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The setting

»  — bounded simply connected domain in C which contains 0.
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¢'(0) > 0.

Hakan Hedenmalm, Anton Baranov Boundary properties of planar Green functions



»  — bounded simply connected domain in C which contains 0.

» ¢ : D — Q - the conformal mapping with ¢(0) = 0,
¢'(0) > 0.

» Gq(z,w) is the Green function for Q (z,w € Q).
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»  — bounded simply connected domain in C which contains 0.
» ¢ : D — Q - the conformal mapping with ¢(0) = 0,
¢'(0) > 0.
» Gq(z,w) is the Green function for Q (z,w € Q).
> We write Go(z) = Gq(z,0).
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»  — bounded simply connected domain in C which contains 0.
» ¢ : D — Q - the conformal mapping with ¢(0) = 0,
¢'(0) > 0.
» Gq(z,w) is the Green function for Q (z,w € Q).
> We write Go(z) = Gq(z,0).
» Wirtinger derivatives:

o= (2 2, 5=t 2)),
2 2\0ox  oy)’ 2 2\0x oy

Multiplicative counterparts:
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The problem

» Compare, for complex 7 and real «,

[02Ga(2)]"| with [Ga(z)| ™™
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The problem

» Compare, for complex 7 and real «,
H@ZX GQ(Z)]T} with  |Gq(z)|™“.

» More precisely, when do we have

(1) /Q 1107 Ga(2)] 7| | Gal2)|* dA(z) < +o0?
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We denote by Aq(7) the “best possible” (="smallest”) « for a
given T.
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We have

oc?

Aq(17) < —Ret + [ 5

1
; o(l)] rPiog

as |7| — 0. The o(1) term is independent of the choice of the
bounded simply connected domain £2.
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If Aq(7) + Aq(—7) <0, our scheme of comparing the quantities in
(1) in terms of L' integrals is very successful. It is therefore natural
to view the quadratic-logarithmic remainder term in the Main
Theorem as the amount by which the L! comparison might fail.
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In terms of o,

Ga(p(2)) = log(|2[*),  z€D,

and we get

/‘8X 1"11G(2)|* dA(2)

(28

¢(2)

{ 1og |21|2}ar¢'(z)12dA<z>.
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Integral means spectrum: definition

Let B,(7) be “the best” [ such that

2 L[] [ o(a)

as r — 17. It is possible to show that

By(7) = Aa(2—7)+1

for all complex 7.
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Consequences of Main Theorem

The universal integral means spectrum for the class of bounded
univalent functions Sy is the function Bp(7), obtained by taking
the sup of B,(7) over all ¢. As a consequence of the Main
Theorem, we get

9e? 2 1
Bp(2—7) <1—Rer+ 7—!—0(1) 7] Iogﬂ
-

as |7| — 0. For real 7, P. W. Jones and N. G. Makarov obtained a
smaller error term:

By(2 —7) <1—74 O(?), R>7—0.
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Cauchy and Beurling transforms

Cauchy transform:

Calf(z) = /Q Lﬁ") dA(w).

w z

Beurling transform:

f — Uy f = R S A—

Balf)2) = 0.2alfl(z) = pv [

It is clear that in the sense of distribution theory,
0:€alfl(z) = —f(2),  0:€q[f](z) = Baf(2).

B is unitary L2(C) — L?(C). Bq is contractive L2(Q) — L2(Q).
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Transferred Cauchy transform

We connect two functions f and g, on Q and D, respectively, via
g(2) = @'(2) f o p(2),
and define the integral operator
€,[gl(2) = (Calf]) o »(2)

- [ s A, ze

¢, is then a contraction L2(D) — W12(D)/C.
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Transferred (skewed) Beurling transform

It is known that B¢ is bounded LP(C) — LP(C), for all p with
1 < p < +o0. Let K(p) be a positive constant such that

(2) I1Bcfllrcy < K(p) IfllLr(c), f e LP(C).

The optimal constant K(p) in (2) is not known; however, we may
choose, e. g., K(p) = 2(p* — 1), where p* = max{p, p'}, and

p' = p/(p—1) is the dual exponent (one expects K(p) = p* —1is
the optimal choice). For 0 < § < 2, we introduce the 6-skewed
Beurling transform, as defined by

0oy [ F@EW?
B0 =ov | CT g ) 940
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Transferred (skewed) Beurling transform, cont

It follows from (2) that
1B ]| oy < K(P) IF oy, F € LP(D),

for all p with 1 < p < +00. In the symmetric case § = 1, we write
B, in place of %}p, and call it the Beurling transform. We note
that B, is a contraction on L?(D).
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The basic identity

We have the identity

g Z22) —2(0)

(- el o)
_ ¢'(w) ¢ N ]
a /D o(w) —p(z) 1 —w¢ dA(w) = (€, [gcl(2),
where ,
&w) =1—¢
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Grunsky identity (integral form)

We have
P2 1
(p(2) = () (z-¢)?
"o (W 1
) (SOSE)V‘E) ):p;(z)))2 (1— w(¢)? dA(w) = By [k](2),
where

1




Grunsky identity (operator form)

Let F(w)

WA = [ o dAw).
Then
(3) B, — B = PB, = BP = PB,T.

The strong Grunsky inequality is equivalent to the statement that
B, — B is a contraction on L%(ID), which immediately follows from

(3).
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Skewed Grunsky identity (operator form)

Let ® denote the operator

_ f(w) ,
o12) = | e AW

and 9 the operator of multiplication by F. For 0 < 6 < 2, we
have the operator identity

0 0
%SD - % + (9 - 1)@%1_'2‘2m¢///¢/ == m%w
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Variant of basic identity

z(p(z) — ¢(€))
(z = Q¢(2)
¢'(€) 1

—_ 2 —_
—ca=ld )Lo(c) “o) -z

1-1¢?

log

+log (1 —2¢) + 2¢

-2
_ 2 ¢'(w) (—w W
_¢ /]w( Y dA(w).

w) — ¢(z) (1 - w()?




Variant of basic identity, cont

Put z = (:

2@
log -2) + log (1 —|2]%)

_ 22 SD/(W) Z—w .
N /]D) o(w) — ¢(z) (1 — wz)? dA(w) + O(1).
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Marcinkiewicz-Zygmund integrals

Suppose 0 < k,7vy < 1. Let §(w) be the Euclidean distance from w
to C\ Q. Marcinkiewicz-Zygmund integral:

- {4 i s

Zygmund showed (essentially) in 1969 that

Ay _ K192 B
le o) = ey my 14

for complex A\ with
K"

A< 0
N < Se@ )
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Uniform Sobolev imbedding

We work with

&) = [ 5 S E fwaaw)

For 0 < k < 1, we consider the Lebesgue space

XK(D) = Lp(Da ,LL),

where
Pt du(2) = (1 2P) O 4AG),
By Holder's inequality, we get
. (w-2)¢(w)  [***
A(2)] < {/D ‘(1 “w2)(o(w) — 2(2))
1/(2+5)
(1 W) dA<w>} < Flly.o-
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Uniform Sobolev imbedding, cont

24K

The function
(w — 2)¢(w) (1 — W) dA(w)

Jelel(z) = /D (1—wz)(p(w) — ¢(2))

is essentially the Marcinkiewicz-Zygmund integral:

Jelpl(z) < 4% li(p(2)) + O(1),  zeD.
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Uniform Sobolev imbedding, statement

For complex A with
K4~F

)\ [
N < Sz m)

we have

/ exp {|)\| sup }&Af](z) |2+H}\g0'(z)\2 dA(z) < +o0.
D feball(Xx. (D))
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Proof of the main theorem

By the variant of the basic identity,

o z¢'(2)
e

+ log(1 — |2*) = 2°€,[g:](2) + O(1),
where
1
C1-—wz’
We plan to apply the Uniform Sobolev Imbedding to the function
f=£f =g/llg:|lx.(v)- We get
—k 1+k
zllx, (D) 12 2
M) 1

g-(w)

Let A be such that
r 177,{ 1+H
/\ > |: (1]—-1—/{)2] )
M)
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Proof of the main theorem, cont(1)

We now find that for

oMt
9e(2+ k)’

24K
lo 1
1|22

< ¢/ (2)PdA(z) < +oc.

Al

z¢'(z)

CC)
1

IOg m

1

/exp m
D A

It remains to apply a linear approximation argument. We consider
the convexity estimate (a, b complex)

|a>*% = [a*** > [p[**" — (2 + K)|b|"Re[b(b — a)]
= |b]*™ + (24 )|b|"[Reb — |b|*] — (2 + k)|b|*Re[b(1 — a)].
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Proof of the main theorem, cont(2)

We apply this to

/
zy'(2) 1
a=1-log log ,
e(z) T1-]z?
and obtain
z¢'(z) |2tk
.o N IS S
ogtp| 1P
8 17122 z

> [|b|2+“ + (2 + #)|b|" [Reb — |b|2]] og 1

— (24 K)|b[*Re [b log Zjéz))]

for any b € C.
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Proof of the main theorem, cont(3)

We now insert this estimate into the estimate we got from the
Uniform Sobolev Imbedding, and find that

m 24K K 2 1
/Dexp{ o [|b| + (24 K)[b]"[Reb — |b| ]]Iogil_lzp

¢(2)

Next, we assume b # 0, and put 7 = A~} \[(2 + &) |b|"b. Note
also that

_ |/)\\‘ (2 + I{)|b|"“Re |:b|og ZSO’(Z):| }|g0/(2)|2dA(Z) < +o0.
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Proof of the main theorem, cont(4)

W ier s 22 @]
exp{ /\(2+ ) |b] R[blgw(z)]}

We now get that (in view of the restrictions on A, A\)

Feall

2297 @ - ) e < v

holds so long as R(7) satisfies
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Proof of the main theorem, cont(5)

R(7) > Ro(r) i=
&\ 1/(1+k)
nf (964 ) (1+’%) (1+n) ‘T’(2+H)/(1+/€).

0<k<l \ K (2 + ’i)r(l-lm)z
The choice (for small |7|)
o 1
log ‘—i"

yields the asserted asymptotics.
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