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We study the relationship between two types of spectra associated with invariant
subspaces of the Bergman space L2(D) and the function theoretic properties of the
invariant subspaces themselves. For instance, we prove that if an invariant subspace
J contains a function that is bounded away from 0 on some neighborhood of a
point 4 on the unit circle T, then the spectrum of z[J], multiplication by z, when
regarded as operating on the quotient space L2(D)//, does not contain the point 4.
A consequence of this result is that the spectrum associated with the invariant
subspace of all functions vanishing on a prescribed Bergman space zero sequence
coincides with the closure of the sequence.  « 1993 Academic Press, Inc.

INTRODUCTION

Let L2(D) denote the standard Bergman space of all holomorphic
functions on the open unit disk @ in the complex plane C that satisfy the
integrability condition

1,2
1= ([ st <.
D
Here, dS denotes area measure in C, normalized by a constant factor;
dS(z)=dx dy/=, z=x+iy.

A closed subspace J of L2(D) is said to be z-invariant, or just invariant,
provided the product zf belongs to J whenever feJ. Here, we use the
standard notation z for the coordinate function:

z2(A)= 4, AeD.
The structure of the lattice of invariant subspaces in L2(D) has attracted
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a lot of attention from operator theorists as well as function theorists, but
most results have been disappointing, in the sense that one realizes that no
simple characterization such as is known for the Hardy space H*(D) is
possible for the Bergman space. The famous theorem on the invariant sub-
spaces of H*(D) is due to Arne Beurling [1], and it asserts that every
z-invariant subspace J of H*(D), analogously defined as for the Bergman
space, is either trivial, that is, /= {0}, or has the form J=uH?*(D), where
u i1s an inner function, that is, a bounded analytic function on I) with non-
tangential boundary values having modulus | almost everywhere.

Given an invariant subspace J of the Bergman space L2(D), consider the
operator z[J] : L2(D)/J — L2(D)/J defined by the relation

Z[JISf+D)=z+J, feLl(D).

We write o(z[J]) for the spectrum of the operator z[J], which consists of
those AeC for which the operator A —:z[J], acting on L2(D)/J, is not
invertible. It is well known that the spectrum a(z[J]) is a compact subset
of the closed unit disk D. Because the lattice of invariant subspaces of the
Bergman space is very rich, it is appropriate to also consider another
spectral notion (we may call it the weak spectrum): let ¢'(z[J]) denote the
collection of all 4 e C for which the operator A —z[J]: L2(D)/J - LA(D)/J
is not onto. What can go wrong is that 2 —z[J] need not be one-to-one
even if it is onto; this occurs precisely (for A€ D) when the invariant sub-
space fails 10 have what Richter [5] calls the codimension 1 property. It is
not difficult to see that the set ¢'(z[J]) is also a compact subset of D, and
clearly we have the inclusion ¢'(z[J]) = a(z[J]). There are cases when
o(z[J]}=D and ¢’(z[J])=T; for an example, see [3].

Another way of stating the definition of the weak spectrum ¢'(z[J])
is as follows: if 4 is a complex number, we have ie C\o'(z[/]) if and
only if

(A—z)L2(D)+J=L2D).

Earlier work on spectra associated with invariant subspaces in the
Bergman space can be found in [4, 5, 6].

1. RESULTS

An invariant subspace J in the Bergman space L2(D) is said to have the
codimension 1 property if the invariant subspace zJ has codimension 1 in
J. The following basic result on the spectral notions ¢(z[J]) and ¢'(z[J])
can be found in [5].
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THEOREM 1.1 (Richter). Let J be an invariant subspace of L2(D), other
than the trivial subspace {0}. If J has the codimension 1 property,
a(z[J])=06'(z[J]). If. on the other hand, J does not have the codimension
1 property, then a(z[J])=D, and ¢'(z[J])> T.

The next lemma explains that at points in D\o(z[J]), there are
functions in J bounded away from 0.

LEmMMA 1.2 Every invariant subspace J of the Bergman space L2(D),
other than {0}, contains a non-identically vanishing function G,, which
extends to a holomorphic function on the region

(zeC:1/z¢az[JD},
and has |G,(z)] 2 1 on the union of arcs T\o(z[J]).

Proof. The assertion is void if a(z[J])=D, so we may as well
assume that J has the codimension | property, by Theorem 1.1. Then the
subspace z/ also has the codimension 1 property [5], so by Theorem 1.1,
o(z[zJ])=0'(z[zJ]). We show that

a(z[zJ])=0a(z[J]) v {0} (L1)
It is sufficient to prove this equality with the o(-)’s replaced by ¢'(-)’s. By
definition, if 7 is an invariant subspace, i€ C\¢'(z[/]) if and only if

(A—2z)L2(D)+I=LX(D).
Clearly, the weak spectrum has the monotonicity property that
a'(z[I'))>a'(z[1]) if I' is another invariant subspace with I’ ] From
this we see that o¢'(z[zJ])>0'(z[J]), and it is not difficult to see that
Oeo’'(z[zJ]) directly from the definition. For these reasons, to verify (1.1)
we just need to show that ¢'(z(zJ]) < o’(z[J])w {0}. To this end, let us

take a Ae C\o'(z[J])\{0}, and try to show that e C\o'(z[zJ]). By the
definition of the spectrum, we have that

(A—2)LUD)+J=L;(D),

so by multiplying both sides by z, we have in particular
(A—2z)L2(D)+:zJ5:zL2(D).

There are functions in (4 —z) L2(D) that do not vanish at 0, for instance
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the function 4 — z itself, so that since zL2(D>) has codimension 1 in L2(D),
we must in fact have

(A—z) L3(D)+zJ = L2(D).

This shows that ie C\o'(z[z/]), as asserted.
We are now in a position to prove the assertion of the lemma. Let
G,eJ © zJ have norm 1. Then the kernel representation formula

G,(A)=(G,, (1=42)" %),  AeD,
generalizes to
G,(A)=<(G,+zJ, (1 —Az[zJ]) 2 (1 +20)) 2.

where 1+ zJ denotes the coset containing the constant function 1 in the
quotient space L2(D)/zJ, and we see that the expression on the right-hand
side is a well-defined holomorphic function in the variable 4 on the set

(zeC:1/z¢a(z[2J])),
which coincides with
{zeC:1/z2¢a(z[J])},

because the additional point 0 in {1.1) now corresponds to the point at
infinity. The functions G, were studied in extenso in [2]; for instance, by
Corollary 4.3 {2] and the proof of Proposition 1.3 [2], it is clear that G,
has modulus >1 at every boundary point to which it extends continuously.
This concludes the proof of the lemma. §

Given a function fe L2(D), its lower zero set (or liminf zero set), written
Z,(f), consists of all actual zeros of f inside the open unit disk D, and of
all points 4 on the unit circle T for which

lim inf | f(z)| = 0.

Ds:z— 4
Extend this notion to collections of functions .# in L2(D) by declaring
ZF)=({Z f): [eF}.
We are finally in a position to state our main result.

THEOREM 1.3. Let J be an invariant subspace of L2(D). Then
a'(z[J)=Z,(J)

For the proof, we need the following lemma.
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LemMma 14. Let feL’(D) be such that on an open disk D(zq, p),
centered at z4€ T, with radius p >0, we have

|f(2)|>8, ZEDnD(ZOsp)a

Sfor some constant £> 0. Then there exists a bounded analytic function g on
D such that

1/2<|f(z) g(2)l <2,  zeDnD(z,p'),

Sfor some smaller radius p', 0 < p’ < p.

Proof. Consider the function 1/f, which is homomorphic, zero-free, and
bounded on D ~ D(z,, p), and meromorphic in the whole unit disk D). On
the region D n D(z,, p), we are now in a situation where we may apply the
standard Nevanlinna theory, to show that the harmonic function log |¢/f|
has boundary values in the sense of distribution theory on D n D(z,, p),
and these boundary values form a negative Borel measure x. We may then
pick a slightly smaller radius p”, 0 < p” < p, and let ¢ be the Poisson exten-
sion to the whole disk D corresponding to the part of the measure g that
falls upon the arc T n D(z,, p”). The negative measure u is finite on that
arc, because we can map D n D(zg, p) conformally onto D, and on D, and
the mapped measure on T corresponding to u must be bounded; the rest
is an exercise in conformal mapping. We now find a bounded holomorphic
function g on D having |g| =¢ ' exp(¢) on B, and by construction and
the Schwarz reflection principle, fg extends holomorphically across the
arc T n D(zq, p”), and has modulus 1 on it. The function fg clearly meets
the assertion, for some small radius p’. §

Proof of Theorem 1.3. Richter [5] has shown that
¢'(z[JI)nD=Z,(J)nD.

By Lemma 1.2, Z, (J)n T is contained within a(z[J])nT. This entails
that Z (/)N T ca’(z[J])n T, for the following reasons. If J fails to have
the codimension 1 property, then by Theorem 1.1, ¢'(z[J])= T, which
makes the assertion trivial. If, on the other hand, J does have the codimen-
sion 1 property, then ¢(z[J])=0¢"(z[J]), and all is well.

The rest of the proof is devoted to obtaining the reverse inclusion

Z,()nTo6[JDAT.

Let f be a function in J, and suppose there exists a point Ae T such that
for some disk centered at A with radius R> 0,

DA, R)={zeC:|z— Al <R},
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we have
12<|f(z) <2, ze D(4, R)n D;

such a function f exists in J if and only if Ae T\Z,(J), by Lemma 1.4. We
need to show that A¢o¢’(z[J]); this amounts to proving that

(A—z) L3(D)+J=L>(D).
In other words, we need to show that for every ge L2(D), an he L2(D)
can be found such that
(A—2)h—geld
Fix three real parameters r,, r,, r; with 0 <r, <r,<r; <R, and let
D(i,r)={zeC:|z—Al<r;}, j=12,3,

be the disk around A with radius r;. Let x, be an infinitely differentiable
compactly supported function on C with values between 0 and 1, which

vanishes off the disk D(4, r,) and has value 1 on the smaller disk D(4, r;).
Let the function ¢, solve the d-problem

_g(2) 3x,(2)

5qi(2)~u_z)ﬂz), zeD; (1.2)
just put
g(0) 31, ()
0= ], e om0 reC )

Note that since the right-hand side of (1.2) is in L*(D, dS), and since we
are in fact considering the convolution of that L*(D, dS) function with the
d-kernel (nz) !, which locally belongs to L¢ for every g < 2, we see that g;,
as defined by (1.3), belongs to L?(D, dS) for all p < co. One more thing
that is immediate is that g, is holomorphic off the closure of D(4, r,) D,
and in particular bounded on C\D(4, r;) (¢,(z) tends to 0 as |z] —» o0 ). We
consider the function

piz)=—g(2) 1, (2)f(2)+(A—2)q;(2), zeD,

which belongs to L*D, dS), because f is bounded away from 0 on the
support of y,;. Moreover, p; is holomorphic on D, since

dp;(z)= —g(z) 1 (2)/f(z) + (A—2) 8q,(2)=0, zeD.
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Let us for the moment assume that we know that fp; belongs to J. We then

put

1—y,(z
X () +
A—z

h(z) = g(z) f(z)g:(z),  zeD,

and note that f is bounded on D(4, R)n D, and g, is bounded on
C\D(4, r;) and belongs to L*(dS) on D, so that the product fg, clearly is
in L*(D, dS). The function 4 thus belongs to L*(D, dS), and since

Oh(z)= —g(2) 0x1(2)/(A—2) + f(2) O, (z)=0,  zeD,

h belongs to L2(D). To check that the function 4 does what we set out for
it to do, observe that

(A—z) h(z) — g(z2) = —x.(2) 8(z) + (A —2) f(2) q.:(2) = f(2) p;(2),

so that the assertion is immediate once we know that fp; is in J. The way
p; is constructed, this function is bounded on D\D(4, r;), and L*(dS) on
D ~ D(4, ry). The properties of the function f complement those of p,: f is
bounded on D(4, R), and L*(dS) on D\D(4, R). Using this information, it
is not difficult to show that

f(z) pi(pz)— f(2) pi(2), as 1>p—1,

in the norm of L2(D). Since the functions f(z) p,(pz) belong to J, for all
p with 0 < p <1, we see that fp, eJ. The proof is now complete. |

COROLLARY 1.5. Let A be a zero sequence in D for a function in L2(D),
and consider the associated invariant subspace

F(A)={feL(D): f=00n 4},

counting multiplicities when necessary. Then o(z[#(A4)]) = A, the closure of
AinD.

Proof. Invariant subspaces of the type .#(A4) always have the codimen-
sion 1 property [5], and consequently o(z[.#(A)}])=0c'(z[.#(4)]), by
Theorem 1.1. So, by Theorem 1.3, all we need to do is show that
Z,(#(A))=A. Clearly, Z,(#(A4))> 4; to prove the reverse inclusion,
note that by Theorem 3.5 [2], there exists a function G, which vanishes
precisely on 4 in D, extends holomorphically across the set T\ A4, and has
modulus >1 there. The assertion is immediate. |}

Remark 1.6. Richter [5] obtained Corollary 1.5 under the very restric-
tive condition on the sequence A that it be interpolating for the space
L7(D).
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