GLOBAL SOLUTIONS OF AN OBSTACLE-PROBLEM-LIKE
EQUATION WITH TWO PHASES
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ABSTRACT. Concerning the obstacle-problem-like equation Au = %x{uxj} —
/\T_X{u<0} , where A > 0 and A_ > 0, we give a complete characterization
of all global two-phase solutions with quadratic growth both at 0 and infinity.

1. INTRODUCTION

Whereas the regularity in one-phase free boundary problems has by now been
extensively studied, one-phase methods prove in many cases to be unsuitable for the
corresponding two-phase problems. Here we study the regularity of the obstacle-
problem-like equation

At A
(1.1) Ay = 7X{u>0} - 7X{u<0} )

where Ay > 0 and A_ > 0. The equation arises by minimizing the cost functional
/ (|Vu|® + Ay max(u, 0) + A_ max(—wu,0)) dz,
Q

over an appropriate space. Possible applications of this functional may come in
several problems when the external force is a function of u itself, in this case the
external force is

A H(u) — A_H(—u).
As a specific example, imagine a membrane under the influence of an electric or a
magnetic field of the form

0 0
F= A+X{w3>0} 0 + A—X{w3<0} 0
-1 1

If we assume the membrane to be modeled by a graph in the zs-direction and to
be clamped in at the boundary, then the equilibrium state would correspond to the
minimizer of our functional.
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One of the difficulties one confronts in this problem is that the interface {u = 0}
consists in general of two parts — one where the gradient of u is nonzero and one
where the gradient of u vanishes. Close to points of the latter part we expect the
gradient of u to have linear growth. However, because of the decomposition into
two different types of growth, it is not possible to derive a growth estimate by for
example a Bernstein technique.

Using a monotonicity formula and frequency estimates, G.S. Weiss derived (for
more general coefficients Ay and A_) an estimate for the quadratic growth of u
near the set QN {u = 0} N {Vu = 0} which leads to Hausdorff dimension estimates
([7]). Moreover N. Uraltseva succeeded in proving local H?°-regularity via an
application of the monotonicity formula by H.W. Alt-L.A. Caffarelli-A. Friedman
(see [4)).

In this paper we are interested in the true two-phase part of the free boundary
with vanishing gradient, i.e. QN 9d{u > 0} NI{u < 0} N {Vu = 0} . As a first
step towards regularity, we give a complete characterization of two-phase solutions
with quadratic growth at 0 and infinity: it turns out that each such solution co-
incides after rotation with the one-dimensional solution u(x) = /\T+ max(z,,0)? —
% min(z,,0). In particular this implies that each blow-up limit ug at Q N &{u >
0} Nd{u < 0} N {Vu = 0} is after rotation of the form ug(z) = % max(z,,0)? —

AT‘ min(z,,,0)2.

2. NOTATION

Throughout this article R™ will be equipped with the Euclidean inner product
z -y and the induced norm |z|, and B, (o) will denote the open n-dimensional ball
of center xg , radius r and volume r™ w,, .

We will use 8,u = Vu - e for the directional derivative.

When considering a set A, x4 shall stand for the characteristic function of A ,
while v shall typically denote the outward normal to a given boundary.

3. EXISTENCE, REGULARITY AND NON-DEGENERACY

Let A >0and A_ >0, n > 2, let 2 be a bounded open subset of R"™ with
Lipschitz boundary and assume that up € HY2() . From [7] we know then that
there exists a ”solution”, i.e. a function u € H??2(Q) solving the strong equation
Ay = >‘7+ X{u>0} — /\T_ X{u<o} a-€. in €}, and attaining the boundary data up
in L2 . The boundary condition may be replaced by other, more general boundary
conditions.

Our tools are two powerful monotonicity formulae. One is a monotonicity for-
mula introduced in [6] by one of the authors for a class of semilinear free boundary
problems (see also [5]). The second monotonicity formula has been introduced by
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H.W. Alt-L.A. Caffarelli-A. Friedman in [1] and proved in [1]. What we are actu-
ally going to apply in section 4 is a stronger statement than that of the following
monotonicity formula.

For the sake of completeness let us state both of them here. First is the two-phase
obstacle problem.

Theorem 3.1 (Weiss’s Monotonicity Formula). Suppose that Bs(xzo) C Q. Then
for all 0 < p < o < § the function

d,, (r) := r_"_2/ <|Vu|2 + Ay max(u,0) + A rna,x(—u,O))
B, (z0)

_ 27,—71,—3 / U2 dHn_l ,
8Br(wo)

defined in (0,9) , satisfies the monotonicity formula
4 2
D, (0) — Bpy(p) = / P2 / Q(VU'V—QE) dH" tdr >0 .
P 8B, (o) r

For a proof see [6].
Next comes the Alt-Caffarelli-Friedman monotonicity formula.

Theorem 3.2 (The Alt-Caffarelli-Friedman Monotonicity Formula). Let hy and ho
be continuous non-negative subharmonic HY2-functions in Br(z) satisfying hihs =
0 in Br(z) as well as h1(z) = h2(2) =0.

Then the function

U.(r) := 7‘74/3 7|Vh1($)|2 dz /B 7|Vh2(a:)|2 dz

() [T — 2|2 (2) 1T — 2|2

is a non-decreasing function of r in (0, R) .

For a proof see [1]. We also bring the readers attention to the, readily verified,
fact that for degree-one-homogeneous functions h;, he the function ¥ is constant.
It is noteworthy that

‘Ilz(ra u) = lI"O(]vuf‘): (I)Z(r7u) = <I>0(].,UT),

where
u(rz + 2)
Up (ﬂ]') = T
The way we apply the function ¥(r) is to the positive and negative part of
directional derivatives of u . This is possible by the following lemma due to N.

Uraltseva ([4]):

Lemma 3.3. For each e € 0B1(0) the functions max(d.u,0) and — min(9,u,0)
are subharmonic in ).
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For proof see Lemma 2 in [4]. An informal proof can be given as follows. First

rewrite the equation as
Au = (A H(u) — A_H(~u))/2,

where H denotes the Heavyside step function. Next differentiate in direction e to
obtain 5
Ad,u = ﬁ (ALH™ 1 [0{u > 0} + A_H™ 1 [8{u < 0}) .
In section 4 we are going to need the following stronger version of the Alt-

Caffarelli-Friedman monotonicity formula:

Theorem 3.4. Let hy and hy be continuous non-negative subharmonic H2-functions
in Br(z) satisfying hiha =0 in Br(2) as well as hi(z) = ha(2) =0.

Suppose for 0 < p < r < o < R, U,(p) = V,(c). Then either of the following
holds:

(A) hy =0 in B,(2) or ha = 0 in B,(2),

(B) for i = 1,2, and p < r < o, supp (h;) N 8B, is a half-spherical cap and
hiAh; =0 in B,(2) \ B,(2) in the sense of measures.

Proof. The proof of this theorem follows the same lines as the original proof of [1].
The only differences are that we need to keep the terms that are thrown out during
the estimates in [1]. We carry out some details. The following calculations can be
justified regularizing as in [1]. Let us assume (A) does not hold. Set
Ii(r) = / M dx.
Bo(z) | —2["7?
Then
U(r) =r L (r) L2 (r).
Upon differentiation we obtain
20 (rI} I}
m’=7<i+i—2>.
Next, estimating I;(r) we have

2 X . 2
oy = [ SRS [k
B.(z) |T—2"? B

2h;Ah;
gi(r)Z/ _2hil&hi
B

(o) T —zmm2

_ =% A — a
o fr— 22 Y 5:(r),

where

Now, as in [1], we can estimate

Ah2
/ 7}%”72 dx
B,(2) |z — 2|

from above by I}, and arrive at

1) (1)
sn 2440 (1+ 575
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where —A;(r) (< 0) is the corresponding first Dirichlet eigenvalue of the one-
dimensional Ornstein-Uhlenbeck operator (see [2] for more details).
Using this and the expression for ¥’ we conclude
29 91(r) g2(r)
U'>— (A As(r) — 2+ A A .
> 22 (M) + ) - 2+ MO HTL 4+ 2 20

Now according to results of Beckner-Pipher-Kenig (unpublished, see [CK] for

another proof)
Ai(r) +Ax(r) =220,

and the strict inequality holds if supp h; N 0B, digresses from a half-spherical cap
by positive area. This shows the first part of (B). If the second statement in (B)
fails, then one of g; will be nonzero and we’ll have ¥’ > 0, which contradicts the
assumption in the theorem. O

A quadratic growth estimate near the set 2 N {u = 0} N {Vu = 0} had already
been proved in [7] for more general coefficients Ay and A_ , but local H**- or
C"!-regularity of the solution has been shown for the first time in [4]. Cf. also [3].

Theorem 3.5 (Regularity). u € H{f;;x’(ﬂ) -

A consequence of the quadratic growth estimate near the set QN{u = 0}N{Vu =
0} and Weiss’s monotonicity formula is now that each blow-up limit at a point of
this set is a homogeneous function. In the following lemma we include also the case
of a "blow-down”.

Lemma 3.6. Let u be a global solution such that D?*u € L>®(R") and let ro €
{0, +00}. Then each limit ug of u,(-) = “zotr)

= as a sequence Iy — 1o (€ {0,00})
is a homogeneous function of degree 2 .

Proof. For 0 < R < S < 400, 1 \( 0, let m > k so that Sr,, < Rry and for
rm 0, let m < k so that Sr,, < Rri. Then we have ®,,(Rr,,) < ®,,(Srn) <
@, (Rrg). Thus

S_"_z/ (|Vurm|2 + At ma,x(urm,O) + A ma'x(_urm’o))
Bs(0)

) an73 / uTmZ danl
0Bs(0)

converges to a constant function of S as m,k — oo, and Theorem 3.1 implies that
Ur, is a homogeneous function of degree 2 . O
A non-degeneracy lemma has already been proven in [7], however we need the
following stronger statement on the true two-phase free boundary.

Lemma 3.7 (Non-Degeneracy). For every o € QN (0{u > 0} N 8{u < 0}) and
every Ba,(zo) C Q the following estimates hold:

1
sup u > —Apr?,
8B, (z0) 4n
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. 1
— inf w > —A_7?.
8B, (x0) 4an

Proof. First note that for any ball B and strong sub/supersolutions v, w of (1.1)
in B satisfying v < w on 0B we may multiply the differential inequalities by
max(v — w,0) and integrate to obtain the comparison principle

A
[ 190 = 0)F <=3 (us0) = Xgusop) max(v = w,0)

A
+ 7(X{v<0} — X{w<o}) max(v —w,0) <0

Concerning the proof of the lemma, we choose a sequence {u > 0} 3 z,,, — =g as
m — oo . Supposing that supsp ()¢ < ﬁ/\Jr r2 , the comparison principle yields

that u(z) < v(z) == EAq |z — Zm|> in By(2,,) , a contradiction to the fact that
u(zm) > 0.

The estimate for —infsp, (5,)u is obtained the same way, replacing u by —u and
A by A_. O

4. GLOBAL SOLUTIONS

Lemma 4.1. Let u be a global solution such that u(zg) = 0 for some zy € R™,
Vu = 0 on {u = 0} and |D*u| < C in R"™. Then max(u,0) and —min(u,0) are
convez functions.

Proof. As max(u,0) and —min(u,0) are in this case solutions of the one-phase
obstacle problem, we can apply the well-known blow-up arguments: it is sufficient to
show that Ogets > 0in {u > 0} for each e € 9B (0). Suppose towards a contradiction
that L := inf{,50y Occu(z) < 0, let (Zm)men C {u > 0} be a sequence such that
im0 Oectw(Tm) = L and let r,, = dist(zm,, {u < 0}) > R € {0,+00} (the

U(Tm+TmT)
Tm 2

case R € (0,400) is much easier). Defining u,,(z) := and passing if
necessary to a subsequence, we obtain from the assumptions that u,, — ug weakly-
*in Hfoé” (R™) and strongly in Cllo’g (R™)N Cfoco‘ (B1(0)) as m — oo . It follows that
uo > 0 in B;(0) and Vug = 0 on {ug = 0}, that Aug = >‘7+ in B1(0) and that L =
Oeero(0) = inf g, () Oecto - Hence, by the strong maximum principle, Oeetp = L < 0
in B;(0) and in a neighborhood of A = {te : t € R and wug(se) > 0 for s € [0,¢]}. We
observe that the non-negativity of ug in By (0) and e uo(0) < 0 imply that A is non-
empty and bounded. Thus ¢(t) = ug(te) isin I = {t € R : ug(se) > 0 for s € [0, ]}
a parabola satisfying ¢"” = L < 0. We obtain that ¢' # 0 at the boundary points
£_ and ¢, of the interval I. This implies Vug(¢_e) # 0, contradicting the fact that

Vug =0 on {ug =0}. O

Corollary 4.2. Let u be a global solution such that {u > 0} and {u < 0} are both
non-empty, that Vu = 0 on {u = 0} and |D?*u| < C in R™. Then u is after a
translation and rotation for some £ € (—o0,0] of the form u(z) = —% min(z, —
£,0)% + 2+ max(z,,0) .
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Proof. Tt follows from Lemma 4 that the sets E; := {u > 0} and E_ := {u < 0}
are convex. At any point z° € OE_ there exists a supporting plane T C E,. Thus
E, is a half-space and the same is true for E_. As £, UE_ = R" it follows that
OE_ is parallel to OFE,. Rotating and translating we obtain 0E_ = {z,, = 0},
OE; = {z, =1} with 1 <0. O

Theorem 4.3. Let u be a global solution such that zo € 0{u > 0} N d{u < 0}
and Vu(zo) = 0 for some tog € R™ and that |D?u| < C in R™. Then u is after a

translation and rotation of the form u(x) = —% min(z,,0)2 + % max(z,,0)?.

Proof. By a translation we may assume that o = 0. We will use the notation
I :={u=0}n{Vu #0}.

Step 1: We show that the theorem holds in the case that u is homogeneous of degree
two.

To this end, we prove that I'* is in this case empty whereupon the statement in the
Theorem follows from Corollary 4.2.

First, we apply the Alt-Caffarelli-Friedman monotonicity formula Theorem 3.2 for
fixed e € 9B1(0) to the directional derivative O.u . Since d.u is a homogeneous
function of degree 1, the function of the monotonicity formula ¥y(r) is constant in
r . From Theorem 3.4 we obtain therefore that either

(A) Oeu > 0in R™ or J,u < 0in R™

or

(B) max(0eu,0)A max(f.u,0) = 0 in R™ and min(d.u,0)A min(8.u,0) = 0 in R™
in the sense of measures.

Suppose now that there exists a point yg € I'* and denote by v the direction
of gradient of u at yo. There is a neighborhood B,(yo) where d,u > 0 and {u =
0} N B,(yo) is a C**-surface. If e - v # 0 then d.u(yo) # 0, and for sufficiently
small § we obtain

A4+

|AGeu|(Bs(yo)) 5 le - v| dH™ !
B{UZO}OBJ (yo)
2 8{u=0}NBs(yo) |Vl

Thus (A) holds. More precisely, Jeu > 0in R if e-v0 and d.u < 0in R™ if e-v < 0.
Hence 0.u = 0 in R” for each e L v. By the assumption Vu(zg) = 0, this implies

that u must after rotation be of the form u(z) = —AT‘ min(z,,0)2+ % max(z,,0)?,

which contradicts the assumption that I'* is non-empty.

Step 2: We are now ready to prove the theorem in the general case.
u(rz)
,,.2

By the assumptions (u,),¢(0,4+0) is bounded in HIQO’SO (R™). By the non-degeneracy

To this end, we consider blow-up limits and ”blow-down” limits. Let u,(z) :=
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property Lemma 3.7,

1
min( sup w,— inf w) > — min(A;, A )r? for all 7 € (0, +o0
(aBT(O) ot ) 2 2-min(Ay, A ( )

We find therefore two sequences (4., )men and (ug,, )men such that r,, — 0, R, —
+oo and u,, — Ug,UR,, — U Weakly-* in leofo (R™) and strongly in C’llo’ca(R”)
as m — 00, Vug(0) = Vux(0) = 0 and 0 € d{ug > 0} N d{up < 0} N O{uw >
0}NO{uc < 0}. Furthermore ug and us are by Lemma 3.6 homogeneous functions
of degree 2. From the result of Step 1 we infer therefore that there are rotations
Ui and Us such that uo(Uiz) = teo(Uzz) = —2= min(z,,0)? + 2 max(z,,0)>

But then the function of the monotonicity formula ®¢(r) , (applied to u), satisfies
®4(0+) = ®(400) and Theorem 3.1 implies that u must have been a homogeneous
function of degree 2 all along. The statement follows then from the result proved

in Step 1. O
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