, do;) vanishing on A U {0}, and so it must be a linear
combination of kernel functions (for a more detailed discussion, see [2]), that is,

N
Ga(z)=ho+ Y 4j(1-73;2)7%, zeD,
j=t
for some scalars Ag, ..., Ay € C, which we can compress to

N
z):le(l—Ejz)‘3, zeD,
j=0
by putting ay = 0. We want to solve the Laplace equation
AD4(z) = 2(1 = [zP)(IGa(2) — 1) = 2(|Gal* = |2Gaf* + 2> = 1)
with @4 =0 on T. If, as in Lemma 1.1, P[¢] denotes the Poisson integral of the
function ¢, and for analytic functions f on D, [ f denotes the analytic function
F with F(0)=0 and F'(z) = f(z), we have
2 2 2 2 |2* 3
ouor=|[of - [af]cr|| [ || [0+ -ire
a;jz/2
/ Ga = Z’l (1 -é z/

+P +

Here [ G4 and [zG, are given by the formulas

and
2/2
/zGA_ZA T

where we use the convention ag = 0, as always. On the other hand, we know that if
f € H*(D) and T denotes the backward shift operator

To(z) = (p(z) —9(0))/z, zeD,
acting on functions ¢ analytic on D, then Lemma 1.1 offers us the formula

PRI = If 2P = (1= 2P Y IT" ()P, zeD.

n=1
r [,
7" / ZGA

It now follows that
2

M8

Py(2)/2= - (1 ~|2?)

3
I

2

+(1=z")(3/4 ~ |zI*/4),

NE

+(1 =z

3
Il
—
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that is,

D4(z)/2 = (1—|z]*)
(3.1) { o '
X { = T | G
> o

For n > 1 we have the formulas

T"/ZGA

2 oo
+2.
n=1

1N, _,in+1-na;z
T”/GA=§Z,1ja;? m

and

N .

1 p—(n—1)a;z

Tn+1 ___}: 1 J“ .
/ZGA# 2 lljaj (l—ﬁjz)z ’

in addition, we have the formula

T G _li AjZ
/: i

We now get
0 2 o N — —
_ T opel g+ 1—na;z n+1-naz
42 T"/GA = Z z /Ij k 7 a,'; (1_5'2)2 . (I-akf)z
n=1 n=1j, k=0 J
A.jzk

ATk

% 2(1 - ZI-J‘Z)(I - ak"z‘) + 2 — Zijak -Zz‘jaklzlz}
(1-a;a)3 (1 -aja)? '
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On the other hand we also have

:Z Z AT - 1 h - (n—l)ﬁjz.n—(n—l)akf
= k4 (1-a,z)? (1 —a,z)?

2

4ZlTn+l/ZGA

AjAk
- Z (1 -a;z)%(1 — ax2)?

x Z(ajak)"(n +1-na;z)(n+1-na,?)
n=0
-3 A
I (1 —Zl_jZ)z(l - akE)Z

x Y (@ja)" (n(n+1)(1-a,2)(1 - axZ)+n+1—na;a;|z|?)
n=0
Z A
~ (1-a;z)%(1 — a,z)?

— — =2
5 {2ajak(1 ~3z)(1-q7) 1- aja,gle}

(1 —“djak)3 (1 —Zijak)2
and hence by (3.1),
20,4(z) = (1 - |z])

Ajdilz|? Ajh
><{Z(l—az) (1 —a,Z)? Z(I—aj 2(1 — az)?

Jsk
g (2(1 =d;z)(l — a2) n 1 "Ejfkiztz) +3- [z|2}

(1 - Ejak)z I - ajay

=1~z

B AjAk 2(1-a;z)(1 - 2) l—|z|2) i
X{ jz;(l—ﬁjz)z(l—ak‘z')2< (I—Ejak)z +1—E,~ak +3-17] ’

that is,

Dy(z) AjAg
21 - |Z|2 - ZZ (1 —5jak)2(1 {—Ejz)(l —akf)

(3.2)

/1/1;(
—(1=12P) Z(l—a,akxl—ajz)zu aezp tA I

Let us now check that the right-hand side of (3.2) has boundary value 0 on T, which
implies that ®,/0n = 0 on T, and hence allows us to apply Green’s theorem.
Now let ¢ be the function

A
$(z) = Z(l T (1 —a,2)(1 —a;2)’
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We want to show that ¢(z) = 1 on T, because then it follows that the right-hand
side of (3.2) vanishes on T, as asserted. According to [1], p. 55, we have

/ z"(1 —E,-)“‘(l - akf)‘l ds(z)/2n = aZ(l -?ijak)_l
T

for n > 0, where ds denotes arc length measure on T, so that we get

$(—n) = /Z"¢(Z) ds(z)/2n = Zm (2"Ga, Ga)r2qy
Ik

for n > 0, and since ¢ is real-valued, we also have $(n) = ¢(—n). The fact that
G4 is extremal implies that (z"G,, G4)121) = 0 for n > 0, and since its norm is
1, (G4, Ga)r2(1y = 1. This shows that ¢(z) =1 on T, as desired. Let us now look
more closely at the function 1 — ¢ . Since

$(z) = Z(l '”k Zn+ @jar)" Z(n+1

a Z l—akz)

Z/l aj/(l—a;z)

3

we have, by Lemma 1.1,

—9l2) _ PR —9) N, ) 3

1—|z|? 1 —|z|?

S yaiTm(1/(1 - a;z))

J

—n+m =
Z l 1 - ajz)
y) Ak—n+m n+m

(n+1 ZZ (1-a;z) I—akz)

n=0 m=1

2

Mg

(n+1) Z
0

m=1

n

||{\”18

m=1 j, k
AjAk i -
= — (n+ D(@ar)" Z aja )™
J.k (l—ajz)(l—a )n =0 m=1
lj/lk 'djak

I
g

(1-a;z)(1 ~axz) (1 —Ejak)3'
By (3.2) we now have

A a;:
D {1“2 =@ —am (- ajar

B o
% (1 —Ejak)(l —Zijz)z(l -, Z)? } ’

@, (2)/(1=1z*)*=0 onT.

We shall now see that

Introduce the function
w(z) = 204(2)/(1 - |2 = | +ZZ (=7,
jZ

Aj /1/( Ejak
2)(1 = aZ) (1 - ajax)?

B A ,
L T=a@a)(T-a;2)2 (1~ a 2P’
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since we have

ZII

ds(z)/2n

T(I—Ejz)z(l—ak’z‘)z |

Zn+2
= /T (=72 —a? ds(z)/2zm

1 n+l d
= 2mi /r —a,2%z—a 2 ¢

Zn+1

= B:%f { (1-a;z)2(1 - akf)z}
= (z""/(1 = 7;2)|z=a,

ay -
= W(”‘F 1 —(n-1)a;a),
J

it follows that for » > 0

P(-n) = /T 2"y(z) ds(z)/2n

A e A
= y(n +z§j K459 2:1 KO 11— (n - 1)3a)
j.k

(I —ajar)* —aja)?
Ajdval —
= do(n) + Z Ffzk—)—‘f(zajak n—14(n-1)a;a)
Jk /
AjAial
=d(n) = (n+1) T —jaka];p = 6o(n) — (n + 1)do(n) = 0.
j

It follows, since y is real-valued, that w(z) = 0 on T. Let us now rewrite ¥ in
order to be able to apply Lemma 1.1:

Aj /lkajak

l//(z)—1+2(l (a3 Z(n+1)(n+2)(ajak)"
n=0

Ajdx o=
‘,Z: (1 -a;2)%(1 — a,2)? g aja)”

k
o l——n+ 2 —H 3

_ jaj B > Ajaj

_1+nz=:(n+1)(n+2) =22 ;;(l—a] 2

Since
TH(1-a;2)7 ) =a5/(1 —a;z),

TH(1—a;z)"Y) =as(k+ 1 —ka;z)/(1 - a;z2)?,
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~w(2)/(1 = |z) = (Pl¥1(2) — w(2))/(1 = |z]")

2

S aat'Tm(1/(1 - a;z))

J

in+l(n+2)z

m=1

2

=202 | AE T/ -a;z2))

n=0m=1] j
o0 o0 2
=>(n+1)(n+2))y, jarrmH T (1 —a;z)7h
n=0 m=1 j
2
_ZZ le_n+mm+ 1-ma;z
_ 2
pur ol b (1-a;z)
oo an+m+1an+m+1
= n+1(n+2 A A
,,5;( ) )mzl ]Z; KU -a,2)(1 - a2)

’ZZZA Aka"“” wam(m+1—ma;z)(m+ 1 —maZz)
par ey (1-a;2)%(1 — a;z)?

- l}‘k n = m+1
_JX]; 72 (l_akZ)Z(n+1)n+2(a,ak ;alak

Z AjAx
~ (1 -a;z)%(1 - axZ)?

X Z(Ejak)" Z(m +1—majz)(m+ 1 - ma,z)(@;ar)"

/llka ak
22 (1 —adja)*(1 —d;z)(1 - a,Z)

_y A
S T=a)(1 - 32751 - 4,2)?

oz, (-T2(1-a7) | da da  @ajlz?
S5k (l—ﬁjak)3 1—ajay (1"&jak)2 (1'-5]'ak)2

-3 Mhda{-2(1 = a@;2)(1 - aZ) - 1 + dja — 1 +T;a|z]*}

I (1 —Ejak)3(1 —'djz)Z(l -4, 7)?

_ AjAidjay
- 2;(1—51'0/( 3(1—-21-1'2)(1——(2](—27)

Alkajak
22(1——61 ar) (1 —a;z)%(1 — a,Z)?

=2
Aj}.kaja,%

U=l ey - g P - a2

Js
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We now conclude that

_ 1 3 Aﬂka,ak
Dy(z) = 2 (1 |Z| {22 (1 —dja,)3(1 —a;z)(1 — a,z)

Ajzkﬁjak
+ 2}2}; (1 —@a)2(1 - a;2)(1 — agz)?

AjAaial
12 bl e
0= EM Y ey -g,70 —akf)z} ’

N

and if we expand this in power series form we get
D,(z) = (1 —1z?)?

2
—=n+1 =n+1
Z A;@] Aas;
; —a;z

2
J
+2§(n+1) Zm

J

X Z(n +1)(n+2)

n=0

1 | e} : /{ja—;}+l
5( —|z| )’gon(”'f‘ )ijm )

from which it is obvious that ®4(z) >0 on D.

The formula for @), obtained at the end of the proof of Theorem 3.2 suggests that
the following should be true. If it could be verified, it would be possible to shorten
considerably the proof of Theorem 3. 3

Conjecture 3.5. Suppose F is holomorphic on D and satisfies F" € L2X(D, doy).
Moreover, let T denote the backwards shift. To(z) = (p(z) — ¢(0))/z. Then the
Jfunction

Ye(z) = (1 -z {Z(n+1 )(n + 2)| T3 F)? +2Z (n+ D|(T"2FY)?
n=0 n=0

+= (1—]21 )Zn(n+1)|(T”+2F)1 } zeD,
n=0
solves the sixth order elliptic partial differential equation
NY¥p(z) = A((1 - |zP)F"(2)])),  zeD,
with 0 boundary data:
Y = (0/0n)¥r = (8%2/3n*)¥r =0 onT.

The boundary condition may have no meaning in the classical sense unless F has
additional regularity; it is, however, possible to make sense of a weak formulation of
it of Sobolev type in the general situation.
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