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1. INTRODUCTION

Let 2 be a domain in the complex plane C and f be an analytic function on .
We denote by Z(f) the zero set of f; multiple zeros are repeated according to
multiplicity. Suppose X is a space of analytic functions on §. A set 4 (with possibly
repeating elements) is called an X -zero set if there exists a function f in X such
that Z(f) = A.

Let D be the open unit disc in C and L2(D) be the Bergman space of analytic
functions in L*(D,dA), where d A is the (normalized) area measure on D. LZ(D)
is a Banach space (as a closed subspace of L?(D,dA)). The following result was
proved recently by H. Hedenmalm.

THEOREM 1 [2] For any L(D)-zero set A not coniaining 0 there exists a (unigue)
function G, in L%(D) satisfying the following conditions:

(1) 1G4l =1, G4(0) > 0
(2) Z(Ga)=4;
(3) If /Gl SIS for all { € LE(D) with AC Z(f).

The function G4 in the above theorem is simply the (unique) solution to the
following extremal problem:

sup{Ref(0) : Ifll 1, AC Z(f)}.
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166 H. HEDENMALM AND K. ZHU

Suppose X is a Banach space of analytic functions on D containing the constant
function 1, and assume that the norm of the constant function 1 is 1. We say that X
has the optimal factorization property if for each X -zero set 4 (not containing the
origin) there exists a functijon G satistying the three properties in the above theo-
rem (with LZ(D) replaced by X in (3), and the norm of L3(D) replaced by that of
X). In this case, we call the functions G;}' contractive zero-divisors. Expressed in this
terminology, Theorem 1 states that L2(D) has the optimal factorization property.

There are several directions in which one might try to extend Hedenmalm’s result.
We mention three of them:

(1) Does optimal factorization hold for Bergman LP-spaces on D?

(2) Does optimal factorization hold for weighted Bergman spaces on D?

(3) Can we extend the notion of optimal factorization so that it also holds for
other domains in C?

The first question was answered affirmatively in [1] using an argument involving
the bi-harmonic operator A? (the square of the Laplace operator). More specifically,
the biharmonic Green'’s function, that is, the solution to the boundary-value problem

Azu = 6g

u=0, ﬁu=0 on &b,
on

is known (0 be positive on D for each ¢ € D, where 6¢ is the Dirac mass at (, and in
(1). this fact is the essential ingredient used to prove that optimal factorization holds
for Bergman LP-spaces on D (1< p < o).

In this paper we consider questions (2) and (3) above. The results obtained are
somewhat negative. The following is a sketch of the contents of our paper.

For weighted Bergman spaces on D, we will show that if there exists a contractive
zero-divisor, then it must be a solution to a corresponding extremal problem. We
are particularly interested in the weights

wa(2)=(a+1)(1-1]2)°, zeD,

for a > —1. Extremal functions for one prescribed zero can be calculated explicitly,
and for the weights w,, with a > 4, they have additional zeros in D if the original
zero is close enough to the boundary; moreover, for a > 1, if the prescribed zero is
close enough to the boundary, the extremal function will have some boundary values
of modulus Jess than 1. From these facts it is not difficult to derive that optimal
factorization fails for weighted Bergman spaces on D with weights w,, for a > 1.
This result is sharp, because Hedenmalm 3] has shown that optimal factorization
does hold for the weighted Bergman space with weight function w;(z) = 2(1- 2.

For ordinary Bergman spaces on more general planar domains, the extremal func-
tion for one prescribed zero will be calculated for any points where the kernel func-
tion vanishes, and shown to be just a constant multiple of the kernel function. But
for multiply connected domains there always exist parameter values for which the
kernel function has more than one zero [4]. Consequently, optimal factorization fails
for the Bergman space on such domains.
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2. WEIGHTED BERGMAN SPACES

For a > -1, let L2(dA,) be the weighted Bergman space of analytic functions in
L¥(D,dA,), where
dAq(2) = (a+ 11— [2]*)° dA(2).

Being a closed subspace of L*(D,dA,), L3(dA,) is a Hilbert space. We will use
Il llo and {, ) to denote the norm and inner product on L3(dA,), respectively.

PROPOSITION 2 Suppose a € D and a # O; then the function

G:(z)=[1—( S }/ (- laye:

(the principal branch) is the solution 1o the following exiremal problem:

sup{Re f(0) : If o €1, f(a) = 0}.

Proof Let H, be the closed subspace of L3(dA,) consisting of functions which
vanish at a. It is clear that H, is a Hilbert space and f — f(0) is a bounded linear
functional on H,. By Riesz representation theorem, there exists a unique function
gq in H, such that

f(0)=(/,8a)0: f €H,.

It is easy to check (see 4.2.1 of [5]) that the function (the principal branch)

1-az

is in H, and has the property stated above. Thus by uniqueness we have

i =1- (1)

lgall? = (80:80)a = 8a(0) = 1~ (1-]af?)°*2.

_ ]—Ialz a+2
ga(z)=] (l—Ez) .
ligalla 1-(1-[a])°"

Then G2(0) > 0 and the Cauchy-Schwarz inequality shows that G2 is the solution
to the extremal problem

sup{Re f(0) : [I/lla €1, f(a) =0}

Also

G (2)=
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PROPOSITION 3 The optimal function G2 has a unigue zero in D (z = a) for each
aeDifandonhif ~-1<a<4.

Proof The linear transformation

takes D onto the disc with center 1/(1 - |a|?) and radius la]/(1- |a]*). Note that
this disc is symmetric with Tespect to the real axs and its boundary intersects this
axis at the points 1/(1 + [a]) and 1/(1~ |a]). Thus as |a] increases to 1 these discs
increase to the half plane Rew > % Now G7'(z) = 0 has a solution in D other than
z = a if and only if thereis a point w # 1in this half plane such that wo*2 = 1, Thjs
is clearly equivalent to the statement that

27 _]_
a+4?2

Re [exp 3

Since we are dealing with the principal branch of the logarithm, that is, “arg” is

chosen between —7 and 7, the above statement is equivalent to

2 <7r or a>4
a+2°3 @ ’

completing the proof of Proposition 3.

PROPOSITION 4 If a > 4, then Jor any a in D with

la] = 2sin —
a +

the function

GJ(2)= [] - (]T.-_—l;—l:)MZJ /, /1—(1- |a]?)e+2

(the principal branch) has at least one zero on 8D.

Proof This follows from direct calculation. In fact, if

.om
la] = 251na—:—2-,

then the point

1 (1= fof)erp ( 221 )

a+2

z= =
a
Is a zero of G2 on 8D.

PROPOSITION 5 If & > 1, then there exists a € D and z € 8D such that |G2(z)| < 1.
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Proof If a > 4, the desired result follows from Proposition 4. So we may as well
assume that 1 < a < 5. In this case we shall prove that
'rer‘nn |G2(e)] < 1
for a € D close enough to 8D.

Note that ,
1-|al*

w= —
1-az

maps the unit circle onto the circle |w — 1] = |a|. In fact, if |z| = 1, then

oo _|1=laP-1+az| _ |z-a]|_
w=11= 1-az = lal 1-az = lal.
It follows that for all |a] < 1
» 1
min G2 (e'®)! = 1-(1+|aje)°*?
lexsx' @ ()] 1-(1- |[)°*’Iu<‘ (1% lalet)™

Letting a — 8D, we get

)i Go iy — f]—]+e"°+2
oim l{;‘n(nl (€)= m 1= 27

Since ]
1+e' = 2cos§e"/3,
we conclude that

Jim_ min !G"(e‘e)l— mf Il—(’coste")“ | = mf |1-(2cos:)°*2 (o2)i)
jel—1- [6]< fi<= hjgn/

By symmetry, we have

lim min |G2(e'* min |1 = (2cosr)®*2elet i),
fat=—1- l&](r' ( )l Sﬁ/:l ( ) l

Observe that ' »
“ - e5m/3] - Il - e7ﬁ1/3l =1.

This implies that for 3 < a <5 (simply let 1 = 7n/3)

' }m} 'mm [G2(e®)| < |1—e@*Imil3 < 1.
am

Thus we have .
'glwglcf(e"’)l <1
for 3< a < 5 and a € D close enough to JD.
Next we prove the above result for 1 < @ < 3. For 0 <1 < 7/2 write
g(1) = |1 = (2cost)®*2ele*i 2

=1+ (2cos1)X°*? _2(2cos1)°*?cos(a + 2)1.
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Elementary calculations show that
8'(") = 4(a + 2)(2cosr)** [sin(a + 3)r — (2cos1)®*2sing].
Ifl1<a<3 then

a+3 +37r>0.

. a
2n < m<3n and so sin

It follows that g'(1) > 0if 1 € (0,7/2) is close enough to 7/2. This implies that g(r)
increases near /2. Since &(1/2) = 1, we see that g(1) is strictly less than 1 for ¢
close enough to 7 /2. Therefore,

; as i6
lg;g;lGa (e") <1

for 1 <a <3 and a close enough to 8D.
The case @ = 3 can be handled as follows. Recall that in this case

lim  min |G2(e®)|= min [1-(2cosi) e
lal—l“lﬂsr' 2 (€"7)] 05!5#/2l ( yer|

Letting 1 = 27 /5, we conclude that

]- ~n a/ i6 | <
Jim_ min 1G9 (¢')] <

<1l

27\*
1~ (2cos —5—>

THEOREM 6 If a > 1, then LI(dAo) does not have the optimal faciorization prop-
erty. In other words, it is not possible to find a Junciion G§ for each L2(dA,)-zero
set A (0¢ A) satisfying the following conditions:

(1) 1G4lla = 1, G5(0) > 0;

(2) Z(G3) = 4;

() 1If/G3llo < W1/ lo for all f € L3 (dAa) with A C Z(f).

Proof Assume that L2(dA,) has the factorization property; then G§ must be
the solution to the following extremal problem:

sup{Ref(0): |Ifllo < 1; AC Z(f)).
Infact, if ||f)la <1, AC Z(f), and f(0) > 0, then condition (3) implies that

This completes the proof of Proposition §.

J(0) f
OS Gg(o)s -C—;‘j- OS”I”OS]

Thus f(0) < G5(0) and G is the unique solution 1o the above extremal problem.
Let 4 = {a} with a € D - {0}. In this case G2 = G?. Itis easy 10 see that condi-
tion (3) implies that

162 Mo 2 11/ 1la
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for all f € L3(dA,). We show that this implies the boundary values of G2 have
modulus greater than or equal to 1. For A € D, let

f( ) - /(] - l,\|2)0+2

Az)o+2

in the above inequality (Note that the above function is the normalized reproduc-
ing kernel of L2(dA4,) at A) and make a change of variable on the left hand side;
then

/lG;’ogp,\(z)]sza(z)z 1,
D

where
A—2z

1-Az

pa(z) =

Suppose 29 € D and let {A,} be a sequence in D which tends to z,. Then g, (2)
tends 10 2o (as n — +oc) for each z € D. Since G¢ is continuous on the closed disk
D and dA4, is a probability measure, it follows from the dominated convergence
theorem that {GJ(2¢)| 2 1. The proof of Theorem 6 is now complete in view of
Proposition 5.

Remark Consider the following boundary value problem

A= 1zP) 2 Au) =6,

u, —é)—u =0 on aD.
on
The method in [1] shows that if the solutions to the above equations are all positive
on D, then [|[fGSlla = |if]|o for all f in L2(dA,). Since the inequality is not always
true, we conclude that the solutions to the above boundary value problem are not
always positive on D.
Note that in the proof of Proposition 5 we actually showed that if @ > 1 then

ki ar,if 1.
Mm}_ 'lénm 1G7 (") <

Next we show that this inequality holds only if a > 1.

PROPOSITION 7 If —1<a <], then

i c;o ié > 1.
lolmi- :g?iﬂ (€)=

Proof Recall from the proof of Proposition S that

Hm a6y — 1-(2co ,o+’(o+ﬂu.
Jm - min G2 ()] = min |1 - (2cosr)e etV
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Since

[1- (2cosr)*2e(* |2 = 1 4 (2c0s1)%2*D — 2(2c0s1)° *2cos(a + 2)1

= 1+ (2cosr)°*?[(2cos1)?*? — 2cos(a + 2)1],

it suffices to show that
(2cos1)* > 2cos Mt

forall1<A<3and0<1<7/2
First observe that for 1 < A < 3 we have

T ki
At < —~ <1< =
cosAr <0, 35 SIS 3
Thus it is enough to show that
(2cos1)* > 2cos M, 05:5%.

Since the function cosr is decreasing on [0,7/2). we clearly have 2cos? > 2cos At
forall 0<r<7/(2\)and 1< A <3,
First assume that 2 < A < 3. Then 7/2A <7 /3 and hence 2cosr > 1 for all 0<

1 < 7/(27). It follows that
(2cost)* > 2cost > 2cos A, 0<r< %

Next assume that 1 < A < % In this case we have 7/2A > 7 /3 and

(2cost)* > 2cost > 2cos At 0<t1< g

It remains to show that

N T
= - > - <1< .
f(1)=(2cost)* = 2cosAr > 0, 3 < t < 3

Taking the derivative of f, we find that
S'(t) = 2A[sinAr = sint(2cosr)*-1].

Since the function sins is increasing on [0,7/2], and 0 < 2cosr < 1 for 7/3<t1<
7/2), we see that '
sinAr > sin7 > sin#(2cosr)* !

for all m/3 <1 < 7/2X. Thus the function f is increasing on [7/3,7/2)A). The desired
result now follows from the fact that

f(g) =]—2cos/\3—ﬂ>0.
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3. MULTIPLY CONNECTED DOMAINS

In this section we show that Hedenmalm’s theorem fails for many planar domains.
We need the following theorem of N. Suita and A. Yamada:

THEOREM 8 [4] Let Q be a finite open Riemann surface which is not simply con-
nected. Then the Bergman kernel K (z,w) of Q has exactly n + 2p — 1 zeros for suitable
w's, where p is the genus of 2 and n is number of boundary contours of ).

The above theorem shows that there exist a Jot of planar domains satisfying the
hypothesis of the following proposition.

PROPOSITION 9 Ler Q be a bounded planar domain with the following property:
there exists a point wy in Q such that K (z,w) (as a function of 2) has at least wo
zeros in Q). Then there exists a point zq in  (not equal 1o wy), such that the solution
10 the following exiremal problem has at least two zeros in §:

sup{Re/(wo) : Ifll €1, f(20) = 0}.

Here ||-|| denotes the norm in the Bergman space L%(Q) of anabtic functions in
L%(,dA) (d A is the normalized area measure on Q).

Proof Fix z¢ in Q2 so that K (zo,w0) = 0. It suffices to show that
K(Z, Wo)
o(2) = —ee
f ) K(Wo, M'o)
is the solution to the extremal problem
sup{Ref(wo) : I/ <1, f(20) = 0}.

Let Hy be the Hilbert space of analytic functions f in L*(R2,dA) with f(zo) = 0.
Since [~ f(wno) is a bounded linear functional on Hy, the Riesz representation
theorem implies that there exists a unique function go in Hg such that

f(W()) = (f’g())a f € Hy.

Obviously, K (z,wq) satisfies the above condition. Thus go(z) = K (z,wo) by unique-
ness. Let 20(2) K (2, o)
0 s Wo
fo(2) = =

leoll ~ /K (wo,wo)

Then the Cauchy-Schwarz inequality shows that fp is the optimal function for the

extremal problem
sup{Ref(wo) : [If | <1, f(20) = 0}.

This completes the proof of Proposition 9.

In order to generalize Theorem 1 to other planar domains, we need to formulate
Theorem 1 in a conformally invariant way. Let Q be a bounded planar domain and
let K(z,w) be the Bergman kernel of Q. For each w € §, let k.. be the unit vector
in L2(£2) defined by

K(z,n)
k(2) = === zef.

= -—————K(W, M‘)’
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We call the k.’s normalized reproducing kernels on Q. It is easy to see that for
each w € Q) the probability measure lkw(2)?dA(2) is a representing measure with
respect to the point w, that is,

[ 1@kuPaa) = 1o
for all area integrable analytic functions J in . In the rest of this section all un-
specified norms will denote the norm on L2(92).

THEOREM 10 Suppose Q is a bounded simply connected planar domain and w is a
point in Q. Then for each L2(Q)-zero ser A not containing wy there exists a unique
function G4 in L3(R) satisfying the following conditions:

(1) 1Gall = 1, Ga(wo) > 0;
(2) Z(Ga4) = 4;
() I/ kuo/ Gall S NIf | for all f in L(Q) with A C Z(f).

Proof Suppose A is an L2(Q)-zero set not containing wq and suppose G, is
a function in L3(f) satisfying the above three conditions. Then G, has to be the
optimal function of the following extremal problem (this will prove uniqueness):

sup{Ref(wo) : |IfII £ 1, 4 C Z(f)).
In fact, if f is in L2(Q) with ||f] < 1, f(wo) > 0, and A C Z(f), then

J(wo) _ /() 2
0 Gat0) = Jo Gty e 4()

s[/ﬂ

G

- 172
[ . 2

<=y,

and hence G4(wo) > f(wo). This shows that G is the optimal function.
It remains to show that the optimal function G, of the extremal problem

sup{Ref(wo) : [Ifll <1, A C Z(/))

satisfies the conditions (1), (2), and (3). Condition (1) is obvious. Next, we prove
(2) and (3). :

Since Q is simply connected, there exists, by the Riemann mapping theorem, a
conformal mapping ¢ from D onto Q such that ©(0) = wo and ¢'(0) > 0. Fix an
L%(Q)-zero set A with wy ¢ A4 and let G be the solution to the extremal problem

sup{Reg(0) : llgllLym) < 1, ¢~1(A4) C Z(3)).

We claim that
G(2) = Galp(2))p'(2),  z€D.
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In fact, if g is in the closed unit ball of L3(D) with ¢~}(4) C Z(g) and g(0) > 0,
then the function

G(w)=gop l(w)p™)(w), weQ,
is in L2() and satisfies ||G|| < 1, 4 C Z(G). Thus
G(wo) < Ga(wo), or g(0) < Ga(p(0))y'(0).

This shows that G(z) = G4(¢(2))¢'(z) on D. By Theorem 1 we have Z(G,) = A4
(bence condition 2)) and
&
G

for all g € L2(D) with ¢~1(A4) C Z(g). Replacing g by (f o)y’ with f € L2(Q) hav-
ing ACZ(f), and changing variables, we obtain

/ S P

Ga(w)

Recall from the invariance of the Bergman kemnel that

< llgllzz oy
L(D)

1y (W) dA(w) < / f WP dA).

©' (2K (p(2)p(w))p'(w) = { z,weD.

1-2zw)¥’
Let w = 0 and replace z by ¢~}(w), w € 2. Then
K(w,wo)'(0) = (¢™)(w), weq.

Setting w = w( we get ,
K(wo.wo)(9'(0)) =
and hence
K(W, Wo)

Y (w) = aeae = k(W)
This completes the proof of Theorem 10.

Remark The above theorem is simply a conformally invariant version of The-
orem 1. A similar reformulation of the L? version of Theorem 1 is also possible;
see [1].

DEFINITION 11  Suppose § is a bounded planar domain and wy is a point in Q. We

say that L2(Q) has the optimal faciorization property with respect to wy, if for each
L2(Q)-zero set A not containing wy, there exists a function G 4 in L2(Q), such that

(1) 1G4l = 1, Ga(wo) > G;
(2) Z(Ga) = 4,
(3) fkwo/Gall < 1Sl for all [ € L3(Q) with A C Z(f).
THEOREM 12 If Q is a bounded planar domain satisfving the hypothesis of Propo-

sition 9, then there are poinis w in § such that L2(Q) does not have the optimal
factorization property with respect 10 w-.
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Proof Assume that L2(Q) has the optimal factorization property with respect
to wo. Then for an L2(Q)-zero set A4 not containing wy the function G4 must be

the solution to the following extremal problem (see the first part of the proof of
Theorem 10):

sup{Ref(wo) : Il <1, 4 C Z(f)).

But by Proposition 9, the zero set of G is not equal to A4 in general. Thus condition
(2) does not hold in general. This proves the theorem.
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