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ABSTRACT. We study the regularity of the free boundary in a Stefan-type problem

1u − ∂t u = χ� in D ⊂ Rn × R, u = |∇u| = 0 on D \�
with no sign assumptions on u and the time derivative ∂t u.
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1. INTRODUCTION

1.1. Background. In the last few years the free boundary regularity of both variational
and nonvariational type has gained a renewed attention. Due to developments of the so-
called monotonicity formulas for elliptic and parabolic PDEs on one side and develop-
ments of new techniques in free boundary regularity on the other side several longstanding
questions have been answered.

One of these questions, treated in this paper and with roots in parabolic potential theory,
concerns the nature of those boundaries that allow caloric continuation of the heat potential
from the free space into the space occupied by the density function. To clarify this let U f

be the heat potential of a density function f :

U f (x, t) =
∫

Rn×R

f (y, s)G(x − y, s − t) dyds,

where G(x, t) is the heat kernel. Then it is known that

HU f = cn f,

where H = 1− ∂t is the heat operator and cn < 0 is some constant. Now suppose

f (x, t) = 1

cn
χ�

for some domain � and denote the corresponding potential by U�. Then

HU� = χ�.

Suppose now that there exist v such that
{

Hv = 0 in Qr (x0, t0)
v = U� in Qr (x0, t0) \�

for some (x0, t0) ∈ ∂� and r > 0, where Qr (x0, t0) = Br (x0)× (t0 − r2, t0 + r2). Then
we call v caloric continuation of U�. Moreover, the function

u = U� − v

satisfies

(1.1)

{

Hu = χ� in Qr

u = |∇u| = 0 in Qr \�.
So our question is when does the boundary of a domain allow a caloric continuation of the
potential.

It is well known, through the Cauchy-Kowalevskaya theorem, that analytic bound-
aries do allow such a continuation locally. Hence we ask the reverse of the Cauchy-
Kowalevskaya theorem in the sense that the existence of the caloric continuation implies
the regularity of the boundary.

In a particular case when u ≥ 0 and ∂t u ≥ 0 problem (1.1) is the well-known Stefan
problem (see e.g. [Fri88]), describing the melting of ice, and is treated extensively in the
literature. However, even the variational inequality case u ≥ 0 (and not necessarily ∂t u ≥
0) has not been considered earlier.

In this paper we treat (1.1) in its full generality without any sign assumptions on either
u or ∂t u. The stationary case, i.e. when u is independent of t was studied in [CKS00]. The
results of this paper generalize those of [CKS00] to the time dependent case.
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1.2. Problem. For a function u(x, t), continuous with its spatial derivatives in a domain
D of Rn × R, define the coincidence set as

3 := {u = |∇u| = 0}

and suppose that

(1.2) Hu = χ� in D, � := D \3.

Here H = 1 − ∂t is the heat operator and we assume that the equation is satisfied in the
weak (distributional) sense, i.e.

∫

D
u(1η + ∂tη) dxdt =

∫

D∩�
η dxdt

for all C∞ test functions η with compact support in D. Then we are interested in the
regularity of the so-called free boundary 0, which consists of all (x, t) ∈ ∂� ∩ D, that are
not parabolically interior for 3, i.e. such that

Q−ε (x, t) ∩� 6= ∅

for any small ε > 0, where Q−ε (x, t) = Bε(x)× (t − ε2, t] is the lower parabolic cylinder.

1.3. Notations. Points in Rn × R are denoted by (x, t), where x ∈ Rn and t ∈ R.
Generic constants are denoted by C , C0, Cn , . . . ;
R−a = (−∞, a]; R− = R−0 ;
a± = max(±a, 0) for any a ∈ R;
Br (x) is the open ball in Rn with center x and radius r ; Br = Br (0);
Qr (x, t) = B(x, r)× (t − r2, t + r2) (parabolic cylinder); Qr = Qr (0, 0);
Q+r (x, t) = Br (x)× [t, t + r2) (the upper half-cylinder); Q+r = Q+r (0, 0);
Q−r (x, t) = Br (x)× (t − r2, t] (the lower half-cylinder); Q−r = Q−r (0, 0);
∂p Qr (x, t) is the parabolic boundary, i.e., the topological boundary minus the top of the

cylinder.
∇ denotes the spatial gradient, ∇ = (∂1, . . . , ∂n);
1 =

∑n
i=1 ∂i i (the spatial Laplacian);

H = 1− ∂t (the heat operator);
χ� is the characteristic function of the set �;
E(t) = {x : (x, t) ∈ E} is the t-section of the set E in Rn × R.

Below we define classes of local and global solutions of (1.2) that we study in this paper.

1.4. Local solutions.

Definition 1.1. For given r , M > 0 and (x0, t0) ∈ Rn × R let P−r (x0, t0;M) be the class
of functions u in Q− = Q−r (x0, t0) such that

(i) u satisfies (1.2) in D = Q−;
(ii) |u| ≤ M in Q−;

(iii) (x0, t0) ∈ 3.

In the case (x0, t0) = (0, 0) we will denote the corresponding class P−r (0, 0;M) also by
P−r (M).

Similarly, define the class Pr (x, t;M) by replacing Q− = Q−r (x0, t0) with Q =
Qr (x0, t0) in (i)–(iii) above.
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1.5. Global solutions.

Definition 1.2. For a given M > 0 let P−∞(M) be the class of functions u in Rn×R− such
that

(i) u satisfies (1.2) in D = Rn × R−;
(ii) |u(x, t)| ≤ M(1+ |x |2 + |t |);

(iii) (0, 0) ∈ 3.

Similarly, define the class P∞(M) by replacing Rn × R− with Rn × R.
The elements of P−∞(M) and P∞(M) will be called global solutions.

It is also noteworthy that elements in P−∞(M) can be extended, in a natural way, to
Rn × R+ by solving the Cauchy problem for the equation Hu = 1. In particular, we may
consider each element in P−∞(M) as an element of P∞(M), and vice versa.

The following operations will be extensively used throughout the paper.

1.6. Scaling. For a function u(x, t) set

ur (x, t) = 1

r2
u(r x, r2t),

the parabolic scaling of u around (0, 0). This scaling preserves equation (1.2) with

�(ur ) = �r := {(x, t) : (r x, r2t) ∈ �}.
Also, u ∈ Pr (M) implies ur ∈ P1(M/r2).

Similarly, one can scale u around any point (x0, t0) by

1

r2
u(r x + x0, r

2t + t0).

1.7. Blow-up. As we show in Theorem 4.1, solutions u ∈ P−1 (M) are locally C1,1
x ∩C0,1

t

regular in Q−1 . Then the scaled functions ur are defined and uniformly bounded in Q−R for
any R < 1/r . Since Hur = χ�r , by standard compactness methods in parabolic theory
(see e.g. [Fri64]), we may let r → 0 and obtain (for a subsequence) a global solution (see
the stability discussion below). This process is referred to as blowing-up, and the global
solution thus obtained is called a blow-up of u.

Similarly, we can define the blow-up of a local solution u at any free boundary point
(x0, t0) by considering the parabolic scalings of u around (x0, t0).

Also, if u is a global solution, we can define the blow-up at infinity, by considering the
scaled functions ur and letting r →∞. The blow-up at infinity will be called shrink-down.

2. MAIN RESULTS

Before stating our main results, we would like to illustrate the problem with the follow-
ing examples.

2.1. Examples.
1. Stationary (i.e. t-independent) solutions. Those include halfspace solutions

u(x, t) = 1

2
(x · e)2+,

where e is a spatial unit vector, as well as other global stationary solutions of the obstacle
problem that have ellipsoids and paraboloids as coincidence sets.
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2. Space-independent (i.e. x-independent) solutions

u(x, t) = −t, u(x, t) = −t+, u(x, t) = t−.

In fact, it is easy to see that the solutions depending only on t have the form

u(x, t) =







−(t − T2), t > T2
0, T1 ≤ t ≤ T2
−(t − T1), t < T1

for some constants−∞ ≤ T1 ≤ T2 ≤ ∞. This is a particular case of our Theorem I below.

3. Polynomial solutions of the type

u(x, t) = P(x)+ m t,

where P(x) is a quadratic polynomial satisfying 1P = m + 1. In particular, for a given
constant c, the function

u(x, t) = c|x |2 + (2nc − 1) t

is a solution of (1.2) in Rn × R. The only free boundary point of this solution is the origin
(0, 0), unless c = 0 or c = 1/2n. In the former case the free boundary is Rn × {0} and in
the latter case it is {0} × R.

4. For the next example we modify the solution above for t ≥ 0 by solving the one
phase free boundary problem: find a function f (ξ) on [0,∞) such that

(2.1) u(x, t) = t f

( |x |√
t

)

satisfies (1.2) for t > 0. This will be so if f vanishes on [0, a] for some a > 0 and satisfies
an ordinary differential equation

f ′′(ξ)+
(

n − 1

ξ
+ ξ

2

)

f ′(ξ)− f (ξ)− 1 = 0

on (a,∞) with boundary conditions

f (a) = f ′(a) = 0.

The solution can be given explicitly as

f (ξ) = (2n + ξ2)

(

1

2n + a2
− 2anea2/4

∫ ξ

a

e−s2/4

sn−1(2n + s2)2
ds

)

.

It is easy to see that the limit

(2.2) c = lim
ξ→∞

f (ξ)

ξ2

exists and satisfies

0 < c <
1

2n
.

Moreover, changing a between 0 and∞ we can get all values from (0, 1/2n). Now (2.2)
implies that

u(x, 0) = c|x |2.
Hence, if we define

u(x, t) =







t f

( |x |√
t

)

for t > 0

c|x |2 + (2nc − 1) t for t ≤ 0,
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we again obtain a solution of (1.2) in Rn × R. The free boundary in this case is the
paraboloid {|x |2 = a2t}. The solution u is identically 0 inside and positive outside.

5. Finally, we point out that at any time t = T we have the freedom to choose not to
have a free boundary. Namely, fix T > 0 and let u be, for instance, as in the previous
example. Now solve the Cauchy problem

Hv = 1 in Rn × (T,∞); v(·, T ) = u(·, T )

and let

w(x, t) =
{

v(x, t), t > T
u(x, t), t ≤ T .

Thenw is a solution of (1.2) in Rn×R. Its free boundary is the truncation of the paraboloid
{|x |2 = a2t} for t ≤ T . We remark that the disk Ba2T × {T } is not a part of the free
boundary, even though it is the part of ∂�.

As we will see later (Section 7), the points on Ba2T × {T } have zero (balanced) energy,
the tip (0, 0) has high energy, and rest of the points on the truncated paraboloid have low
energy. We show in this paper that, in a sense, the regular free boundary points are the ones
with low energy.

2.2. Main theorems. The solution that we constructed in the example above has the prop-
erty that it is polynomial for t < 0, nonnegative and convex in space for 0 ≤ t ≤ T and
solves Hw = 1 for t > T . Our first main theorem states that something similar is true for
every global solution.

Theorem I (Classification of global solutions). Let u be a solution of (1.2) in D = Rn ×
(−∞, a] with at most quadratic growth at infinity:

|u(x, t)| ≤ M
(

|x |2 + |t | + 1
)

for some constant M > 0. Then there exist −∞ ≤ T1 ≤ T2 ≤ a with the following
properties:

(i) if −∞ < T1, then

u(x, t) = P(x)+ m t for t < T1

for a quadratic polynomial P(x) and a constant m;
(ii) if T1 < T2, then

u ≥ 0, ∂eeu ≥ 0, ∂t u ≤ 0 for t < T2,

where e is any spatial unit vector;
(iii) if T2 < a, then u satisfies

Hu = 1 for T2 < t < a.

Similar to the obstacle problem (see [Caf98]) the classification of global solutions im-
plies the regularity of the free boundary for local solutions at points satisfying a certain
density condition. Such a condition can be given in the terms of the minimal diameter.

Definition 2.1 (Minimal Diameter). The minimal diameter of a set E in Rn , denoted
md(E), is the infimum of distances between two parallel planes such that E is contained
in the strip between these planes. The lower density function for the solution of u of (1.2)
at (0, 0) is defined by

δ−r (u) =
md

(

3(−r2) ∩ Br
)

r
.
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Theorem II (Regularity of local solutions). Let u ∈ P−1 (M) be a local solution, such that
(0, 0) ∈ 0. Then there is a universal modulus of continuity σ(r) and a constant c > 0 such
that if for one value of r , say r0, we have

δ−r0
(u) > σ(r0)

then 0 ∩ Q−c r0
is a C∞ surface (in space and time.)

Remark 2.2. If we replace δ−r (u) by a weaker density function

δ∗r (u) = sup
−r2≤t≤−r2/2

md(3(t) ∩ B2r )

r

then the conclusion of the theorem still remains true (perhaps with different constants.)

3. MONOTONICITY FORMULAS

So-called monotonicity formulas will play an important role in this paper and will appear
in almost every section.

We will use two different kinds of monotonicity formulas, the first due to Caffarelli
[Caf93] and the second due to Weiss [Wei99], both in global and local forms.

Let

G(x, t) := 1

(4π t)n/2
e−|x |

2/4t for (x, t) ∈ Rn × (0,∞)

be the heat kernel. Then for a function v and any t > 0 define

I (t; v) =
∫ 0

−t

∫

Rn
|∇v(x, s)|2G(x,−s) dxds.

Theorem 3.1 (Caffarelli [Caf93]). Let h1 and h2 be nonnegative subcaloric functions in
the strip Rn × [−1, 0] with a polynomial growth at infinity such that

h1(0, 0) = h2(0, 0) = 0 and h1 · h2 = 0.

Then the functional

8(t) = 8(t; h1, h2) := 1

t2
I (t; h1)I (t; h2)

is monotone nondecreasing in t for 0 < t < 1. �

For the proof see Theorem 1 in [Caf93]. This theorem is a generalization of the Alt-
Caffarelli-Friedman monotonicity formula from [ACF84].

Remark 3.2. As it follows from the proof, if 8(t) > 0 and the supports of h1(·, t) and
h2(·, t) are not complementary halfspaces, then 8′(t) > 0.

We will also use the following local counterpart of the monotonicity theorem above. It
takes the form of an estimate.

Theorem 3.3 (Caffarelli [Caf93]). Let h1 and h2 be nonnegative subcaloric functions in
Q−1 such that

h1(0, 0) = h2(0, 0) = 0 and h1 · h2 = 0.

Let also ψ(x) ≥ 0 be a C∞ cut-off function with suppψ ⊂ B3/4 and ψ |B1/2 = 1 and set
wi = hiψ . Then there exist a constant C = C(n, ψ) > 0 such that

8(t;w1, w2) ≤ C‖h1‖2L2(Q−1 )
‖h2‖2L2(Q−1 )

for any 0 < t < 1/2. �
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For the proof see Theorem 2 in [Caf93] and the remark after it. See also Theorem 2.1.3
in [CK98] for the generalization of this estimate for parabolic equations with variable co-
efficients.

To formulate the second monotonicity formula, we define Weiss’ functional for a func-
tion u by

W (r; u) = 1

r4

∫ −r2

−4r2

∫

Rn

(

|∇u(x, t)|2 + 2u(x, t)+ u(x, t)2

t

)

G(x,−t) dxdt.

Theorem 3.4 (Weiss [Wei99]). Let u be a solution of (1.2) in Rn × (−4, 0] with a polyno-
mial growth at infinity. Then W (r; u) is monotone nondecreasing in r for 0 < r < 1. �

The proof can be found in [Wei99]. An easy proof can be given using the following
scaling property of W :

W (r; ur ) = W (1, u)

where ur (x, t) = (1/r2)u(r x, r2t) is the parabolic scaling of u. It can be shown that

W ′(r; u) = 1

r5

∫ −r2

−4r2

∫

Rn
(Lu)2

G(x,−t)

−t
dxdt ≥ 0

for every 0 < r < 1, where

Lu(x, t) := x · ∇u(x, t)+ 2t ∂t u(x, t)− 2u(x, t) = d

dr
ur (x, t)

∣

∣

∣

r=1
.

Remark 3.5. In Weiss’ monotonicity theorem W ′(r; u) = 0 iff Lu = 0 a.e. in Rn ×
[−4r2×,−r2]. In particular W (r; u) ≡ const =: W (u) iff u is homogeneous, i.e.
u(x, t) = ur (x, t) = (1/r2)u(r x, r2t) for 0 < r ≤ 1.

Before we state a local form of Weiss’ monotonicity theorem, we remark that it will not
be used in most of the paper and will appear only in the last sections.

Theorem 3.6. Let u ∈ P−1 (M) and ψ(x) ≥ 0 be a C∞ cut-off function in Rn with
suppψ ⊂ B3/4 and ψ |B1/2 = 1. Then there exists C = C(n, ψ,M) > 0 such that for
w = u ψ the function

W (r;w)+ C Fn(r)

is monotone nondecreasing in r for 0 < r < 1/2, where Fn(r) =
∫ r

0 s−n−3e−1/(16s2)ds.

The proof is based on the following lemma.

Lemma 3.7. Let w be of the Sobolev class W 2,p
x ∩ W 1,p

t (Q−R ) for some p ≥ 2 and
suppw(·, t) ⊂⊂ BR for every −R2 ≤ t ≤ 0. Then

W ′(r;w) = 1

r5

∫ −r2

−4r2

∫

Rn
Lw(x, t)

(

Lw(x, t)

−t
− 2(Hw(x, t)− 1)

)

G(x,−t) dxdt.

for 0 < r < R/2.

Proof. The computations below are formal but well justified, since w is a W 2,p
x ∩ W 1,p

t
function. Using the scaling property W (r;w) = W (1;wr ), we obtain for r = 1

W ′(1;w) = d

dr
W (1;wr ) =

∫ −1

−4

∫

Rn

(

L(|∇w|2)+ 2 Lw + 2
w

t
Lw

)

G(x,−t) dxdt

=
∫ −1

−4

∫

Rn

(

2∇w · ∇(Lw)+ 2 Lw + 2
w

t
Lw

)

G(x,−t) dxdt,
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where we have used the (easily verified) identity

L(|∇w|2) = 2∇w · ∇(Lw).

Now integrating by parts the term

2∇w · ∇(Lw)G(x,−t)

and using that

∇G(x,−t) = − 1

2t
x · G(x,−t)

we obtain

W ′(1;w) = 2
∫ −1

−4

∫

Rn
Lw

(

−1w − 1

2t
x · ∇w + 1+ w

t

)

G(x,−t) dxdt

=
∫ −1

−4

∫

Rn
Lw

(

Lw(x, t)

−t
− 2(Hw(x, t)− 1)

)

G(x,−t) dxdt,

which proves the lemma for r = 1 and by rescaling argument, for all r . �

Proof of Theorem 3.6. By standard parabolic estimates (see e.g. [Lie96], Chapter VII) we
have that u is of class W 2,p

x ∩ W 1,p
t locally in Q−1 for any 1 < p < ∞, since χ� ∈ L∞.

As an immediate corollary from Lemma 3.7 we obtain that

(3.1) W ′(r;w) ≥ − 2

r5

∫ −r2

−4r2

∫

Rn
Lw (Hw(x, t)− 1)G(x,−t) dxdt.

Next, from the representation w(x, t) = u(x, t) ψ(x) in Q−1 , we have the following iden-
tities

Lw = u Lψ + ψ Lu

Hw = u1ψ + ψ Hu + 2∇ψ · ∇u.

Since u satisfies (1.2) and suppψ ⊂ B3/4, it is easy to see that the integrand in (3.1)
vanishes a.e. in B1/2 × [−1, 0] and Bc

3/4 × [−1, 0]. Hence we obtain

W ′(r;w) ≥ − 1

r5

∫ −r2

−4r2

∫

B3/4\B1/2

f (x, t)G(x,−t) dxdt

with ‖ f ‖L1(Q−3/4)
≤ C = C(n, ψ,M) <∞ and consequently

W ′(r;w) ≥ − C

rn+3
e−1/(16r2).

Therefore the function

W (r;w)+ C Fn(r)

is nondecreasing, where

Fn(r) =
∫ r

0
s−n−3e−1/(16s2)ds.

The proof is complete. �
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4. UNIFORM C1,1
x ∩ C0,1

t REGULARITY OF SOLUTIONS

In this section we establish uniform local C1,1
x ∩ C0,1

t regularity of bounded solutions
of (1.2).

Theorem 4.1. Let u ∈ P−1 (x0, t0;M). Then u ∈ C1,1
x ∩ C0,1

t (Q−1/4(x0, t0)), uniformly.

More precisely, there exists a universal constant C0 = C0(n) such that if u ∈ P−1 (x0, t0;M),
then

sup
�∩Q−1/4(x0,t0)

(

|∂i j u(x, t)| + |∂t u(x, t)|
)

≤ C0 M.

In the general theory of the Stefan problem (where the additional assumptions u ≥ 0 and
∂t u ≥ 0 are imposed by the problem) it can be show that ∂t u is continuous with logarithmic
modulus of continuity. In fact, if we knew more regularity of ∂t u (Cα is enough) we could
threat the problem as an elliptic one writing

1u = χ� f (x, t),

where f (x, t) = (1+ ∂t u).
Here we choose to approach the problem in its parabolic setting. The core of the proof

of Theorem 4.1 is the following lemma, establishing the quadratic growth of solutions near
the free boundary.

Lemma 4.2. Let u ∈ P−1 (M). Then there exist a constant C = C(n) such that

(4.1) sup
Q−r

|u| ≤ C Mr2

for any 0 ≤ r ≤ 1.

Proof. We use the method adopted from [CKS00]. Set

(4.2) Sj (u) = sup
Q−

2− j

|u|

and define N (u) to be the set of all nonnegative integers satisfying the following doubling
condition

(4.3) 22Sj+1(u) ≥ Sj (u).

Suppose now for some universal constant C0 ≥ 1

(4.4) Sj+1(u) ≤ C0 M 2−2 j for all j ∈ N (u).

Then we claim

(4.5) Sj (u) ≤ C0 M 2−2 j+2 for all j ∈ N.

Obviously (4.5) holds for j = 1. Next, let (4.5) hold for some j . Then it holds also for
j + 1. Indeed, if j ∈ N (u) it follows from (4.4). If j 6∈ N (u), (4.3) fails and we obtain

Sj+1(u) ≤ 2−2Sj (u) ≤ C0 M 2−2 j .

Therefore (4.5) holds for all j ∈ N. This implies

sup
Q−r

|u| ≤ 8C0 Mr2

for any r ≤ 1, and the lemma follows with C = 8C0.
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Now to complete the proof we need to show (4.4). Suppose it fails. Then there exist
sequences u j ∈ P−1 (M), and kj (∈ N (u j )), j = 1, 2, . . ., such that

(4.6) Skj+1(u j ) ≥ j M 2−2kj .

Define ũ j as

ũ j (x, t) = u j (2−kj x, 2−2kj t)

Skj+1(u j )
in Q−1 .

Then

(4.7) sup
Q−1

|H (̃u j )| ≤
2−2kj

Skj+1(u j )
≤ 1

j M
→ 0,

(4.8) sup
Q−1/2

|̃u j | = 1, (by (4.2))

(4.9) sup
Q−1

|̃u j | ≤
Skj (u j )

Skj+1(u j )
≤ 4 (by (4.3))

(4.10) ũ j (0, 0) = |∇ũ j (0, 0)| = 0

Now by (4.7)–(4.10) we will have a subsequence of ũ j converging in C1,α
x ∩ C0,α

t (Q−1 ) to
a non-zero caloric function u0 in Q−1 , satisfying u0(0, 0) = |∇u0(0, 0)| = 0. Moreover,
from (4.8), we will have

(4.11) sup
Q−1/2

|u0| = 1.

For any spatial unit vector e define

v = ∂eu0, vj = ∂eu j , ṽj = ∂eũ j .

Then, over a subsequence, ṽj converges in C0,α
x ∩ C0,α

t (Q−1 ) to v. Moreover H(v) = 0.
Now, for a fixed cut-off functionψ(x)withψ |B1/2 = 1 and suppψ ⊂ B3/4 and u ∈ P1(M)
consider

8(t; (∂eu)ψ) = 1

t2
I (t; (∂eu)+ψ) I (t; (∂eu)−ψ).

Then to apply [Caf93] monotonicity formula (see Theorem 3.3 above), we need to verify
that the functions (∂eu)± are sub-caloric; we leave this to the reader. Then, for all 0 < t <
t0, we obtain

(4.12) 8(t; (∂eu)ψ) ≤ C‖∇u‖4
L2(Q−1 )

≤ C0,

for a universal constant C0, which, by classical estimates, depends on the class only.
Now choose ψ as above and set ψj (x) = ψ(2−kj x). Then estimate (4.12) applied to

ṽjψj gives

(4.13) 8(1; ṽjψj ) ≤
(

2−2kj

Skj+1

)4

8(2−2kj ; vjψ) ≤ C0

(

2−2kj

Skj+1

)4

for kj large enough. Since ψj = 1 in B
2kj−1 we will have

|∇ (̃vjψj )|2 ≥ |∇ṽj |2χB1 .
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Hence for ε > 0 (small and fixed) we have

Cn,ε

∫ −ε

−1

∫

B1

|∇ṽ±j |
2 dxdt ≤

∫ 0

−1

∫

B1

|∇ṽ±j ψj |2G(x,−t) dxdt = I (1, ṽ±j ψj ).

This estimate, in combination with Poincare’s inequality, gives
∫ −ε

−1

∫

B1

|̃v±j − M±(t)|2 dxdt ≤ Cn

∫ −ε

−1

∫

B1

|∇ṽ±j |
2 dxdt ≤ C(n, ε)I (1, ṽ±j ψj ),

where M±j (t) denotes the corresponding mean value of ṽ±j on the t-section.
Using this and (4.13) we will have

(∫ −ε

−1

∫

B1

|̃v+j − M+j (t)|
2dxdt

)(∫ −ε

−1

∫

B1

|̃v−j − M−j (t)|
2dxdt

)

≤

C(n, ε)8(1, vjψ) ≤ C(n, ε)

(

2−2kj

Skj+1

)4

.

Using (4.6) and letting j →∞ (and then ε→ 0), we obtain

(4.14)
∫ 0

−1

∫

B1

|v+ − M+(t)|2
∫ 0

−1

∫

B1

|v− − M−(t)|2 = 0,

where M±(t) denotes the corresponding mean value of v± on t-sections over B1. Obvi-
ously, (4.14) implies that either of v± is equivalent to M±(t) in Q−1 , and thus independent
of the spatial variables. Let us assume v− = M−(t). Then −∂tv

− = H(v−) = 0, i.e. M−

is constant in Q−1 . Since v(0, 0) = 0 we must have M− = 0, i.e. v ≥ 0 in Q−1 ). Hence
by the minimum principle v ≡ 0 in Q−1 . Since v = ∂eu0, and e is arbitrary direction we
conclude that u0 is constant in Q−1 . Also u0(0, 0) = 0 implies that the constant must be
zero, i.e u0 ≡ 0 in Q−1 . This contradicts (4.11) and the lemma is proved. �

In fact, for the proof of Theorem 4.1 we will need also the extension of Lemma 4.2 to
the “upper half” as well.

Lemma 4.3. Let u ∈ P1(M). Then there exist a constant C = C(n) such that

(4.15) sup
Qr

|u| ≤ C Mr2

for any 0 ≤ r ≤ 1.

Proof. Define w1 = C M(|x |2 + 2nt), where C as in Lemma 4.2. Then H(w1) = 0 ≤
H(u) in Q+1 . Also, by (4.1), w1 ≥ u on the parabolic boundary ∂p Q+1 . Hence by the
comparison principle we will have w1 ≥ u in Q+1 .

Similarly we define w2 = −C M(|x |2 + 2nt) − t , which satisfies H(w2) = 1 ≥ H(u)
in Q+1 . Also, by (4.1), on the parabolic boundary ∂p Q+1 we have w2 ≤ u. Hence by the
comparison principle w2 ≤ u in Q+1 . This completes the proof of the lemma. �

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For (x0, t0) ∈ � ∈ Q−1/4 let

d = d−(x0, t0) = sup{r : Q−r (x0, t0) ⊂ � ∩ Q−1 },
the parabolic distance to the free boundary. Then Lemma 4.3 implies that

|u(x, t)| ≤ C Md2 in Q−d (x0, t0).
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Now consider the function

v(x, t) = 1

d2
u(d x + x0, d2t + t0) in Q−1 .

Then v satisfies Hv = 1, and |v| is uniformly bounded in Q−1 . Hence by standard parabolic
estimates (see for instance [Fri64]) ∂i jv(0, 0) = ∂i j u(x0, t0), and ∂tv(0, 0) = ∂t u(x0, t0)
are uniformly bounded (independent of x0 and t0), which is the desired result. The theorem
is proved. �

The above theorem has the following obvious implication.

Corollary 4.4. Let u ∈ P−∞(M). Then

|∂i j u(x, t)| + |∂t u(x, t)| ≤ C0 M in �.

Proof. Let ur be a scaling of u at the origin, i.e.

ur (x, t) = 1

r2
u(r x, r2t) in Q−1 .

Then u ∈ P−∞(M) implies ur ∈ P−1 (3M) for r ≥ 1. Hence by Theorem 4.1 we have

sup
�r∩Q−1/4

(

|∂i j ur (x, t)| + |∂t ur (x, t)|
)

≤ C0 M,

i.e.,
sup

�∩Q−r/4

(

|∂i j u(x, t)| + |∂t u(x, t)|
)

≤ C0 M.

Letting r →∞ we will obtain the statement of the corollary.
�

5. NONDEGENERACY

5.1. Nondegeneracy. The reader may have wondered what happens if the function ur

under the blow-up process converges identically to zero (i.e. it degenerates). This happens
if the function decays to zero faster than quadratically. This, however, does not happen if
we blow-up at a free boundary point.

Lemma 5.1. Let u be a solution of (1.2) and (x0, t0) ∈ 0. Then there exists a universal
constant Cn > 0 such that

(5.1) sup
Q−r (x0,t0)

u ≥ Cnr2

for any r > 0 such that Q−r (x0, t0) ⊂ D. More generally, for any (x0, t0) ∈ 3 we have
that either (5.1) holds or u ≡ 0 in Q−r/2(x0, t0) for any r > 0 as above.

Proof. Consider first (x1, t1) ∈ {u > 0} and set

w(x, t) = u(x, t)− u(x1, t1)−
1

2n + 1

(

|x − x1|2 − (t − t1)
)

.

Then w is caloric in � ∩ Q−r (x1, t1) and strictly negative on ∂� ∩ Q−r (x1, t1). Since
w(x1, t1) = 0, the maximum of w on the parabolic boundary of the cylinder Q−r (x1, t1) is
nonnegative. In particular we obtain

sup
∂p Q−r (x1,t1)

(

u(x, t)− u(x1, t1)−
r2

2n + 1

)

≥ 0.
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Hence

(5.2) sup
Q−r (x1,t1)

u ≥ u(x1, t1)+
r2

2n + 1
.

Then a limiting argument shows that (5.1) holds if (x0, t0) is in the closure of {u > 0} with
Cn = 1/(2n + 1). Moreover, if Q−r/2(x0, t0) contains a point (x1, t1) in {u > 0}, we still
have

sup
Q−r (x0,t0)

u(x, t) ≥ sup
Q−r/2(x1,t1)

u(x, t) ≥ u(x1, t1)+
(r/2)2

2n + 1
≥ Cnr2.

Finally, in the case when u ≤ 0 in Q−r/2(x0, t0), the maximum principle implies that u ≡ 0

in Q−r/2(x0, t0), since u(x0, t0) = 0. Thus (x0, t0) is not a free boundary point. �

The next lemma shows that we have also a certain nondegeneracy at the points of ∂�∩D
even if they are not in 0.

Lemma 5.2. Let u be a solution of (1.2) and (x0, t0) ∈ ∂� ∩ D. Then there exists a
constant Cn > 0 such that

(5.3) sup
Qr (x0,t0)

|u| ≥ Cnr2.

for any r > 0 with Qr (x0, t0) ⊂ D.

Proof. Consider two cases: (i) Qr/2(x0, t0) contains a point (x1, t1) in {u > 0} and (ii)
u ≤ 0 in Qr/2. As in the proof of the previous lemma, we obtain that in the first case

sup
Qr (x0,t0)

u ≥ Cnr2

(and we are done) and in the second case that u ≡ 0 in Q−r/2(x0, t0). Moreover, in the
second case we claim that

inf
Q+r/2(x0,t0)

u ≤ −Cnr2.

Indeed, first observe that u < 0 in Qr/2(x0, t0)∩ {t > t0}, otherwise we would have u ≡ 0
in Br/2(x0) × (t0 − r2/4, t1) for some t1 > t0, which contradicts to the assumption that
(x0, t0) ∈ ∂�. The parabolic scaling

v(x, t) = 1

r2
u(r x + x0, r

2t + t0)

satisfies

Hv = 1, v < 0 in Q+1/2.

But then

inf
Q+1/2

v ≤ −Cn,

otherwise we would have a sequence of functions −1/k ≤ vk ≤ 0 in Q+1/2 satisfying
Hvk = 1. This is impossible, since the limit function v0, which is identically 0, should
also satisfy Hv0 = 1.

Scaling back, we complete the proof of the lemma. �
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5.2. Stability under the limit. Let u j be any converging sequence in the class P−1 (M)
and let u0 = limj→∞ u j . Then we claim u0 ∈ P−1 (M).

To prove this statement, we may assume that the convergence is in C1,α
x ∩ C0,α

t . hence
we have

(5.4) lim sup
j→∞

3(u j ) ⊂ 3(u0),

where lim supj→∞ E j for the sequence of sets E j is defined as the set of all limit points of
sequences (x jk , tjk ) ∈ E jk , jk →∞. Then for any (x, t) ∈ �(u0) there exists ε > 0 such
that Q−ε (x, t) ⊂ �(u j ), thus implying that

Hu0 = 1 in �(u0).

Since also u0 is C1,1
x ∩ C0,1

t regular, it follows that u0 is a solution of (1.2).
Next, we claim that

(5.5) lim sup
j→∞

0(u j ) ⊂ 0(u0).

In particular, if (0, 0) ∈ 0(u j ) then (0, 0) ∈ 0(u0). This follows immediately from the
nondegeneracy Lemma 5.1.

In fact, we also have a similar inclusion for ∂�:

(5.6) lim sup
j→∞

∂�(u j ) ⊂ ∂�(u0).

Indeed, (5.6) will follow once we show that if u0 = 0 in Qr (x0, t0) then u j = 0 in
Qr/2(x0, t0) for sufficiently large j . Assume the contrary. Then we will have either
Qr/2(x0, t0) ⊂ �(u j ) or Qr/2(x0, t0) ∩ �(u j ) 6= ∅ over infinitely many j = jk . In
the first case we will obtain that u0 satisfies H(u0) = 1 in Qr/2(x0, t0) and in the second
that supQr (x0,t0) |u0| ≥ Cnr2, both of which are impossible for u0 = 0 in Qr (x0, t0).

The same argument as above shows also that

(5.7) lim sup
j→∞

�(u j ) ⊂ �(u0).

Generally, we cannot prove inclusions similar to (5.4)–(5.7) for t-levels of the sets � and
3. The reason is the lack of the “elliptic version” of (5.3) on t-sections. However, for the
Stefan problem when one assumes that ∂t u ≥ 0, one has 1u = χ� + ∂t u ≥ χ�, which
allows to prove the elliptic version of (5.3).

5.3. Lebesgue measure of ∂�. From the nondegeneracy and the C1,1
x ∩ C0,1

t regular-
ity one can deduce that ∂� (hence also the free boundary 0), has (n + 1)-dimensional
Lebesgue measure zero. It is enough to show that ∂� has Lebesgue density less than 1 at
every its point.

Indeed, take any (x0, t0) ∈ ∂�. Using (5.3), we can find (x1, t1) ∈ Qr/4(x0, t0)
such that |u(x1, t1)| ≥ Cr2. On the other hand, by Theorem 4.1, we have |u(x1, t1)| ≤
C1d2(x1, t1) (where d is the parabolic distance to 3). Hence d(x1, t1) ≥ Cr . In particular
the set � ∩ Qr (x0, t0) contains a cylinder of a size, proportional to Qr (x0, t0).

In fact, we claim that for any parabolic cylinder Qr (x, t), not necessarily centered at
a point on ∂�, Qr (x, t) \ ∂� contains a cylinder proportional to Qr (x, t). To prove it,
consider the following two alternatives: either Qr/2(x, t) contains a point on ∂� or it
doesn’t. In the first case the claim follows from the arguments above and in the second
case Qr/2(x, t) itself is contained in Qr (x, t) \ ∂�.
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Further, that ∂� has Lebesgue density less than 1 at (x0, t0) will follow if we show that
for every hyperbolic cylinder

Cr (x0, t0) := Br (x0)× (t0 − r, t0 + r)

Cr (x0, t0) \ ∂� contains a set E of Lebesgue measure proportional to that of Cr (x0, t0).
Note, it is enough to show this statement for r = 1/k, k = 1, 2, . . . Subdivide C1/k(x0, t0)
into k parabolic cylinders

Qi = Q1/k(x0, ti ), ti = t0 + 1− (2i − 1)/k, i = 1, 2, . . . , k.

Then Qi \ ∂� contains a cylinder ˜Qi proportional to Qi and one can take

E =
k
⋃

i=1

˜Qi .

Thus, ∂� has (n + 1)-dimensional Lebesgue measure 0.

6. HOMOGENEOUS GLOBAL SOLUTIONS

Definition 6.1. We say that the solution u(x, t) is homogeneous (with respect to the origin)
if

1

r2
u(r x, r2t) = u(x, t)

for every r > 0.

Simple examples of homogeneous solutions are the polynomial solutions of the type

u(x, t) = mt + P(x),

where m is a constant and P is a homogeneous quadratic polynomial satisfying 1P =
m + 1, and the halfspace solutions

u(x, t) = 1

2
(x · e)2+

for spatial unit vectors e. As we will see below these are the only nonzero homogeneous
solutions in Rn × R−.

As was already mentioned in Remark 3.5, solutions u, homogeneous in the past, have
the property that their Weiss functional W (r; u) is a constant (and vice versa.) We denote
this constant by W (u).

Lemma 6.2.

(i) For every spatial direction e

W

(

1

2
(x · e)2+

)

= W

(

1

2
(x1)

2
+

)

=: A;

(ii) For every constant m and homogeneous quadratic polynomial P(x) satisfying
1P = m + 1

W (mt + P(x)) = W

(

1

2
(x1)

2
)

= 2A
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Proof. Part (i) is obvious because of the rotational symmetry of the functional W . Part (ii)
follows from the direct computations. Indeed, for given t < 0,
∫

Rn

(

|∇u(x, t)|2 + 2u(x, t)+ u(x, t)2

t

)

G(x,−t) dx =
∫

Rn
u

(

−1u − 1

2t
x · ∇u + u

t
+ 2

)

G(x,−t) dx =
∫

Rn
u(x, t)G(x,−t) dx = −t,

where we first integrated by parts the term |∇u|2 G = ∇u · (G ∇u) and then used that

1u + 1

2t
x · ∇u − u

t
− 1 = 0

for homogeneous solutions. This equation can be obtained, for instance, from1u−∂t u = 1
and the homogeneity property x · ∇u + 2t ∂t u = 2u by eliminating ∂t u.

Hence

W (u, r) = 1

r4

∫ −r2

−4r2
(−t)dt = 15

2
and the lemma follows with A = 15/4 �

The importance of this lemma is emphasized by the following fact.

Lemma 6.3. The only nonzero homogeneous solutions of (1.2) in D = Rn × R− are of
the type

(i) u(x, t) = 1
2 (x · e)2+ for a certain spatial unit vector e;

(ii) u(x, t) = mt+P(x), where m is a constant and P(x) is a homogeneous quadratic
polynomial satisfying 1P = m + 1.

Proof. From the homogeneity of u it follows that the time sections�(t) = {x : (x, t) ∈ �}
satisfy

�(r2t) = r�(t)

for any r > 0. We consider two different cases.

Case 1. �c has an empty interior. This will happen if and only if �(t)c has an empty
interior for one and thus for all t . Since both u and |∇u| vanish on �c, it follows that u
satisfies1u−∂t u = 1 in the whole Rn×R−. But then ∂t u is a bounded caloric function in
Rn×R−, thus a constant by the Liouville theorem. Similarly, ∂i j u are constants. Therefore
we obtain the representation

u(x, t) = mt + P(x)

where P is a homogeneous quadratic polynomial such that 1P = m + 1.

Case 2. �c has nonempty interior. By homogeneity, for every unit spatial direction e,

8(t; ∂eu) ≡ const

where 8 is as in Theorem 3.1. However, this is possible only if the spatial supports of
(∂eu)+ and (∂eu)− are complementary halfspaces at almost all t , or if 8(t; ∂eu) ≡ 0, see
Remark 3.2. The former case cannot occur since �(t)c is nonempty for all t < 0, and the
latter case implies ∂eu ≥ 0 or ∂eu ≤ 0 in whole Rn × R−. Since this is true for all spatial
directions e, it follows that u(x, t) is one-dimensional, i.e. in suitable spatial coordinates
u(x, t) = u(x1, t). We may assume therefore that in the rest of the proof that the spatial
dimension n = 1. From homogeneity we also have the representation

u(x, t) = −t f

(

x√
−t

)

,
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where f = u(·,−1). The function f satisfies

f ′′(ξ)− ξ
2

f ′(ξ)+ f (ξ)− 1 = 0 in �(−1)

f (ξ) = f ′(ξ) = 0 on �(−1)c

The general solution to the ordinary differential equation above is given by

f (ξ) = 1+ C1 (ξ
2 − 2)+ C2

(

−2ξ eξ
2/4 + (ξ2 − 2)

∫ ξ

0
es2/2ds

)

and if a is a finite endpoint of a connected component of �(−1), we have

C2 =
1

4
a e−a2/4, C1 =

1

2
− 1

4
a e−a2/4

∫ a

0
e−s2/4ds

In particular, we see that there could not be two different values of a, hence each connected
component of �(−1) is unbounded.

Next, on the unbounded interval we must have C2 = 0, since f has at most quadratic
growth at infinity. This implies C1 = 1/2 and the only possible value of a is 0. Thus,
�(−1) is either (0,∞) or (−∞, 0) and f (ξ) = (1/2) ξ2

+ or f (ξ) = (1/2) ξ2
− respectively.

�

Remark 6.4. As shows the example before Theorem I, Lemma 6.3 is valid only for solu-
tions in lower-half space Rn × R− but not for the solutions in the whole Rn × R. In fact,
if we take any homogeneous solution in Rn × R− and continue it to Rn × R by solving
the Cauchy problem for Hu = 1 in Rn × R+, then the resulting function will still be
homogeneous, but will not have one of the forms in Lemma 6.3 in Rn × R+.

7. BALANCED ENERGY

Let u ∈ P−∞(M) be a global solution. Then we define the balanced energy

(7.1) ω = lim
r→1

W (r; u)

which exists due to Weiss’ monotonicity formula. Recall that the functional W has the
scaling property

(7.2) W (rs; u) = W (s; ur ),

where

ur (x, t) = 1

r2
u(r x, r2t).

Since the functions ur are locally uniformly in class C1,1
x ∩C0,1

t in Rn×R−, we can extract
a converging subsequence urk to a global solution u0 in Rn×R−. Then passing to the limit
in (7.2) we will obtain that

ω = W (s, u0)

for any s > 0. This implies that the blow-up u0 is a homogeneous global solution. More-
over, from Lemmas 6.2 and 6.3 it follows that ω can take only three values: 0, A, or 2A.

Similarly we define the balanced energy at any point (x, t) ∈ 3 for a global solution
u ∈ P−∞(M) by

ω(x, t) = lim
r→0

W (r, x, t; u).
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Definition 7.1. We say that a point (x, t) ∈ ∂� is a zero, low, or high energy point of the
global solution u ∈ P−∞(M) if

ω(x, t) = 0, A, 2A

respectively. Here A is as in Lemma 6.2.

Remark 7.2. The balanced energy function ω is upper semicontinuous, since

W (r, ·, ·; u) =: ωr ↘ ω as r ↘ 0

and functions ωr are continuous on ∂�. Hence, if

Ej = {ω = j A}, for j = 0, 1, 2,

then E0, E0 ∪ E1 are relatively open and E2 is closed.

7.1. Zero energy points. By definition, (x0, t0) ∈ ∂� is a zero energy point for u if there
exists a blow-up u0 of u at (x0, t0), such that u0 ≡ 0 in Rn × R−. From Lemma 5.1 and
we have that either

sup
Q−r (x0,t0)

u ≥ Cn r2,

for all r > 0, or u ≡ 0 in Q−r (x0, t0) and u < 0 in Q+r (x0, t0) for some r > 0. In the first
case the point (x0, t0) is either of low or high energy, since no blow-up u0 at (x0, t0) can
vanish identically in Rn × R−. And only in the second case the point (x0, t0) is of zero
energy. Thus, zero energy points are parabolically interior points of 3.

Also, we obtain that the free boundary 0 cannot contain zero energy points and in fact

0 = ∂� \ E0 = E1 ∪ E2.

In other words, the free boundary points consists of low and high energy points of ∂�.
Finally, we remark that if u ≥ 0, ∂� coincides with the free boundary 0, since there

could be no zero energy points.

7.2. High energy points.

Lemma 7.3. Let (x0, t0) ∈ ∂� be a high energy point for a global solution u. Then

(7.3) u(x, t) = m(t − t0)+ P(x − x0)

in Rn × R−t0 , where m is a constant and P is a homogeneous quadratic polynomial.

Proof. Without loss of generality we may assume that (x0, t0) = (0, 0). Consider then the
functional W (r; u). It is nondecreasing in r and therefore

(7.4) ω = W (0+; u) ≤ W (∞; u) = W (u∞),

where u∞ is a shrink-down limit over a subsequence of scaled functions ur as r → ∞.
Since (0, 0) is a high energy point, ω = 2A and we obtain W (u∞) ≥ 2A. The shrink-
down function u∞ is homogeneous and therefore from Lemmas 6.2 and 6.3 we have also
W (u∞) ≤ 2A. Hence W (u∞) = 2A, which is possible if and only if

W (r; u) = 2A for all r > 0.

This implies that u(x, t) is homogeneous with respect to (0, 0) in Rn × R−. Applying
Lemma 6.3 to we finish the proof. �
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Remark 7.4. A simple corollary from the lemma above is that all high energy points, if they
exist, are on the same time level t = t0, if m 6= 0 in the representation (7.3). Moreover x0
must be on the hyperplane {∇u(·, t0) = 0} = {∇P(· − x0)}. Except the case when P ≡ 0
(equivalently u(x, t) = −(t − t0)) {∇u(·, t0) = 0} is a lower-dimensional hyperplane in
Rn .

If m = 0 in (7.3) then there exists a maximal t∗ ≥ t0 (possibly infinite) such that
u(x, t) = P(x − x0) for all x and t ≤ t∗. If t∗ is finite, then u has no high energy points
(x, t) with t > t∗.

7.3. Low energy points.

Theorem 7.5. Let u ∈ P−∞(M) be a global solution and (x0, t0) ∈ ∂� be a low energy
point. Then there exists r = r(x0, t0) > 0 such that u ≥ 0 in Q−r (x0, t0). Moreover, we
can choose r > 0 such that ∂� ∩ Q−r (x0, t0) is a Lipschitz (in space and time) surface.

The proof is based on the following two useful lemmas.

Lemma 7.6. Let u be a bounded solution of (1.2) in Q−1 and h be caloric in Q−1 ∩ �.
Suppose moreover that

(i) h ≥ 0 on ∂� ∩ Q−1 and
(ii) h − u ≥ −ε0 in Q−1 , for some ε0 > 0.

Then h − u ≥ 0 in Q−1/2, provided ε0 = ε0(n) is small enough.

Proof. Suppose the conclusion of the lemma fails. Then there are u and h satisfying the
conditions of the lemma such that

(7.5) h(x0, t0)− u(x0, t0) < 0

for some (x0, t0) ∈ Q−1/2. Let

w(x, t) = h(x, t)− u(x, t)+ 1

2n + 1
(|x − x0|2 − (t − t0)).

Then w is caloric in � ∩ Q−1/2(x0, t0), w(x0, t0) < 0 by (7.5) and w ≥ 0 on ∂� ∩
Q−1/2(x0, t0). Hence by the minimum principle the negative infimum of w is attained on

∂p Q−1/2(x0, t0). We thus obtain

−ε0 ≤ inf
∂Q−1/2(x0,t0)∩�

(h − u) ≤ − 1

4(2n + 1)
,

which is a contradiction as soon as ε0 < 1/4(2n + 1). This proves the lemma. �

Lemma 7.7. Let u ∈ P−∞(M) be a global solution and (x0, t0) ∈ ∂� be such that
Qε(x0, t0) ∩ ∂� consists only of low energy points for some ε > 0. Then the time de-
rivative ∂t u vanishes continuously at (x0, t0):

lim
(x,t)→(x0,t0)

∂t u(x, t) = 0.

Proof. Consider the family of continuous functions ωr defined on Qε(x0, t0) ∩ ∂� for
every r > 0 by

ωr (x, t) = W (r, x, t; u).
Functions ωr are continuous and converge pointwise to the balanced energy function ω as
r → 0. Since Qε(x0, t0) ∩ ∂� consists only of low energy points, ω = A there. Hence

ωr ↘ A as r ↘ 0 on Qε ∩ ∂�,
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as it follows from Weiss’ monotonicity formula. From Dini’s monotone convergence the-
orem it follows that the convergence ωr → A is uniform. In particular, for any sequences
(yj , sj )→ (x0, t0) and rj → 0 we have

W (rj , yj , sj ; u)→ A.

Let now (x j , tj )→ (x0, t0) be the maximizing sequence for ∂t u in the sense that

∂t u(x j , tj )→ m := lim sup
(x,t)→(x0,t0)

∂t u(x, t).

Let dj = d−(x j , tj ) = sup{r : Q−r (x j , tj ) ⊂ �} and (yj , sj ) ∈ ∂p Q−dj
(x j , tj )∩∂�. Without

loss of generality we may assume that

1

d2
j

u(dj x + x j , d2
j t + tj ) =: u j (x, t)→ u0(x, t)

in Rn × R− and
(

(yj − x j )/dj , (sj − tj )/d
2
j

)

=: (ỹj , s̃j )→ (ỹ0, s̃0) ∈ ∂Q−1 .

Observe that since Q−1 ⊂ �(u j ), we will have Q−1 ⊂ �(u0) and may assume that the
convergence in Q−1 is locally uniform in C2

x ∩ C1
t norm. Thus

∂t u0(0, 0) = lim
j→∞

∂t u j (0, 0) = lim
j→∞

∂t u(x j , tj ) = m

and
∂t u0(x, t) = lim

j→∞
∂t u j (x, t) = lim

j→∞
∂t u(dj x + x j , d2

j t + tj ) ≤ m

for any (x, t) ∈ Q−1 . Since also ∂t u0 = 0 in Q−1 , the maximum principle implies

(7.6) ∂t u0 = m in Q−1 .

On the other hand

(7.7) W (r, ỹ0, s̃0; u0) = lim
j→∞

W (r, ỹj , s̃j ; ũ j ) = lim
j→∞

W (djr, yj , sj ; u) = A

for every r > 0. In particular, u0 is homogeneous with respect to (ỹ0, s̃0) ∈ ∂�(u0) in
Rn × R−s̃0

, and from Lemmas 6.2 and 6.3 we obtain that

(7.8) u0(x, t) = 1

2
((x − ỹ0) · e)2+ in Rn × R−s̃0

,

for a spatial unit vector e.
We want to show now that (7.6) and (7.8) contradict each other, unless m = 0. Indeed,

if s̃0 > −1, Q−1 ∩ (Rn × R−s̃0
) is nonempty and the contradiction is immediate. Next,

if s̃0 = −1 and B1 ∩ {(x − ỹ0) · e > 0} =: E is nonempty, we obtain that ∂t u0 is
discontinuous on E × {−1} ⊂ �(u0), which is not possible since u0 is caloric in �(u0).
Hence, the remaining case is when s̃0 = −1 and u0 vanish on B1×{−1}, which implies that
u0(x, t) = m(t + 1) in Q−1 . Now, using that u0(x, t) is analytic in variable x in �(u0), we
obtain that the whole strip Rn × (0, 1) is contained in �(u0) and that u0(x, t) = m(t + 1)
there. This is a contradiction, since u0 must be continuous across {(x− ỹ0) ·e > 0}×{−1}.

This shows that lim sup ∂t u(x, t) = 0 as (x, t)→ (x0, t0). Similarly one can prove that
lim inf ∂tv(x, t) = 0, which will conclude the proof of the lemma. �
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Proof of Theorem 7.5.
Step 1. Without loss of generality we may assume (x0, t0) = (0, 0). Consider then the
rescaled functions ur , which converge to a homogeneous global solution u0 ∈ P−∞(M)
over a subsequence r = rj → 0. Since (0, 0) is a low energy point, u0(x, t) = 1

2 (x · e0)
2
+

for some spatial direction e0. Choose now a spatial direction e such that e · e0 > 1/2. Then

∂eu0 − u0 ≥ (e · e0)(x · e0)−
1

2
(x · e0)

2 ≥ 0 in Q−1 .

Since the functions ur converge uniformly in C1,α
x ∩ C0,α

t -norm on Q−1 , for r = rj suffi-
ciently small we will have

∂eur − ur ≥ −ε0 in Q−1 ,

where ε0 is the same as in Lemma 7.6. Applying Lemma 7.6 with h = ∂eur , we obtain

(7.9) ∂eur − ur ≥ 0 in Q−1/2.

Step 2. Next, we claim that for any ε > 0, and small r < r(ε)

(7.10) ur = 0 on {x · e0 ≤ −ε} ∩ Q−1/2.

Indeed, this follows easily from the nondegeneracy Lemma 5.1.
Now, observe that (7.9) can be written as

(7.11) ∂e

(

e−(x ·e)ur

)

≥ 0.

So, integrating this along the direction e and using (7.10), we obtain that ur ≥ 0 in Q−1/2,

which after scaling back translates into u ≥ 0 in Q−r/2.
Moreover, (7.11) implies that for any point x0 ∈ ∂�r (t) ∩ B1/4 and −1/4 ≤ t ≤ 0, the

cone x0 + C, where C = {−se : 0 ≤ s ≤ 1/4, e · e0 > 1/2} is contained in �c
r (t). Hence

the time sections ∂�(t) are Lipschitz regular in Br/4 for −r2/4 ≤ t ≤ 0.

Step 3. We have proved now that u ≥ 0 in Q−r/2. A simple consequence of this is that for
some r1 < r , the intersection ∂�∩Q−r1

consists of low energy points. Indeed, first observe
that there could be no zero energy points in Q−r1

, which follows from nonnegativity of u,
see Subsection 7.1. Next, if there are high energy points, they all should be below some t-
level, with t = t∗ < 0. Hence, if we take r1 < min(r/2,

√−t∗), the intersection ∂� ∩ Q−r1
may consists only of low energy points.

Scaling parabolically with r < r1, we see that ∂�r∩Q−1 consists of low energy points of
ur . Applying Lemma 7.7 we obtain an important fact that the time derivative ∂t ur vanishes
continuously on ∂�r ∩ Q−1 . Consider then a caloric function

h = ∂eur + η∂t ur

in Q−1 ∩ �r , where |η| < η0 is a small constant. Observe that h = 0 continuously on
∂�r ∩ Q−1 . Since ∂t ur are uniformly bounded, arguing as in Step 1 above, we obtain that

(∂eur + η∂t ur )− ur ≥ 0 in Q−1/2

for r sufficiently small. Then, as in Step 2, we obtain the existence of space-time cones at
every point on ∂�, which implies the joint space-time Lipschitz regularity of ∂� ∩ Qr/2.

The theorem is proved. �
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8. POSITIVE GLOBAL SOLUTIONS

Theorem 8.1. Let u ∈ P−∞(M) be a global solution and assume that u ≥ 0 in Rn × R−.
Then ∂t u ≤ 0 and ∂eeu ≥ 0 in � ∩ (Rn × R−) for any spatial direction e. In particular,
the time sections 3(t) are convex for any t ≤ 0.

Proof.
Part 1. ∂t u ≤ 0.

Indeed, assume the contrary, and let

m := sup
�∩(Rn×R−)

∂t u > 0.

Choose a maximizing sequence (x j , tj ) ∈ � ∩ (Rn × R−) for the value m, i.e.

lim
j→∞

∂t u(x j , tj ) = m.

Let dj = d−(x j , tj ) = sup{r : Q−r (x j , tj ) ⊂ �} and consider the scaled functions

(8.1) u j (x, t) = 1

d2
j

u(dj x + x j , d2
j t + tj ).

Then functions u j are uniformly C1,1
x ∩ C0,1

t regular in Rn × R− and we can extract a
converging subsequence to a global solution u0. Since we assume u ≥ 0, we have u0 ≥ 0.
Therefore �(u0) = {u0 > 0}. Next, observe that since Q−1 ⊂ �(u j ) by definition, we
will have Q−1 ⊂ �(u0). In particular, H(u0) = 1 in Q−1 and the convergence of u j to u0

will be at least in C2
x ∩C1

t norm on Q−1/2 and more generally on compact subsets of�(u0).
Hence

∂t u0(0, 0) = lim
j→∞

∂t u j (0, 0) = lim
j→∞

∂t u(x j , tj ) = m.

On the other hand for every (x, t) ∈ �(u0)

∂t u0(x, t) = lim
j→∞

∂t u j (x, t) = lim
j→∞

∂t u(dj x + x j , d2
j t + tj ) ≤ m.

Since ∂t u0 is caloric in Q−1 , from the maximum principle we immediately obtain that
∂t u0 = m everywhere in Q−1 and therefore

(8.2) u0(x, t) = mt + f (x)

in Q−1 . Moreover, (8.2) valid in the parabolically connected component of �(u0) that
contains the origin. It is easy to see that this implies the representation (8.2) for every
t ∈ (− f (x)/m, 0) with x ∈ B1. Indeed, starting at (x, 0) and moving down along the
vertical line {x} × R− as long as u(x, t) > 0, we can extend the equality ∂t u0 = m
(and thus (8.2)) from the point (x, t) to it’s small neighborhood by applying the maximum
principle.

Thus, the free boundary becomes the graph of a function t = t (x) := − f (x)/m. Since,
(x, t (x)) ∈ 3(u0) we must have ∇u0(x, t) = 0 at t = t (x). But ∇u0(x, t) = ∇ f (x) for
0 > t > −t (x) and since ∇u0 is continuous we obtain

∇ f (x) = 0

for every x ∈ B1. Hence f (x) = c0 is constant in B1 and u(x, t) = mt + c0 in Q−1 .
Then H(u0) = −m in Q−1 , which means m = −1. This contradicts to the assumption that
m > 0 and the first statement of Theorem 8.1 is proved.

Part 2. ∂eeu ≥ 0 for any spatial unit vector e.
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The reasoning is very similar to the Part 1 above, so we will skip some details. Without
loss of generality assume e = en = (0, . . . , 0, 1). Let

−m = inf
�∩(Rn×R−)

∂nnu < 0

and (x j , tj ) ∈ � ∩ (Rn × R−) be the minimizing sequence for −m, i.e.

lim
j→∞

∂nnu(x j , tj ) = −m.

Considering the rescaled functions u j as in (8.1), extract a converging subsequence to
a function u0 ≥ 0. As in Part 1, we have Q−1 ⊂ �(u0). From the locally C2

x ∩ C1
t

convergence of u j to u0 in �(u0), we obtain that

∂nnu0(0, 0) = −m

and
∂nnu0(x, t) ≥ −m

in �(u0). Since ∂nnu0 is caloric in �(u0), the minimum principle implies that ∂nnu0 =
−m in the parabolically connected component of �(u0), in particular in Q−1 . From there
we obtain the representations

(8.3) ∂nu0(x, t) = f (x ′, t)− m xn

and

(8.4) u0(x, t) = g(x ′, t)+ f (x ′, t) xn −
m

2
x2

n

in Q−1 where x ′ = (x1, . . . , xn−1). Now let chose a point (x ′, 0, t) ∈ Q−1 and start mov-
ing in the direction en , as long as we stay in �(u0). By applying the minimum principle
for ∂nnu0 while we move, we can prove ∂nnu0 = −m and both of the representations
(8.3) and (8.4) as long as we stay in �(u0). Observe however, sooner or later we will hit
3(u0), otherwise, if xn becomes very large, (8.4) will imply u0 < 0, which is impossi-
ble. Let therefore xn = ξ(x ′, t) be the first value of xn for which we hit 3(u0). Then
∂nu0(x ′, xn, t) = 0 for xn = ξ(x ′, t), hence ξ(x ′, t) = f (x ′, t)/m. Since we also have the
condition u0(x ′, xn, t) = 0 for xn = ξ(x ′, t), the representation (8.4) takes the form

u0(x, t) = −m

2
(xn − ξ(x ′, t))2

which is not possible, since u0 ≥ 0. This concludes the proof of the theorem. �

9. CLASSIFICATION OF GLOBAL SOLUTIONS

In this section we classify global solutions in Rn × R−. First we make some observa-
tions, that follow from the previous sections.

For a given t0 ≤ 0 consider the set 3(t0). We claim that for x0 ∈ ∂3(t0), the corre-
sponding point (x0, t0) ∈ ∂3 cannot be a zero energy point. Indeed, for zero energy point
(x0, t0) there would exist r such that u = 0 in Q−r (x0, t0) and in particular Br (x0) ⊂ 3(t0),
see Subsection 7.1.

Next, if (x0, t0) is a high energy point, necessarily u(x, t) = m(t − t0) + P(x − x0)

for t ≤ t0, 3(t0) is a k-dimensional plane, k = 0, . . . , n and all points on 3(t0) are high
energy points, see Lemma 7.3.

Hence, if there is a low energy point (x0, t0) then all points on ∂3(t0) × {t0} are low
energy. Also, according to Theorem 7.5, in that case the boundary ∂3(t0) is a locally
Lipschitz surface. In particular, the set 3(t0) is a regular closed set, i.e. the closure of its
interior. We can say even more. Theorem 7.5 implies, that for given R > 0 there exists
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δ = δ(u, R, t0) > 0 such that u ≥ 0 in Uδ,R := Nδ(3(t0)∩BR)×(t0−δ2, t0), where Nδ(E)
denotes the δ-neighborhood of the set E , and ∂3 ∩ Uδ,R is a Lipschitz in space and time
surface. Another important fact is that ∂t u will be continuous up to ∂3 in BR×(t0−δ2, t0).
The latter implies that (∂t u)± are subcaloric functions in BR × (t0 − δ2, t0).

The main theorem of this section is as follows.

Theorem 9.1. Let u ∈ P−∞(M) be a global solution and suppose that (0, 0) is a low energy
point. Then u ≥ 0 in Rn × R−.

Before proving the theorem, it is convenient to introduce the balanced energy at∞ of
a global solution u ∈ P−∞(M). We define it as

ω∞ = lim
r→∞

W (r; u).

In analogy with the construction from Section 7, consider the rescaled functions ur and
let r → ∞. Then, over a sequence r = rk → ∞, ur will converge to a function u∞ in
Rn ×R−, which will be a solution of (1.2). Moreover, u∞ will be a homogeneous solution
and

ω∞ = W (u∞).

Thus ω∞ can take only values 0, A, and 2A by Lemmas 6.3 and 6.2. Respectively we say
that∞ is a zero, low, and high energy point.

Lemma 9.2. For u ∈ P∞(M)

(i) ω∞ = 0 implies that u = 0 in Rn × R−;
(ii) if both ω = ω∞ = A, then u is a stationary half-space solution of the form

1
2 (x · e)2+.

Proof. In both cases we obtain that W (r; u) is constant, since ω ≤ W (r; u) ≤ ω∞. Hence
u is a homogeneous solution with energy 0 or A and the lemma follows. �

When u ∈ P∞(M) and ω∞ = 2A, then the shrink-down u∞ is a polynomial solution

u∞(x, t) = mt + P∞(x),

where P∞(x) is a homogeneous quadratic polynomial. The next lemma shows what infor-
mation we can extract, if P∞(x) is degenerate in some direction.

Lemma 9.3. Suppose P∞(x) is degenerate in the direction e, i.e. ∂ee P∞ = 0. Then ∂eu
has a sign in Rn × R−, i.e. ∂eu ≥ 0 or ∂eu ≤ 0 everywhere.

Proof. Let ψ be a cut-off function with ψ = 1 on B1/2, suppψ ⊂ B3/4 and let ψr (x) =
ψ(x/r). Consider the scaled functions ur in Q−1 . Then (∂eur )

± are subcaloric and vanish
at (0, 0). Hence we can apply [Caf93] monotonicity formula (Theorem 3.3) to obtain the
estimate

8(t; (∂eur )ψ) ≤ C0‖(∂eur )‖4L2(Q−1 )
,

for any 0 < t < τ0, where τ0, C0 do not depend on r . Observe now, that over a subsequence
of r = rk → ∞ for which ur → u∞, ∂eur converges uniformly to ∂eu∞ = 0 in Q−1 .
Hence

8(t; (∂eur )ψ)→ 0 as r = rk →∞
uniformly for 0 < t < τ0. Scaling back to the function u, using that ∂eur (x, t) =
(1/r)∂eu(r x, r2t), we obtain

8(t; (∂eu)ψr ) = 8(t/r2; (∂eur )ψ)→ 0 as r = rk →∞
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uniformly for 0 < t < τ0r2. Therefore for any fixed t > 0,
(

1

t

∫ 0

−t

∫

Br/2

|∇(∂eu)+|2G(x,−s)dxds

)(

1

t

∫ 0

−t

∫

Br/2

|∇(∂eu)−|2G(x,−s)dxds

)

→ 0

as r = rk →∞, since ψr = 1 on Br/2. Passing to the limit we obtain

8(t; ∂eu) = 0

for any t > 0. This is possible if and only if one of the functions (∂eu)± vanishes in
Rn × R−.

The lemma is proved. �

We will need also the following modification of Lemma 7.7.

Lemma 9.4. Let u ∈ P−∞(M) be a global solution. Suppose that (x0, t0) ∈ ∂� and
Qε(x0, t0) ∩ ∂� contains no high energy points for some ε > 0. Then

m := lim sup
(x,t)→(x0,t0)

∂t u ≤ 0.

Proof. The proof will follow the lines of the proof of Lemma 7.7.
As there, consider the continuous functions

ωr (x, t) = W (r, x, t; u)
for small r > 0 and (x, t) ∈ Qε(x0, t0) ∩ ∂�. Since there are no high energy points in a
small neighborhood of (x0, t0), we have

lim
r↘0

ωr (x, t) ≤ A.

Therefore, setting
ω̃ = max(ωr , A)

we obtain
ω̃r (x, t)↘ A as r ↘ A

on Qε(x0, t0) ∩ ∂�. Then, by Dini’s theorem, the convergence ω̃r (x, t) ↘ A is uniform
on Qε(x0, t0) ∩ ∂�. Therefore, if (yj , sj ) → (x0, t0) and rj → 0 are any sequences, we
have

lim
j→∞

ω̃rj (yj , sj ) = A.

This implies that
lim sup

j→∞
W (rj , yj , sj ; u) ≤ A.

Now, having this, take a maximizing sequence (x j , tj )→ (x0, t0) such that

lim
j→∞

∂t u(x j , tj ) = m.

Assume m > 0. Then scaling u around (x j , tj ) by the parabolic distance dj , precisely as in
in the proof of Lemma 7.7, we can extract a converging subsequence to a global solution
u0. Then, again, we can prove the identity (7.6). However, instead of equality (7.7) we
will have inequality

W (r, ỹ0, s̃0; u0) = lim
j→∞

W (r, ỹj , s̃j ; u j ) = lim
j→∞

W (rj , yj , sj ; u) ≤ A
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for any r > 0. Applying Lemma 9.2, we see that either

u0(x, t) = 1

2
((x − ỹ0) · e)2+ for t ≤ s̃0

or
u0(x, t) = 0 for t ≤ s̃0.

In the first case, we finish the proof as in Lemma 7.7. In the second case, we have neces-
sarily s̃0 = −1, since H(u0) = 1 in Q−1 and we obtain the representation

u0(x, t) = m(t + 1) in Q−1 .

Hence H(u0) = −m < 0, while we must have H(u0) = 1.
This concludes the proof of the lemma. �

Remark 9.5. Under the conditions of Lemma 9.4, the limit

lim inf
(x,t)→(x0,t0)

∂t u

can have only two possible values: 0 or −1. The same proof as above applies.

Proof of Theorem 9.1. First, we note that u cannot have zero balanced energy at ∞, and
if it has low energy at ∞, the theorem readily follows from Lemma 9.2. So we need to
consider only the case when ω∞ = 2A. Then let u∞(x, t) = mt + P∞(x) be as above a
shrink-down limit of rescaled functions ur , as r = rk →∞.

Step 1: Dimension reduction. Suppose that there exists a shrink-down u∞(x, t) for which
the homogeneous quadratic polynomial P∞(x) is degenerate in the direction e. Then by
Lemma 9.3, we may assume ∂eu ≥ 0 (otherwise we will have ∂−eu ≥ 0 and will just
change the direction of e.) Also, without loss of generality, let e = en = (0, . . . , 0, 1).
Since we assume that (0, 0) is a low energy point, from Theorem 7.5 it follows that ∂3(0)
is a Lipschitz surface in Rn and hence the interior of3(0) is nonempty. Let Bδ(x0) ⊂ 3(0),
x0 = (x ′0, a). We claim now that

(9.1) u(x, 0) = 0 for x = (x ′, xn) ∈ B ′δ(x
′
0)× (−∞, a).

Indeed, for x ′ ∈ B ′δ(x
′
0) define

b(x ′) = inf{b : u(x ′, s, 0) = 0 for all s ∈ [b, a]}.
Then obviously b(x ′) ≤ a and ξ := (x ′, b(x ′)) ∈ ∂3(0), if b(x ′) is finite. Moreover,
(ξ, 0) can be only a low energy point, see the discussion preceding Theorem 9.1. Then, by
Theorem 7.5, there is r > 0 such that u ≥ 0 in Q−r (ξ, 0), in particular u(x, 0) ≥ 0 in Br (ξ).
On the other hand, since u(ξ, 0) = 0 and ∂nu ≥ 0, u(x ′, s, 0) ≤ 0 for s ∈ (b(x ′)−r, b(x ′)).
Hence u(x ′, s, 0) = 0 for s ∈ (b(x ′)− r, b(x ′)) and we arrive at the contradiction, if b(x ′)
is finite. Thus, (9.1) follows.

Now, for every τ ≥ 0 define the shifts of u in the direction en

vτ (x
′, xn, t) = u(x ′, xn − τ, t).

Since ∂nu ≥ 0, the functions vτ decrease as τ →∞ and therefore there exist the limit

v = lim
τ→∞

vτ .

Moreover, as it follows from (9.1), vτ (x0, 0) = 0 for all τ ≥ 0 and we have the uniform
estimate

|vτ (x, t)| ≤ C(M)(|x − x0|2 + |t |)
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in Rn×R−. Hence v is finite everywhere in Rn×R− and thus a solution of (1.2). Moreover,
clearly, v is independent of the direction en . So we may think of v = v(x ′, t) as a solution
of (1.2) in Rn−1 × R−. Observe also that

u(x ′, xn, t) ≥ v(x ′, t),

so if we prove that v ≥ 0 in Rn−1 × R− we will be done.
Now, consider several cases. Suppose that for every ε > 0, v has a low energy point

(x ′, t) with −ε2 ≤ t ≤ 0. Taking such a point as the origin we arrive at the conditions of
the theorem, but with the reduced dimension. So if the theorem is true for the dimension
n − 1, we conclude that v ≥ 0 for t ≤ −ε2 and letting ε→ 0 we complete the proof.

Next case would be that there are no low energy points of v in Rn−1 × (−ε2, 0] for
some ε > 0. Observe that (9.1) implies B ′δ(x

′
0) ⊂ 3v(0). Suppose for a moment that

(0, 0) ∈ 0(v). Then it is a high energy point and v is a polynomial solution. Since 3v(0)
has nonempty interior, it will be possible only if v(x, t) = −t > 0 and we will be done.
Thus, we may assume that for some small 0 < η < ε, Q′−η ⊂ 3v . Since there are no low

energy points for −η2 < t ≤ 0, ∂3v(t) must be empty, thus implying that 3v(t) = Rn−1

for −η2 < t ≤ 0. The latter means that v = 0 in Rn−1 × (−η2, 0].
Next, let η = η∗ be maximal (possibly infinite) with the property that v = 0 on Rn−1 ×

(−η2, 0]. If η∗ = ∞, we will have that v = 0 identically. If η∗ is finite, then the arguments
above show that v(x ′, t) = (η2

∗ − t)+ and we are done.
Thus, in all possible cases v ≥ 0, which implies u ≥ 0.
To complete the dimension reduction, we note that for n = 0 the statement of the

theorem is trivial. Indeed, R0 = {0}, u(0, 0) = 0 and H(u) = −∂t u ≥ 0 imply that
u(0, t) ≥ 0 for t ≤ 0.

Step 2: Nondegenerate P∞. The reasonings above allow us to reduce the problem to the
case when P∞(x) is nondegenerate for every shrink-down u∞ over every sequence r =
rk →∞.

Lemma 9.6. Suppose u has no high energy points in Rn × R− and for every shrink-down
u∞(x, t) = mt + P∞(x) the polynomial P∞(x) is nondegenerate. Then there exist a
shrink-down with m = 0.

Proof. First, suppose that 3∩ (Rn ×R−) is bounded. Let (x0, t0) be a point with minimal
t-coordinate. Then, obviously, (x0, t0) is a high energy point, contradicting the assumption.
Therefore, there exists a sequence (xk, tk) ∈ 3 such that

rj := max(|xk |,
√
−tk)→∞.

Consider then the scale functions urk . Then

(xk/rk, tk/r2) ∈ ∂p Q−1 ∩3(urk ).

Hence if u∞ is a shrink-down over a subsequence of r = rk →∞, we will have

∂p Q−1 ∩3(u∞) 6= ∅.
Since P∞(x) is nondegenerate, this may happen only if m = 0. �

Lemma 9.6 has a consequence that only the following three cases are possible if for
every shrink-down u∞(x, t) = mt + P∞(x) the polynomial P∞ is nondegenerate:

1. m > 0 and there exist a high energy point (x0, t0) ∈ Rn × R−;
2. m ≤ 0 and there exist a high energy point (x0, t0) ∈ Rn × R−;
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3. m = 0 for a shrink-down over a sequence r = rk → ∞ and there are no high
energy points in Rn × R−.

We will threat these tree cases separately.

Case 1. m > 0 and there exists a high energy point (x0, t0) ∈ Rn × R−.
Then u(x, t) = c(t − t0)+ P(x − x0) for t ≤ t0 and t0 < 0. Moreover, considering the

shrink-down, we realize that c = m and P = P∞. Hence

u(x, t) = m(t − t0)+ P∞(x − x0) for t ≤ t0.

Next, since P∞ is nondegenerate and 1P∞ = 1 + m > 0, it follows that P∞ is positive
definite. Then u(x, t0) = P∞(x − x0) ≥ 0. Consider now the function w(x, t) = m(t −
t0) + P∞(x − x0) in Rn × (t0, 0). We have H(w) = 1. On the other hand u satisfies
H(u) ≤ 1 and u(·, t0) = w(·, t0). Hence from the comparison principle

u(x, t) ≥ w(x, t) = m(t − t0)+ P∞(x − x0) > 0 in Rn × (t0, 0).

In particular (0, 0) can’t be a free boundary point and we arrive at a contradiction. There-
fore this case is not possible.

Before we proceed to consider the two remaining cases, we prove the following lemma.

Lemma 9.7. Suppose in representation u∞(x, t) = mt + P∞(x), the polynomial P∞(x)
is nondegenerate and m ≤ 0. Then ∂t u ≤ 0 in Rn × R−.

Proof. We subdivide the proof into two cases.

(i) There are no high energy points of u in Rn × R−.
Then Lemma 9.4 implies that (∂t u)+ is continuous and therefore subcaloric in Rn×R−.

Consider then the scaled functions ur → u∞ in Q−2 . Since 3(u∞) = {0} × R−, the
convergence will be at least C2

x ∩ C1
t in Q−1 \ (Bε × [−1, 0]) for any ε > 0. In particular,

for r = rk very large,

(∂t ur )+ ≤ ε on ∂p Q1 \ (Bε × {−1})
(∂t ur )+ ≤ C(M) on Bε × {−1}.

Hence if vε is the solution of the Dirichlet problem for the heat equation with boundary
data

v = ε on ∂p Q1 \ (Bε × {−1})
v = C(M) on Bε × {−1},

we will have
(∂t ur )+ ≤ vε in Q−1 .

It is not hard to see that vε ≤ c(ε)→ 0 as ε→ 0 uniformly in Q−1/2, hence

(∂t ur )+ ≤ c(ε) in Q−1/2.

Scaling back to u, we obtain

(∂t u)+ ≤ c(ε) in Q−r/2.

Letting r = rk →∞ and then ε→ 0, we obtain the claim of the lemma.

(ii) There is a high energy point (x0, t0) ∈ Rn × R−. Observe that x0 is unique, since P∞
is nondegenerate. Also t0 is unique, unless m = 0. If the latter is the case, we will assume
t0 is the maximal value of t for which (x0, t) is a high energy point.

If t0 = 0, we are done. If t0 < 0, Lemma 9.4 implies that (∂t u)+ is continuous and thus
subcaloric in Rn × (t0, 0). We want to show that it in fact vanishes there.
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Considering as above the scaled functions ur and there convergence to u∞, as well as
that ∂t u∞ = m ≤ 0, scaling back to u we obtain that

(∂t u)+ ≤ ε on ∂Br × (t0, 0).

Moreover, since every point (x, t0) is in � except (x0, t0), we will also have

(∂t u)+ = 0 on (Br \ Bε(x0))× {t0}
(∂t u)+ ≤ C(M) on (Bε(x0))× {t0}.

Hence if wε,r is a solution to the Dirichlet problem for the heat equation in Br × (t0, 0)
with the boundary values

w = ε on ∂p Br × (t0, 0) \ (Bε(x0)× {t0})
w = C(M) on Bε(x0)× {t0}

we will have
(∂t u)+ ≤ wε,r in Br × (t0, 0).

It is easy to see that as r → ∞ and ε → 0, wε,r → 0 uniformly on compact subsets of
Rn × (t0, 0). Hence ∂t u ≤ 0 in Rn × (t0, 0) as well and the proof is complete. �

Case 2. m ≤ 0 and there exists a high energy point (x0, t0) ∈ Rn × R−.
Unless m = 0, (x0, t0) is unique. If m = 0, assume that t0 is the maximal t such that

there exists a high energy point at time t = t0.
Then as in Case 1 above we obtain the representation

u(x, t) = m(t − t0)+ P∞(x − x0) for t ≤ t0.

Next, since m ≤ 0, Lemma 9.7 implies that ∂t u ≤ 0 in Rn × R−.
We claim now that P∞(x) is positive definite. Since P∞ is nondegenerate, the other

possibility is that P∞(x) ≤ 0 everywhere, in particular u(x, t0) ≤ 0. Then ∂t u ≤ 0 implies
u ≤ 0 in Rn × (t0, 0). Since u is subcaloric and u(0, 0) = 0, by the maximum principle
u = 0 in Rn × (t0, 0). This is possible only if P∞ = 0, which contradicts the assumption
that P∞ is nondegenerate. Hence P∞ is positive definite.

Let now c > 0 be small enough such that

P∞(x) ≥ c|x |2.
Let also

∂t u ≥ −C = −C(M).

Then
u(x, t) ≥ c|x − x0|2 − C(t − t0)

in Rn × (t0, 0). Consequently,

(9.2) u(x, t) > 0 for x ∈ Rn \ Bκ(t)(x0) and t0 < t < 0,

where κ(t) =
√

C(t − t0)/c.
Consider now the set �− = {u < 0} ⊂ Rn × (t0, 0) and suppose it is nonempty. Then

�−(t) ⊂ Bκ(t)

for t0 < t < 0, by (9.2). In particular, �− is bounded. Hence there exists a point (x1, t1) ∈
�− with minimal t-coordinate. Then t1 ≥ t0 and u(x, t1) ≥ 0 for all x . Since also
u(x1, t1) = 0, we obtain that ∇u(x1, t1) = 0. Hence

(x1, t1) ∈ 3 ∩�−.
We show below, that this is impossible.
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Indeed, consider now the sets 3(t). Then, again, (9.2) implies

3(t) ⊂ Bκ(t)

for t0 < t < 0, so the sets3(t) are bounded. Also, since there are no high energy points for
t0 < t < 0, ∂3(t) are Lipschitz surfaces and the interiors of 3(t) are nonempty, provided
3(t) are nonempty. Let now U (0) be a connected component of the interior of3(0). Then
Theorem 7.5 implies that there exist an open set W such that U (0) ⊂⊂ W and u ≥ 0 in
W×(−δ, 0) for a small δ > 0. Then ∂t u ≤ 0 implies u ≥ 0 in W×R−. Moreover ∂t u ≤ 0
implies also that

U (t) := W ∩ Int (3(t))↘ as t ↘ .

Since U (t0) = ∅, there exist t∗ ∈ [t0, 0) such that U (t) = ∅ for t < t∗ and U (t) 6= ∅ for
t∗ < t < 0. Then the intersection

K∗ =
⋂

t∗<t<0

U (t),

is nonempty. Choose now any x∗ ∈ K∗. Then obviously (x∗, t∗) ∈ ∂3, and we claim that
(x∗, t∗) is a high energy point. Clearly, it is not a zero energy point. Also, it’s not a low
energy by Theorem 7.5. Hence (x∗, t∗) is a high energy point. Since P∞ is nondegenerate,
necessarily x∗ = x0. (We also have t∗ = t0.) In particular,

x0 ∈ U (0).

This implies immediately that U (0) is the only connected component of the interior of
3(0). Starting at any time t ∈ (t0, 0), we can prove a similar statement for 3(t). Thus

3(t) = U (t).

In particular, u ≥ 0 in a neighborhood W×(t0, 0) of3∩(Rn×(t0, 0)). But we constructed
(x1, t1) ∈ �− ∩3, which is a contradiction. Thus �− is empty, implying that u ≥ 0.

Case 3. m = 0 and there are no high energy points in Rn × R−.
Then Lemma 9.7 implies that ∂t u ≤ 0 in Rn × R−.
We start with the claim that 3(t) are bounded sets for −t sufficiently large. More

specifically, we claim

(9.3) 3(t) ⊂ B√−t

for t ≤ t0. Indeed, assume the contrary. Then there is a sequence t = tk → −∞ such that
(9.3) does not hold, and therefore we can find xk ∈ 3(tk) with

|xk | ≥
√
−tk .

Let now r = rk = |xk | and consider the scaled functions ur . Then

(̃xk, t̃k) := (xk/rk, tk/r2
k ) ∈ 3(ur ) ∩ (∂B1 × [−1, 0]).

Hence passing to the limit over a subsequence of r = rk → ∞, we obtain that 3(u∞) ∩
(∂B1 × [−1, 0]) is nonempty. However, this is impossible if P∞ is nondegenerate. Hence
(9.3) should hold for t ≤ t0.

Next, suppose 3(t) is empty for all t ≤ t0. Then u will satisfy H(u) = 1 everywhere
in Rn × R−t0 and thus will have the form u(x, t) = ct + P(x) for t ≤ t0. Considering the
shrink-down (recall we assume m = 0), we find that

u(x, t) = P∞(x − x1)

for t ≤ t0, where x1 ∈ Rn is some point. But then (x1, t0) is a high energy point, and we
assume there are none.
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Hence, without loss of generality we may assume that 3(t0) is nonempty. Since there
are no high energy points for t ≤ 0, the sets 3(t) have nonempty interiors and ∂3(t) are
Lipschitz surfaces, provided 3(t) themselves are nonempty.

Let U (t0) be a connected component of the interior of 3(t0). Then we make a con-
struction similar to the one in Case 2 above. There exists an open set W ⊂ Rn such that
U (t0) ⊂⊂ W and u ≥ 0 in W × (t0 − δ, t0) for a small δ > 0. Then from ∂t u ≤ 0 we
obtain that in fact u ≥ 0 in Rn × R−t0 . Moreover u > 0 in W \U (t0)× R−t0 . Also, ∂t u ≤ 0
implies that

U (t) := W ∩ Int (3(t))↘ as t ↘ .

Consider then the intersection
K =

⋂

t≤t0

U (t).

Since the sets U (t) are compact, K is empty if and only if U (t) = W ∩3(t) is empty for
some t ≤ t0. If this is so, let t∗ be such that W ∩ 3(t) = ∅ for t < t∗ and W ∩ 3(t∗) is
nonempty. Take any x∗ ∈ 3(t∗). Since W ∩3(t) = ∅ for t < t∗, u > 0 in W × (−∞, t∗)
and in particular (x∗, t∗) is a high energy point, and we assume there are none.

Thus K is nonempty and we can choose x0 ∈ K . Then (x0, t) ∈ 3 for all t ≤ t0 and
we obtain the estimate

u(x, t) ≤ C(M)(|x − x0|2)
for x ∈ Rn and t ≤ t0. Consider now the time shifts

vτ (x, t) = u(x, t − τ)
defined in Rn ×R−t0 . Then from the estimate above and the monotonicity of u(x, t) in t the
limit

v∞(x, t) = lim
τ→∞

vτ (x, t)

exists and is finite everywhere in Rn × R−t0 . Thus v∞ is also a solution of (1.2). Moreover,
it is easy to see that v∞ is independent of t , so v∞ = v∞(x) is a stationary global solution
of (1.2).

As it follows from [CKS00], the stationary global solutions solutions are either polyno-
mial, or nonnegative. Observe now that x0 ∈ 3(v∞) and v ≥ 0 in the neighborhood W
of x0. Hence if v∞ is a polynomial solution, the polynomial must be positive semidefinite.
Therefore in any case we have v∞ ≥ 0.

Now, for the positive global solutions it is known that the set 3(v∞) is convex, hence
connected. Since x0 ∈ 3(v∞), x0 ∈ U (t0) ⊂ W and v∞ > 0 in W \ U (t0), the only
possibility is that

3(v∞) ⊂ U (t0).

A simple consequences of this is that the interior of 3(t0) consists only of one connected
component. Now, if we made our construction starting at any t ≤ t0, we would come to
the conclusion that the interior of 3(t) has at most one component. Hence

3(t) = U (t).

Also, we obtain that u ≥ 0 in the neighborhood W × R−t0 of 3 ∩ (Rn × R−t0 ). Then all
the free boundary points in Rn × R−t0 are low energy and Lemma 7.7 implies that ∂t u = 0
continuously on ∂3∩ (Rn ×R−t0 ) and therefore ∂t u is supercaloric in Rn ×R−t0 . In fact, we
claim that

(9.4) ∂t u = 0 in Rn × R−t0 .



REGULARITY OF A FREE BOUNDARY IN PARABOLIC POTENTIAL THEORY 33

Consider the scaled functions ur → u∞ in Q−2 . Since3(u∞) = {0}×R−, the convergence
will be at least C2

x ∩ C1
t in Q−1 \ (Bε × [−1, 0]) for any ε > 0. In particular, for r = rk

very large,
−ε ≤ ∂t ur ≤ 0 on ∂p Q1 \ (Bε × {−1})
−C(M) ≤ ∂t ur ≤ 0 on Bε × {−1}.

Moreover, ∂t ur is supercaloric in B−1 × (−1, t0/r2), so if vε is the solution of the Dirichlet
problem for the heat equation with boundary data

v = ε on ∂p Q1 \ (Bε × {−1})
v = C(M) on Bε × {−1}

we will have
−vε ≤ ∂t ur ≤ 0 in B1 × (−1, t0/r2).

It is not hard to see that vε ≤ c(ε)→ 0 as ε→ 0 uniformly in Q−1/2, hence

−c(ε) ≤ ∂t ur ≤ 0 in B1/2 × (−1/4, t0/r2).

Scaling back to u, we obtain

−c(ε) ≤ ∂t u ≤ 0 in Br/2 × (r/4, t0).

Letting r = rk →∞ and then ε→ 0, we obtain (9.4). Thus,

(9.5) u(x, t) = v∞(x) for any x ∈ Rn and t ≤ t0.

It remains to prove that u ≥ 0 in Rn × (t0, 0), since we know that v∞ ≥ 0. In fact, we
claim

(9.6) v∞(x) ≥ c|x |2

for some fixed c > 0 small and |x | > R large. If this fails, we could easily construct a
shrink-down of v∞ (which is always a polynomial) that vanishes at a point on ∂B1. Hence
this polynomial is degenerate. But from (9.5) we see that any shrink-down of v∞ corre-
sponds to the one of u, for which we assume that P∞ is nondegenerate, a contradiction.
Hence the estimate (9.6) holds. Consequently, u(x, t) > 0 for |x | > R1 and t ∈ [t0, 0].
Hence 3(t) is bounded for all t ≤ 0. Also 3(0) is nonempty. So we could take t0 = 0 in
all the arguments above. Thus, u is stationary and

u(x, t) = v∞(x) ≥ 0 for any x ∈ Rn and t ∈ R−.

The theorem is proved. �

10. PROOF OF THEOREM I

For a global solution u let us define

T1 = sup{t : (x, t) ∈ ∂� is a high energy point}
T∗ = sup{t : (x, t) ∈ ∂� is a low or high energy point}
T2 = sup{t : (x, t) ∈ ∂�}.

Then
−∞ ≤ T1 ≤ T∗ ≤ T2 ≤ a.

We claim that Theorem I holds with the values of T1 and T2 defined above. The parts (i)
and (iii) of the theorem are easily verified, so we need to show only that (ii) holds.

Thus, if T1 = T2 we are done.



34 LUIS CAFFARELLI, ARSHAK PETROSYAN, AND HENRIK SHAHGHOLIAN

Suppose now, that T1 < T2. If it happens that T∗ = T2, then we will find a sequence
(xk, tk) of low energy points with tk ↗ T2 and applying Theorem 9.1 we will obtain that
u ≥ 0 in Rn × (−∞, T2] and (ii) will follow from Theorem 8.1.

Suppose therefore that T∗ < T2. We claim now that

u = 0 in Rn × (T∗, T2).

By the very construction, the only points of ∂� in Rn × (T∗, T2) are of zero energy. A
consequence is that for t ∈ (T∗, T2), ∂3(t) is empty, implying that either 3(t) is empty
itself or is the whole space Rn . Moreover, if 3(t0) = Rn for some t0 ∈ (T∗, T2], then
3(t) = Rn for any t ∈ (t0 − ε2, t0], where ε is sufficiently small. Indeed, consider a point
(x0, t0). Then it is either an interior point of 3 or a zero energy point. In both cases there
is ε > 0 such that u = 0 on Q−ε (x0, t0). Then 3(t) is nonempty for t ∈ (t0 − ε2, t0], thus
implying3(t) = Rn . In fact, by using a continuation argument we obtain that 3(t0) = Rn

implies that u = 0 on Rn × (T∗, t0].
Next, by the definition of T2 there is a sequence of points (xk, tk) ∈ ∂� with tk ↗ T2.

Then 3(tk) = Rn by argument above and we obtain that u = 0 in Rn × (T∗, T2).
To complete the proof we consider the following two cases: T1 < T∗ and T1 = T∗. In

the first case we finish the proof by applying Theorems 9.1 and 8.1. In the second case,
there are two possibilities. If T1 = T∗ = −∞, we obtain that u = 0 in Rn × (−∞, T2),
and if T1 = T∗ > −∞, from the representation u(x, t) = P(x) + m t we obtain that
u(x, t) = T1 − t , since u vanishes for t = T1. Thus, in all cases (ii) holds and the proof is
complete. �

11. LIPSCHITZ REGULARITY: GLOBAL SOLUTIONS

Theorem 11.1. Let u ∈ P−∞(M) be such that (0, 0) ∈ 0 and suppose that 3 contains a
cylinder B × [−1, 0], where B = Bρ(−sen) for some 0 ≤ s ≤ 1. Set K (δ, s, h) = {|x ′| <
δ,−s ≤ xn ≤ h} for any δ, h > 0. Then

(i) u ≥ 0 in Rn × R−;
(ii) For any spatial unit vector e with |e − en| < ρ/8 we have

∂eu ≥ 0 in K (ρ/8, s, 1)× [−1/2, 0];
(iii) Moreover, there exists C0 = C0(n,M, ρ) > 0 such that

C0 ∂eu − u ≥ 0 in K (ρ/16, s, 1/2)× [−1/2, 0];
(iv) The free boundary ∂� ∩ (K (ρ/32, s, 1/4)× [−1/4, 0]) is a space-time Lipschitz

graph
xn = f (x ′, t),

where f is concave in x ′ and

|∇x ′ f | ≤ C

ρ
, |∂t f | ≤ C(n,M, ρ).

Proof. The origin is either a low or high energy point. The existence of the cylinder B ×
[−1, 0] in3 excludes the possibility of high energy. Moreover, by the same reason, u have
no high energy point in Rn × [−1, 0]. Hence (i) follows from Theorem 9.1.

Next, applying Theorem 8.1, we obtain from (i) that ∂eeu ≥ 0 and ∂t u ≤ 0 in Rn ×R−.
Now suppose that |e − en| < ρ/8. Since ∂eu = 0 on B and every halfline in the direction
−e originating at a point in K (ρ/8, s, 1) intersects B, the convexity of u implies (ii).

Further, since 0 ∈ ∂3(0) we obtain that the cone C = {xn > (8/ρ)|x ′|} is contained
in �(0), and thus in every �(t) for −1 ≤ t ≤ 0. Then, together with (ii) we find the
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representation xn = f (x ′, t) in K (ρ/8, s, 1), with the spatial Lipschitz estimate |∇x ′ f | ≤
C/ρ. This proves the first part of (iv). To prove the estimate on ∂t f in (iv), as well as the
estimate (iii) we need an additional lemma.

Lemma 11.2. Let u be as in Theorem 11.1. Then there exist r0 = r0(n, ρ) > 0 and
ε0 = ε0(n, ρ) > 0 such that

W (r, x, t; u) ≤ 2A − ε0

for any (x, t) ∈ ∂� ∩ Q−1/2 and 0 < r ≤ r0.

Proof. Assume the contrary. Then there exist a sequence of functions uk satisfying the
assumptions of the lemma and (xk, tk) ∈ ∂�(uk) ∩ Q−1/2 such that

W (1/k, xk, tk; uk) ≥ 2A − 1/k.

From the uniform estimates on uk we can extract a subsequence such that the functions

vk(x, t) = uk(x + xk, t + tk)

converge to a global global solution v0 with (0, 0) ∈ 3(v0). Then for every r > 0 we have

W (r; v0) = lim
k→∞

W (r, xk, tk; uk) ≥ lim sup
k→∞

W (1/k, xk, tk; uk) ≥ 2A.

Since also W (r; v0) ≤ 2A, we obtain that W (r; v0) = 2A for every r > 0. Then (0, 0) is
a high energy point and therefore

v0(x, t) = ct + P(x)

where c is a constant and P is a homogeneous quadratic polynomial. On the other hand,
since uk vanishes on the cylinders Bρ(−sken) × (−1, 0), v0 vanishes on a cylinder B ×
(−1/2, 0), where B is a certain ball of radius ρ. But this is impossible unless v0 is identi-
cally 0, a contradiction.

The lemma is proved. �

We continue the proof of Theorem 11.1. To show (iii) we assume the contrary. Then
there exist a sequence of functions uk satisfying the assumptions of the theorem and points
(xk, tk) ∈ �(uk) ∩ (K (ρ/16, s, 1/2)× (−1/2, 0))

(11.1) k ∂euk(xk, tk)− uk(xk, tk) ≤ 0, e = e(k).

Let now
x̃k =

(

x ′k, fk(x
′
k)
)

∈ ∂�k(tk), hk = (xk)n − fk(x
′
k)

and consider

vk(x, t) = 1

h2
k

u(hk x + x̃k, h2
k t + tk).

Then from (11.1) we have

(11.2) ∂evk(en, 0) ≤ hk

k
vk(en, 0).

Functions vk are locally uniformly bounded in Rn × R−, hence over a subsequence vk

converge to a global solution v. If we also assume that e(k)→ e, we will have

∂ev(en, 0) = 0.

Next, since hk ≤ 2, each of the sets ∂�vk (0) ∩ {|x ′| < ρ/32} is a graph of a concave
Lipschitz function, containing 0 and with the Lipschitz constant L ≤ C/ρ. Since also
�vk (t) expand as t decreases we obtain that Dk× (−1/4, 0) ⊂ �vk , where Dk = �vk (0)∩
K (ρ/32, sk/hk, 1/hk). In particular H(∂ekvk) = 0 in Dk × (−1/4, 0). Moreover, (ii)
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implies also that ∂ekvk ≥ 0 there. Passing to the limit, we can assume that Dk converge to
a set D, having similar properties. Then

H(∂ev) = 0, ∂ev ≥ 0 in D × (−1/4, 0).

Since en ∈ D, the maximum principle implies that ∂ev = 0 in D × (−1/4, 0). Then
we also obtain that v(x, 0) = 0 in D × {|x ′| < ρ/64} and as a consequence that v(x, 0)
vanishes in a neighborhood of the origin.

The stability property implies that (0, 0) ∈ 0(v). Moreover, it cannot be low energy,
since then v(x, 0)wouldn’t vanish in a neighborhood of the origin. So, the only possibility,
is that (0, 0) is a high energy point of v. The latter is possible only if

v(x, t) = −t in Rn × R−.

To exclude this possibility, we apply Lemma 11.2. Indeed, we have

W (r, v) = lim
k→∞

W (r; vk) = lim
k→∞

W (hkr, x̃k, tk; uk) ≤ 2A − ε0,

provided r < r0/2 (recall hk ≤ 2.) Hence (0, 0) cannot be a high energy point. This
proves (iii).

Finally, to prove the estimate on ∂t f in (iv), we apply the following generalization of
Lemma 7.6.

Lemma 11.3. Let u be a bounded solution of (1.2) in

N −δ (E) =
⋃

{Q−δ (x, t) : (x, t) ∈ E},

for a set E in Rn × R− and h be caloric in N −δ (E) ∩�. Suppose moreover that

(i) h ≥ 0 on N −δ (E) ∩ ∂� and
(ii) h − u ≥ −ε0 in N −δ (E), for some ε0 > 0.

Then h − u ≥ 0 in N −δ/2(E), provided ε0 = ε0(δ, n) is small enough.

Proof. Consider h and u in every Q−δ (x, t)with (x, t) ∈ E , parabolically scale to functions
in Q−1 and apply Lemma 7.6. �

Now, for small |η| < η0(ρ, n,M) we obtain from (iii) in Theorem 11.1 that

(C0∂eu + η∂t u)− u ≥ −ε0

in K (ρ/16, s, 1/2)× [−1/2, 0]. From Lemma 11.3 we have

(C0∂eu + η∂t u)− u ≥ 0

in K (ρ/32, s, 1/4)× [−1/4, 0]. Note, Lemma 11.3 is applicable with h = C0∂eu + η∂t u,
since both ∂eu and ∂t u vanish on ∂�. The latter follows from Lemma 7.7.

Then, as in the proof of Theorem 7.5, we obtain the existence of space-time cones with
uniform openings at any point on ∂� in K (ρ/32, s, 1/4) × [−1/4, 0] and this proves the
estimate on ∂t f in (iv).

The proof of the theorem is complete. �
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12. BALANCED ENERGY: LOCAL SOLUTIONS

In this short section we discuss how one can generalize the balanced energy that we
defined for global solutions (see Section 7) for local solutions.

Let u be a solution of (1.2) in Q−1 andψ(x) ≥ 0 be a C∞ cut-off function with suppψ ⊂
B1 and ψ |B3/4 = 1. Then for w = u ψ and any (x0, t0) ∈ ∂� ∩ Q−1/2 the functional

W (r, x0, t0;w)+ Fn(r)

is nondecreasing by the local form of Weiss’ monotonicity theorem (Theorem 3.6). Hence
there exists a limit

ω(x0, t0) = lim
r→0

W (r, x0, t0;w),

since Fn(r) → 0 as r → 0. Moreover, if u0 is a blow-up limit of parabolic scalings
ur (x, t) = (1/r2)u(r x + x0, r2t + t0), then u0 is also a limit of corresponding scalings wr

of w, since ψ = 1 on B1/4(x0) and we obtain that

W (s; u0) = lim
r→0

W (s;wr ) = lim
r→0

W (sr, x0, t0;w) = ω(x0, t0).

In particular, u0 is a homogeneous global solution and ω(x0, t0) does not depend on the
choice of the cut-off function ψ . The quantity ω(x0, t0) will be called the balanced energy
of u at (x0, t0). Note, when u is a global solution, this definition coincides with the one
from Section 7.

As in the global case, since ω(x0, t0) = W (u0) and u0 is homogeneous, we have only
three possible values for the balanced energy: 0, A, and 2A. Respectively, we classify the
point (x0, t0) ∈ ∂� as of zero, low or high energy.

13. LIPSCHITZ REGULARITY: LOCAL SOLUTIONS

Theorem 13.1. For every σ > 0 there exists R0 = R0(σ, n,M) such that if u ∈ P−R (M R2)

for R ≥ R0, (0, 0) ∈ 0 and δ−1 (u) ≥ σ then ∂� ∩ Q−1/2 is space-time Lipschitz regular
with Lipschitz constant L ≤ L(σ, n,M).

We use the following approximation lemma and then apply the results from Section 11.

Lemma 13.2. Fix σ > 0 and ε > 0. Then there exists R0 = R0(ε, σ, n,M) such that if
u ∈ P−R (M R2) for R ≥ R0, (0, 0) ∈ 0 and δ−1 (u) ≥ σ , then we can find a global solution
v ∈ P−∞(Cn M), (0, 0) ∈ 0(v), with the properties

(i) ‖u − v‖C1
x∩C0

t (Q
−
1 )
≤ ε;

(ii) there exists a ball B = Bρ(x) ⊂ B1 of radius ρ = σ/(4n) such that v vanishes on
B × [−1, 0].

(iii) u vanishes on Bρ/2(x)× [−1/2, 0].

Proof. The proof is by compactness. Assume the contrary. Then for every k > 0 we can
find a solution uk ∈ P−k (Mk2) with (0, 0) ∈ 0(uk) and δ−1 (uk) ≥ σ such that for any
global solution v ∈ P∞(Cn M) such that (0, 0) ∈ 0(v) and conditions (ii) and (iii) are
satisfied, we have

(13.1) ‖uk − v‖C1
x∩C0

t (Q
−
1 )
≥ ε.

Solutions uk are locally uniformly bounded, so we can extract a subsequence converging to
a global solution u0 in C1,α

x ∩C0,α
t -norm on compact subsets of Rn×R−. We claim now that

3u0(−1) ∩ B1 contains a ball of radius ρ = σ/(4n). Indeed, first note that δ−1 (u0) ≥ σ/2,
otherwise we would have δ−1 (uk) < σ for large k. Next, from the stability note that (0, 0)
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is not a zero energy point of u0, since it is not for any of solutions uk . Also, it is not a
high energy point of u0 since δ−1 (u0) ≥ σ/2. Hence the only possibility is that (0, 0) is
a low energy point of u0. Then Theorem 9.1 implies that u0 ≥ 0 in Rn × R− and hence
the set 3u0(−1) ∩ B1 is convex by Theorem 8.1. Invoking F. John’s lemma we obtain the
existence of a ball B = Bρ(x) of radius ρ = σ/(4n) in 3u0(−1) ∩ B1. Moreover, u0 ≥ 0
implies that ∂t u0 ≤ 0 and that the sets 3u0(t) shrink as t decrease. Hence B × [−1, 0] is
contained in 3(u0). Since uk → u0, from the stability (see Subsection 5.2) we obtain that
uk vanishes on Bρ/2(x)× [−1/2, 0] for large k.

So, conditions (ii) and (iii) are satisfied for the global solution v = u0 and u = uk for
large k. But also we have ‖uk − u0‖C1

x∩C0
t (Q

−
1 )
→ 0, which contradicts (13.1). Hence the

lemma follows. �

Proof of Theorem 13.1. Let ε = ε(σ, n,M) > 0 be small (to be specified later) and R0 =
R0(ε, σ ) be as in Lemma 13.2 and suppose that R ≥ R0. Let also for u ∈ P−R (M R2)

with δ−1 (u) ≥ σ the global solution v and the ball B ⊂ B1 be as in the conclusion of
Lemma 13.2.

Rotating the spatial coordinate axes, we may assume that B = Bρ(−sen) for 0 ≤ s ≤ 1,
ρ = σ/(4n). Then by estimate (iii) in Theorem 11.1 applied to the global solution v we
have

C0∂ev − v ≥ 0 in K (ρ/8, s, 1/2)× [−1/2, 0]

for any spatial unit vector e with |e − en| ≤ ρ/8. Since |u − v| ≤ ε, |∇u − ∇v| ≤ ε and
|∂t u| ≤ Cn M in Q−1 , we obtain automatically that

(C0∂eu − η∂t u)− u ≥ −C0ε − ε − Cn Mη0 ≥ −ε0

if ε = ε(σ, n,M) and |η| ≤ η0(n,M) are small, where −ε0 as in Lemma 11.3. Next, we
claim that

(13.2) (C0∂eu − η∂t u)− u ≥ 0 in K (ρ/16, s, 1/4)× [−1/4, 0].

This will follow from Lemma 11.3 with h = C0∂eu − η∂t u if we know that h ≥ 0 on ∂�.
We show next that this is indeed so.

Lemma 13.3. Let u be as in Lemma 13.2 with R ≥ R0. Let also ψ(x) ≥ 0 be a C∞

cut-off function with suppψ ⊂ B1 and ψ |B3/4 = 1. Then for w = u ψ and any (x0, t0) ∈
∂� ∩ Q−1/2 we have

(i) W (r, x, t;w) ≤ 2A − ε0 for ε0 = ε0(σ, n,M) > 0 and r ≤ r0(σ, n,M);
(ii) ∂t u vanishes continuously at (x0, t0): lim

(x,t)→(x0,t0)
∂t u(x, t) = 0.

Proof. (i) is a generalization of Lemma 11.2. The proof is basically the same, only in-
stead of Weiss’ monotonicity theorem (Theorem 3.4) one have to use its local form (The-
orem 3.6.)

(ii) is a generalization of Lemma 7.7. We note that u has no high energy points by (i)
above. Then the proof is the same as of Lemma 7.7, with application of the local form of
Weiss’ theorem instead of global. �

The lemma above implies that we indeed have (13.2). In particular, we obtain that
∂� ∩ (K (ρ/16, s, 1/4) × [−1/4, 0]) is Lipschitz in space and in time with a Lipschitz
constant L(σ, n,M).
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To finish the proof of the theorem, we observe that we will come to the same conclusion
as above (perhaps with different constants) if instead of δ−1 (u) ≥ σ we assume, say,

δ∗1(u) := sup
−1≤t≤−1/2

md(3(t) ∩ B2) ≥ σ.

This gives a little bit more flexibility. Now let (x0, t0) ∈ ∂�∩ Q−1/2 and consider the func-
tion u∗(x, t) = u(x+x0, t+ t0). We will have δ∗1(u

∗) ≥ σ , thus after appropriate choice of
coordinate axes we will find that ∂� is L(σ, n,M)-Lipschitz in a parabolic neighborhood
of (x0, t0). This finishes the proof of the theorem. �

14. C1,α REGULARITY

Theorem 14.1. Under the conditions of Theorem 13.1, ∂� ∩ Q−1/4 is space-time C1,α

regular with the norm C ≤ C(σ, n,M).

Proof. We are going to apply the result of [ACS96], Corollary 1, on mutual boundary
regularity of positive caloric functions in Lipschitz domains.

We assume that R ≥ R0 and that the ball B = Bρ(−sen) is as in Lemma 13.2, so that
u vanishes on Bρ/2(−sen)× [−1/2, 0]. As it follows from the proof of Theorem 13.1, we
have

(C0∂eu + η∂t u)− u ≥ 0 in K (ρ/16, s, 1/4)× [−1/4, 0]

for any spatial unit vector e with |e − en| < ρ/8 and |η| sufficiently small. In particular,
we have that

∂eu + ε∂t u ≥ 0,

where ε = η/C0. Consider now two functions of the type above

u1 = ∂nu

u2 = ∂eu + ε∂t u

with e sufficiently close to en and ε small. Then [ACS96], Corollary 1, implies that the
ratio

u2

u1

is Cα regular (both in x and in t) in�∩ (K (ρ/32, s, 1/8)× [−(ρ/32)2, 0]) up to ∂�, with
0 < α < 1 and Cα norm depending on ρ, n, M , the Lipschitz norm of ∂�, as well as on
the bound from below on

mi = ui
(

A−
)

, A− =
(

(3/16) en,−(ρ/16)2
)

.

We claim that
mi ≥ c0(ρ, n,M) > 0.

It is enough to prove the bound only for m1, since m2 can be made as close to m1 as we
wish. Thus, we have to show that

∂nu ≥ c0 > 0

at A−. Indeed, if it weren’t so, by compactness we would easily construct a function u as
above with ∂nu = 0 at A−. Then by the minimum principle ∂nu and consequently u would
vanish in K (ρ/32, s, 1/8)× [−1/4,−(ρ/16)2], a contradiction.

Hence,
∂eu + ε∂t u

∂nu
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is Cα up to ∂� in � ∩ Q−ρ/32. Then varying e and ε we obtain that the ratios

∂i u

∂nu
, i = 1, . . . , n − 1,

∂t u

∂nu

are Cα . This implies that ∂� ∩ (K (ρ/32, s, 1/8) × [−(ρ/32)2, 0]) is the graph xn =
f (x ′, t) with

‖ f ‖C1,α ≤ C(ρ, n,M)

since

∂i f = ∂i u

∂nu
, i = 1, . . . , n − 1, ∂t f = ∂t u

∂nu
.

Arguing as in the end of the proof of Theorem 13.1, we obtain that in fact ∂� ∩ Q−1/4 is

C1,α regular.
The proof is complete. �

15. HIGHER REGULARITY

Theorem 15.1. Under the conditions of Theorem 13.1, ∂� ∩ Q−1/8 is space-time C∞ reg-
ular.

Proof. First, we prove the higher regularity for u.
As it follows from the proof of Theorems 13.1 and 14.1, we have that

∂nu + ε∂t u ≥ 0 in K (ρ/16, s, 1/4)× [−1/4, 0]

for small |ε| ≤ ε(ρ, n,M). Then for large C = C(ρ, n,M) > 0

−C∂nu(x, t) ≤ ∂t u(x, t) ≤ C∂nu(x, t).

Thus, ∂t u will grow linearly in � ∩ Q−1/4 away from ∂�, implying that |∇∂t u| will be

uniformly bounded in � ∩ Q−1/8.

Next, we claim that u is C2,α
x in Q−1/8. In fact, something stronger is true: if w is any

partial derivative (in space or in time) of u, then w is C1,α
x ∩ C0,α

t regular in � ∩ Q−1/8 up

to ∂�. Indeed w satisfies the heat equation in � ∩ Q−1/4, it is uniformly bounded there,

and vanishes continuously on the C1,α-graph ∂�. Then the classical boundary regularity
implies that w is C1,α

x ∩ C0,α
t regular.

Now we have enough regularity to apply the Kinderlehrer-Nirenberg technique [KN77].
Without loss of generality assume that e1 is the (spatial) exterior normal to ∂�(0) at

0. Since |∇u| = 0 on ∂�, all spatial second order derivatives vanish at (0, 0), except
∂11u(0, 0). Since also ∂t u vanishes at (0, 0) we obtain that

∂11u(0, 0) = 1.

Hence, in � ∩ Q−2r for r = r(ρ, n,M) > 0 small we will have that

∂11u ≥ 1

2
.

Then consider there the partial hodograph transform

(x, t) 7→ (y, t) = (−∂1u, x2, . . . , xn, t),

which is C1 and has a nonsingular Jacobian, and the associated Legendre transform

v = x1 y1 + u = −x1∂1u + u.
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Then ∂� transforms to a portion of {y1 = 0} and the equation for v takes the form

Lv := − 1

∂11v
− 1

∂11v

n
∑

i=2

(∂i1v)
2 +

n
∑

i=2

∂i iv − ∂tv = 1.

As can be shown, Lv is a uniformly parabolic equation on the image of �∩ Q−2r under the
hodograph transform. Moreover v vanishes on the image of ∂� ∩ Q−2r , which is a subset
of {y1 = 0}. Hence v is C∞ regular on the image of ∂� ∩ Q−r and considering the inverse
transformation

(y, t) 7→ (x, t) = (∂1v, y2, . . . , yn, t)

we find that ∂� ∩ Q−r , as well as u, are C∞ regular. For details we refer to [KN77].
To finish the proof, we note that by similar reasoning one can show that ∂�∩ Q−r (x, t)

is C∞ regular near every point (x, t) ∈ ∂� ∩ Q−1/8. Hence the theorem follows. �

Remark 15.2. In fact, one can show that ∂� ∩ Q−1/8 is not only C∞ but also analytic in
the space variables and in the second Gevrey class with respect to the time variable, see
[KN78].

16. PROOF OF THEOREM II

For the solution u ∈ P−1 (M) satisfying the assumptions of the theorem consider the
parabolic scaling

ur0(x, t) = 1

r2
0

u(r0x, r2
0 t).

Then we arrive at the conditions of Theorem 13.1. Thus Theorems 14.1 and 15.1 are also
applied. Scaling back, we conclude the proof of the theorem. �
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