Convex configurations for solutions to semilinear elliptic problems in convex rings

Andrew ACKERMicDept. of Mathematics and StatisticsDeparWichita State UniversityYereWichita, KS 67260-0033AlexUSAYeree-mail: acker@math.wichita.edue-mail

Michael POGHOSYAN * Department of Mathematics Yerevan State University Alex Manoogian 1, 375025, Yerevan, ARMENIA e-mail: michael@ysu.am

Henrik SHAHGHOLIAN[†] Department of Mathematics Royal Institute of Technology 100 44 Stockholm SWEDEN e-mail: henriksh@math.kth.se

January 29, 2005

Abstract

For a given convex ring $\Omega = \Omega_2 \setminus \overline{\Omega}_1$ and an L^1 function $f : \Omega \times \mathbb{R} \to \mathbb{R}_+$ we show, under mild assumptions on f, that there exists a solution (in the weak sense) to

$$\begin{cases} \Delta_p u = f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega_2 \\ u = M & \text{on } \partial\Omega_1 \end{cases}$$

with $\{x \in \Omega : u(x) > s\} \cup \Omega_1$ convex, for all $s \in (0, M)$.

1 Introduction and statement of the problem

1.1 The mathematical setting

We start with the mathematical setting of the problem. Let us be given two convex domains $\Omega_1 \subset \subset \Omega_2 \subset \mathbb{R}^N$ and the function f(x, y). We study the following boundary value problem:

$$\begin{cases} \Delta_p u = f(x, u) & \text{in } \Omega := \Omega_2 \setminus \overline{\Omega}_1 \\ u = 0 & \text{on } \partial \Omega_2 \\ u = M & \text{on } \partial \Omega_1, \end{cases}$$
(1)

^{*}The second author's contribution to this work started when he visited the Royal Institute of Technology, through a grant from Swedish Royal Academy of Sciences, and it was finalized during his visit at Wolfgang Pauli Institute (Vienna).

[†]Third author was supported by the Swedish Research Council. He also thanks Wolfgang Pauli Institute for appointments.

where M is a given constant and Δ_p , 1 is the p-Laplace operator defined by

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u).$$

The differential equation in (1) will be understood in the weak sense, i.e. for every $\eta \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla \eta(x) dx = -\int_{\Omega} f(x, u(x)) \cdot \eta(x) dx.$$
(2)

The differential equation in problem (1) is the Euler equation for the following minimization problem:

$$\begin{cases} \int_{\Omega} \left(|\nabla u(x)|^p + F(x, u(x)) \right) dx \to \inf \\ u \in K := \{ v \in W^{1, p}(\Omega) : u = 0 \quad \text{on} \quad \partial \Omega_2, \quad u = M \quad \text{on} \quad \partial \Omega_1 \}, \end{cases}$$
(3)

where

$$F(x,t) := p \cdot \int_0^t f(x,z) dz.$$

Our objective is to prove the existence of a solution, with convex level sets, to problem (1) (with some restrictions on the right hand side of the equation, of course). For our proof, we require convex solutions to the multi-layer free-boundary problem, which occurs in fluid dynamics (see [AHPS]). Our solutions are obtained by passing to the limit as the number oflayers (and free boundaries) becomes infinite.

This approach was realized in [LS], where those authors have proved the existence of the weak solution with convex level lines (in \mathbb{R}^2) of the following problem:

$$\begin{cases} \Delta u = f(u) & \text{in } \Omega := \Omega_2 \setminus \overline{\Omega}_1 \\ u = 0 & \text{on } \partial \Omega_2 \\ u = M & \text{on } \partial \Omega_1, \end{cases}$$
(4)

where Ω_1 and Ω_2 are as above and the function f satisfies

$$f \in L^1(-\infty,\infty), \quad f(x) \ge 0, \quad \text{and} \quad f(x) = 0 \quad \text{on} \quad (-\infty,0).$$

It should be added that recently, the third author and R. Monneau [MS] have constructed a solution u, with non-convex level sets, to the above problem with $f \leq 0$ and smooth.

Definition 1.1 (The class of functions \mathcal{F}) We will always assume, unless otherwise stated, that the function f(x, y) on the right hand side of (1) belongs to the class \mathcal{F} of functions having the following four properties:

(F1): $f(x,y): \Omega \times \mathbb{R} \to \mathbb{R}$ is continuous and $f(x,y) \ge 0$ for every $(x,y) \in \Omega \times \mathbb{R}$. (F2): For every $\alpha, \beta \in [0, M]$ with $\alpha < \beta$, the function:

$$g_{\alpha,\beta}(x) := \left(\int_{\alpha}^{\beta} f(x,y)dy\right)^{-\frac{1}{p}}$$

is concave in Ω .

($\mathcal{F}3$): There exists a number C, s.t.

$$\int_0^M \left(\sup_{x \in \Omega} f(x, y) \right) dy \le C.$$

(F4): For $y \to 0+$, we have

$$y^{1-p}\left(\sup_{x\in\Omega}f(x,y)\right)\to 0.$$

1.2 Main result

The body of this paper is devoted to the proof of the following result:

Theorem 1.2 Let M > 0 be a given constant, and let $f(x, y) \in \mathcal{F}$. Then there exists a weak solution u(x) of Problem (1) with convex level sets, for which

$$0 \le u(x) \le M, \quad x \in \Omega$$

In addition, if f(x, y) is non-decreasing function with respect to its second argument, then the solution is unique.

We remark that an alternate uniqueness result not requiring the monotonicity of f relative to y appears in Section 5.

The continuity of f(x, y) and the last two assumptions in Definition 1.1 of the class \mathcal{F} are actually not critical to the validity of our convex existence results, although they facilitate the proof. In fact Theorem 1.2 directly generalizes by an approximation argument (see [DPS], Section 3) to the following result:

Theorem 1.3 The assertion of Theorem 1.2 continues to hold when $f(x, y) \in \mathcal{F}'$, where \mathcal{F}' denotes the closure of \mathcal{F} in L^1 .

We observe that \mathcal{F}' consists of the L^1 functions $f(x, y) : \Omega \times \mathbb{R} \to \mathbb{R}$ with properties (\mathcal{F}_1) and (\mathcal{F}_2) .

Example. The above existence theory applies to any function of the form

$$f(x,y) = \sum_{i=1}^{n} f_i(x)\phi_i(y) \in L^1(\Omega),$$

where the functions $f_i(x) : \Omega \to \mathbb{R}, \phi_i(y) : \mathbb{R} \to \mathbb{R}$ are all non-negative, and $(f_i(x))^{-\frac{1}{p}}$ are concave in Ω .

To show this, it suffices to show that if g, h are non-negative \mathcal{L}^1 functions and satisfy the concavity condition \mathcal{F}_2 , then so does f = (g + h). Observe that a sufficiently regular function g satisfies the concavity condition \mathcal{F}_2 if and only if $gg'' \geq C(g')^2$, where C = (1 + (1/p)) and g' and g'' refer to 1st and 2nd order directional derivatives at any point and in any direction. Thus, if f, g are sufficiently regular, then

$$ff'' = (g+h)(g''+h'') = gg'' + gh'' + hg'' + hh'' = (1+(h/g))gg'' + (1+(g/h))hh''$$

$$\geq C((1+(h/g))(g')^2 + (1+(g/h))(h')^2 \geq C((g')^2 + 2g'h' + (h')^2) = C(f')^2,$$

where we have used the fact that $2f'g' \leq (h/g)(g')^2 + (g/h)(h')^2$. Now an approximation argument gives the result for non-negative L^1 -functions.

2 The multilayer free boundary problem

We start with the following multilayer free boundary problem.

Let $T = \{t_0, t_1, ..., t_n\}$ be a partition of [0, M], i.e. $0 = t_0 < t_1 < ... < t_n = M$, and let $\tau_i = M - t_i$, so that $M = \tau_0 > \tau_1 > \cdots > \tau_n = 0$. Also let

$$F(x,t) := p \cdot \int_0^t f(x,z) dz.$$

We consider the following (n-1)-layer problem:

Problem 2.1 Find convex domains $K_1, K_2, ..., K_{n-1}$ such that

$$K_0 \subset \subset K_1 \subset \subset K_2 \subset \subset \ldots \subset \subset K_{n-1} \subset \subset K_n,$$

where $K_0 := \Omega_1, K_n := \Omega_2$, with the property that the p-capacitary potentials u_i for each annular convex region $K_i \setminus \overline{K}_{i-1}$ satisfies a nonlinear joining Bernoulli condition

$$|\nabla u_i(x)|^p - |\nabla u_{i+1}(x)|^p = \frac{1}{p-1} [F(x,\tau_{i-1}) - F(x,\tau_i)] \quad \text{on } \partial K_i, \quad i = 1, \dots, n-1.$$
(5)

By *p*-capacitary potential of the annular region $K_i \setminus \overline{K}_{i-1}$ we mean the solution of the following Dirichlet problem

$$\begin{cases}
\Delta_p u_i = 0 \quad \text{in} \quad K_i \setminus \overline{K}_{i-1} \\
u_i = \tau_{i-1} \quad \text{on} \quad \partial K_{i-1} \\
u_i = \tau_i \quad \text{on} \quad \partial K_i.
\end{cases}$$
(6)

Theorem 2.2 For every partition T of [0, M] and every function $f(x, y) \in \mathcal{F}$ Problem 2.1 has a (Lipschitz) solution, where the joining condition (5) is satisfied strongly.

<u>Remark</u> We will define the function $u^T(x): \overline{\Omega} \to \mathbb{R}$ by

$$u^T(x) := u_i(x), \quad x \in \overline{K}_i \setminus K_{i-1}.$$

Proof of Theorem 2.2

We only need to verify that if $f(x, y) \in \mathcal{F}$ and $\alpha, \beta \in [0, M]$ with $\alpha < \beta$, then the function q(x, y), defined by

$$q(x,y) := \left(\frac{1}{p-1} \int_{\alpha}^{\beta} f(x,z)dz + y^p\right)^{\frac{1}{p}}$$

$$\tag{7}$$

satisfies conditions (A1)-(A4) of Definition 2.3 in the paper [AHPS], which are the following:

- (A1): q is continuous and $\exists c_0 > 0$ such that $q(x, 0) \ge c_0$ for all $x \in \Omega$,
- (A2): q is non-decreasing with respect to second argument,
- (A3): q satisfies the following concavity property: $x \mapsto \frac{1}{q(x,h(x))}$ is concave whenever h is a given function such that 1/h is concave, and
- (A4): for any given value $y_0 > 0$, there exist constants $0 < C_1 < C_2$ such that $C_1 \le (q(x, y)/y) \le C_2$, uniformly for all $x \in \Omega$ and all $y \ge y_0$.

The conditions (A1) and (A2) are obvious, the condition (A3) can be easily verified if we use Lemma 2.1 of the above mentioned paper and the concavity property ($\mathcal{F}2$) of $f \in \mathcal{F}$. The last condition (A4) follows from the fact that

$$rac{q(x,y)}{y}
ightarrow 1, \ y
ightarrow +\infty \ \ ext{uniformly in} \ \ \Omega.$$

3 Passage To Limit

For a partition $T = \{t_0, t_1, ..., t_n\}$ we denote $|T| := \max\{t_{i+1} - t_i : i = 0, 1, ..., n-1\}$.

Theorem 3.1 For a given convex annular domain $\Omega := \Omega_2 \setminus \overline{\Omega}_1$, there exist a continuous, (strictly) increasing function $\varphi(s) : [0, \infty) \to \mathbb{R}$ with $\varphi(0) = 0$, and a strictly-positive function $P(x) : \Omega \to \mathbb{R}$, such that for any partition T of [0, M] with |T| sufficiently small, and any solution $u^T(x)$ of the multilayer free boundary problem (2.1), corresponding to T, we have

$$|\nabla u^{T}(x)| \leq \frac{\varphi(\operatorname{dist}(x,\partial\Omega_{1})) + |T|}{\operatorname{dist}(x,\partial\Omega_{1})}$$
(8)

and

$$|\nabla u^T(x)| \ge (P(x) - |T|) \operatorname{dist}(x, \partial \Omega_2), \tag{9}$$

both wherever $\nabla u^T(x)$ exists.

Proof. We break the proof into the following 5 steps. **Step 1.** (Estimates for a family of multilayer subsolutions) Let the function V(x) solve the Dirichlet problem

$$\begin{cases} \Delta_p V(x) = 0 & \text{in } \Omega \\ V(x) = 0 & \text{on } \partial \Omega_1 \\ V(x) = 1 & \text{on } \partial \Omega_2. \end{cases}$$
(10)

For any $\rho \in (0, 1)$, we define

$$V_{\rho}(x) := \frac{V(x)}{\rho} \quad \text{and} \quad \Omega_{\rho} := \{ x \in \Omega : V(x) < \rho \}, \tag{11}$$

observing that $V_{\rho}(x)$ is the *p*-capacitary potential in the domain Ω_{ρ} . Let $T = \{t_0, t_1, \dots, t_n\}$ be a given partition of [0, M], and let $A = \{\alpha_0, \alpha_1, \dots, \alpha_n\}$, $0 = \alpha_0 < \alpha_1 < \dots < \alpha_n = 1$, denote a partition of [0, 1] which is to be determined. In terms of $\rho \in (0, 1)$ and A, we define the convex domains $\omega_i := \Omega_1 \cup \{x \in \overline{\Omega}_{\rho} : V_{\rho}(x) < \alpha_i\}$, $i = 0, \dots, n$. Let the functions $U_i(x)$, $i = 1, \dots, n$, solve the Dirichlet problems:

$$\begin{cases}
\Delta_p U_i(x) = 0 & \text{in } \omega_i \setminus \overline{\omega}_{i-1} \\
U_i(x) = \tau_{i-1} & \text{on } \partial \omega_{i-1} \\
U_i(x) = \tau_i & \text{on } \partial \omega_i.
\end{cases}$$
(12)

Then it is clear that

$$U_i(x) = \tau_{i-1} + \frac{\tau_i - \tau_{i-1}}{\alpha_i - \alpha_{i-1}} \cdot (V_\rho(x) - \alpha_{i-1}), \quad i = 1, \cdots, n.$$
(13)

Now $(\omega_1, \dots, \omega_{n-1})$ will be a *subsolution* of the multilayer problem relative to the annular domain Ω_{ρ} and corresponding to the given partition T (see [AHPS], section 4.2.2), if the partition A is chosen such that

$$|\nabla U_i(x)|^p \ge |\nabla U_{i+1}(x)|^p + \frac{F(x,\tau_{i-1}) - F(x,\tau_i)}{p-1}, \ x \in \partial \omega_i$$
(14)

for $i = 1, \dots, n-1$. Set

$$\hat{\delta}_i := t_i - t_{i-1} = \tau_{i-1} - \tau_i > 0$$
 and $\delta_i := \alpha_i - \alpha_{i-1} > 0$

for $i = 1, \dots, n$. Then we must have

$$\hat{\delta}_1 + \dots + \hat{\delta}_n = M,\tag{15}$$

$$\delta_1 + \dots + \delta_n = 1. \tag{16}$$

By (13) and (14), $(\omega_1, \dots, \omega_{n-1})$ is a subsolution if

$$\left(\frac{\hat{\delta}_i}{\delta_i}\right)^p \ge \left(\frac{\hat{\delta}_{i+1}}{\delta_{i+1}}\right)^p + \frac{F(x,\tau_{i-1}) - F(x,\tau_i)}{(p-1) \cdot |\nabla V_\rho(x)|^p}, \quad x \in \partial \omega_i$$
(17)

for $i = 1, \dots, n-1$, where $(1/|\nabla V_{\rho}(x)|)$ is uniformly bounded from above in Ω_{ρ} . It is suffices to require for a fixed value $\varepsilon \geq 0$ that

$$\left(\frac{\hat{\delta}_i}{\delta_i}\right)^p \ge \left(\frac{\hat{\delta}_{i+1}}{\delta_{i+1}}\right)^p + \Delta_i + \varepsilon \tag{18}$$

for $i = 1, \dots, n-1$, where

$$\Delta_i := C_0 \cdot \sup_{x \in \Omega} \left(F(x, \tau_{i-1}) - F(x, \tau_i) \right)$$
(19)

and $C_0 = C_0(\rho) = \sup_{x \in \Omega_\rho} (1/((p-1)|\nabla V_\rho(x)|^p))$. Let the values $\mu_i, i = 1, \dots, n$ be chosen such that $\mu_i - \mu_{i+1} = \Delta_i + \varepsilon \ge 0, i = 1, \dots, n-1$, and $\mu_n = 0$. Then

$$0 = \mu_n \le \mu_{n-1} \le \dots \le \mu_1 = C_T + (n-1)\varepsilon \le C^* + (n-1)\varepsilon,$$
 (20)

where $C_T := \sum_{i=1}^{n-1} \Delta_i$ and $C^* = C^*(\rho) = p \cdot C_0(\rho) \int_0^M (\sup_{x \in \Omega} f(x, y)) dy$ (due to Assumption ($\mathcal{F}3$). To define a subsolution $(\omega_1, \dots, \omega_{n-1})$ satisfying (17), it suffices to choose

$$\delta_i = \hat{\delta}_i \cdot (\mu_i + \lambda)^{-1/p} \quad \left(\iff \left(\frac{\hat{\delta}_i}{\delta_i} \right)^p = \mu_i + \lambda \right), \tag{21}$$

for $i = 1, \dots, n$, where $\lambda > 0$ is a constant determined by (15). Namely, the continuous function $\psi(s) := \sum_{i=1}^{n} \hat{\delta}_i \cdot (\mu_i + s)^{-1/p}$ is such that $\psi'(s) < 0$ for all s > 0, $\psi(s) \to \infty$ as $s \downarrow 0$, and $\psi(s) \to 0$ as $s \to \infty$. Therefore, there exists a unique value $\lambda > 0$ such that $\psi(\lambda) = 1$. Assuming (15), we have

$$1 = \psi(\lambda) = \sum_{i=1}^{n} \hat{\delta}_{i} \cdot (\mu_{i} + \lambda)^{-1/p} \le \sum_{i=1}^{n} \hat{\delta}_{i} \cdot \lambda^{-1/p} = \frac{M}{\lambda^{1/p}},$$
(22)

from which it follows that $\lambda \leq M^p$.

Now let us consider the case $\epsilon = 0$. Due to Property ($\mathcal{F}4$) of f, we can choose a function z(y) such that $t^{1-p}f(x,t) \leq z(y)$ for all $x \in \Omega$ and $0 < t \leq y$, and such that $z(y) \to 0+$ as $y \to 0+$. For any $m = 1, \dots, n$, we have $\Delta_i \leq C_0 \eta^{p-1} z(\eta)(\tau_{i-1} - \tau_i)$ for all $i = m + 1, \dots, n - 1$, where $\eta = \tau_m$. Thus

$$\mu_k = \sum_{i=k}^{n-1} \Delta_i \le C_0 \eta^{p-1} z(\eta) \sum_{i=k}^{n-1} (\tau_{i-1} - \tau_i) \le C_0 \eta^{p-1} z(\eta) (\tau_{k-1} - \tau_{n-1}) \le C_0 \eta^p z(\eta),$$
(23)

for $k = m + 1, \dots, n - 1$, with $\eta = \tau_m$. Thus

$$1 \ge \sum_{i=m+1}^{n} \frac{\hat{\delta}_i}{(\lambda + \mu_i)^{1/p}} \ge \sum_{i=m+1}^{n} \frac{\hat{\delta}_i}{(\lambda + C_0 \eta^p z(\eta))^{1/p}} = \frac{\eta}{(\lambda + C_0 \eta^p z(\eta))^{1/p}}.$$
 (24)

Thus $\lambda \geq \eta^p (1 - C_0 z(\eta))$, from which it follows that $\lambda \geq (1/2)\eta^p$, provided $\eta > 0$ is small enough so that $2C_0 z(\eta) \leq 1$. By (20), (21), and the fact that $(1/2)\eta^p \leq \lambda \leq M^p$, we have

$$\frac{\eta}{2^{1/p}} \le \lambda^{1/p} \le \frac{\delta_i}{\delta_i} = (\mu_i + \lambda)^{1/p} \le (C_T + (n-1)\varepsilon + \lambda)^{1/p} \le (C^* + (n-1)\varepsilon + M^p)^{1/p}$$
(25)

for all $i = 1, \dots, n$, provided that |T| is sufficiently small and $2C_0 z(\eta) \leq 1$.

Step 2. (Inner barriers for multilayer solutions) For any $\rho \in (0,1)$ and partition $T = \{t_0, t_1, ..., t_n\}$ of [0, M], we let $(\omega_1(\rho), \cdots, \omega_{n-1}(\rho))$ denote the explicit subsolution

constructed in **Step 1** for the *n*-layer problem (Problem 2.1) corresponding to the partition T, the annular domain Ω_{ρ} , the function V_{ρ} , and the value $\varepsilon = 0$. Let (K_1, \dots, K_{n-1}) denote any (fixed) solution of the *n*-layer problem in the original domain Ω corresponding to the same partition T. Then

$$(\omega_1(\rho), \cdots, \omega_{n-1}(\rho)) \subset (K_1, \cdots, K_{n-1})$$
(26)

for any $\rho \in (0, 1)$, where " \subset " is interpreted componentwise.

For proof of this claim, let $(\omega_1(\rho, \varepsilon), \dots, \omega_{n-1}(\rho, \varepsilon))$ denote the (strict) subsolution constructed in **Step 1** corresponding to the partition *T*, the annular domain Ω_{ρ} , $\rho \in (0, 1)$, and a small value $\varepsilon > 0$. There is an $r \in (0, 1)$ so small that

$$(\omega_1(r,\varepsilon),\cdots,\omega_{n-1}(r,\varepsilon)) \subset (K_1,\cdots,K_{n-1})$$

for all small $\varepsilon > 0$. We assert that the same inequality holds for all $r \in (0, 1)$ and all sufficiently small $\varepsilon > 0$. Clearly, the domains $\omega_i(r, \varepsilon)$ depend continuously on $r \in (0, 1)$ and $\varepsilon \ge 0$. Therefore, if this claim is false, then for some small $\varepsilon > 0$, there is a largest value $\rho = \rho(\varepsilon) \in (0, 1)$ such that $(\omega_1(r, \varepsilon), \dots, \omega_{n-1}(r, \varepsilon)) \subset (K_1, \dots, K_{n-1})$ for all $r \in (0, \rho)$. Then $(\omega_1(\rho, \varepsilon), \dots, \omega_{n-1}(\rho, \varepsilon)) \subset (K_1, \dots, K_{n-1})$ by continuity, and there exists a point $x_0 \in \partial \omega_i(\rho, \varepsilon) \cap \partial K_i$ for some $i \in \{1, \dots, n-1\}$. This leads to the following contradiction: By maximum and comparison principles for *p*-harmonic functions, we have

$$\tau_j \le u_j(x) \le U_j(x) \le \tau_{j-1}$$

in $\omega_j(\rho, \varepsilon) \setminus K_{j-1}$ for j = i, i+1, where u_j (resp U_j) solves the Dirichlet problem (6) (resp. (12)) with i := j. Thus

$$|\nabla U_i(x_0)| \le |\nabla u_i(x_0)|$$
 and $|\nabla U_{i+1}(x_0)| \ge |u_{i+1}(x_0)|$

at $x_0 \in \partial \omega_i(\rho, \varepsilon) \cap \partial K_i$, contradicting the fact that (K_1, \dots, K_{n-1}) is a classical solution while $(\omega_1(\rho, \varepsilon), \dots, \omega_{n-1}(\rho, \varepsilon))$ is a strict C^2 -subsoluton. Finally, our assertion follows in the limit as $\varepsilon \to 0+$.

Step 3. (Estimates for multilayer inner solutions.) Let u^T correspond to any solution (K_1, \dots, K_{n-1}) of the *n*-layer problem (Problem 2.1) in Ω , corresponding to the partition *T*. Then for any $\rho \in (0, 1)$, there exist positive constants $A = A(\rho)$, $B = B(\rho)$ (independent of the particular partition) such that

$$M - B \cdot V_{\rho}(x) - |T| \le u^T(x) \le M \quad \text{in} \quad \Omega_{\rho}.$$
(27)

$$A \cdot W_{\rho}(x) - |T| \le u^T(x) \le M \quad \text{in} \quad \Omega_{\rho}, \tag{28}$$

where we define $W_{\rho}(x) := 1 - V_{\rho}(x)$.

Proof: Although our development of the multilayer subsolutions in **Step 1** depends on the partition T, the estimate (25) is independent of T (provided only that |T| is sufficiently small to permit a suitable choice of η in (25)). Thus, we have

$$A \cdot \delta_i \le \hat{\delta}_i \le B \cdot \delta_i \tag{29}$$

for $i = 1, \dots, n$, independent of T (with |T| sufficiently small), where $A = A(\rho) > 0$ and $B = B(\rho) := (C^*(\rho) + M^p)^{1/p}$ are independent of T (as follows from (25) with $\varepsilon = 0$). By summation of (29), we have

$$\tau_m = \tau_m - \tau_n = \sum_{i=m+1}^n \hat{\delta}_i \ge A \cdot \sum_{i=m+1}^n \delta_i = A \cdot (1 - \alpha_m),$$
(30)

$$M - \tau_m = t_m = \sum_{i=1}^m \hat{\delta}_i \le B \cdot \sum_{i=1}^m \delta_i \le B \cdot \alpha_m, \tag{31}$$

both for any $m \in \{1, 2, \dots, n\}$. It follows that:

$$|T| + \inf\{u^T(x) : x \in K_{m+1} \setminus \Omega_1\} \ge \inf\{u^T(x) : x \in K_m \setminus \Omega_1\} \ge u^T(\partial K_m)$$
(32)

$$= U^{T}(\partial \omega_{m}) = \tau_{m} \ge A \cdot (1 - \alpha_{m}) = A \cdot W_{\rho}(\partial \omega_{m}) \ge A \cdot \sup\{W_{\rho}(x) : x \in \Omega_{2,\rho} \setminus K_{m}\},$$

$$|T| + \inf\{u^{T}(x) : x \in K_{m+1} \setminus \Omega_{1}\} \ge \inf\{u^{T}(x) : x \in K_{m} \setminus \Omega_{1}\} = u^{T}(\partial K_{m})$$
(33)

$$= U^T(\partial \omega_m) = \tau_m \ge M - B \cdot \alpha_m = M - B \cdot V_\rho(\partial \omega_m) \ge M - B \cdot \inf\{V_\rho(x) : x \in \Omega_{2,\rho} \setminus K_m\},$$

both for any partition T of [0, M] and any $m \in \{0, \dots, n-1\}$, where $\Omega_{2,\rho} = \operatorname{Cl}(\Omega_1) \cup \Omega_{\rho}$. Therefore, the asserted estimates (27) and (28) both hold relative to $\Omega_{\rho} \cap (K_{m+1} \setminus K_m)$ for each $m \in \{1, \dots, n-1\}$.

Step 4. Proof of Theorem 3.1, eq. (8). It is easily seen, using the continuity of the function V_{ρ} (for any fixed $\rho \in (0,1)$), that $B(\rho) \cdot V_{\rho}(x) \leq \phi(\operatorname{dist}(x,\partial\Omega_1))$ relative to Ω_{ρ} , where $\varphi(s) : [0,\infty) \to \mathbb{R}$ denotes a suitable continuous, monotone increasing function such that $\varphi(0) = 0$. In view of this, it follows from Step 3 that

$$M \ge u^{T}(x) \ge M - B \cdot V_{\rho}(x) - |T| \ge M - \varphi(\operatorname{dist}(x, \partial \Omega_{1})) - |T|,$$
(34)

for any partition T of [0, M], any solution u^T (corresponding to T) in Ω , and any $x \in \Omega_{\rho}$. By enlarging ϕ if necessary, we can assume (34) holds for all $x \in \Omega$. Therefore

$$|\nabla u^{T}(x)| \cdot \operatorname{dist}(x, \partial \Omega_{1}) \leq |\nabla u^{T}(x)| \cdot |\gamma| \leq \int_{\gamma} |\nabla u^{T}(y)| ds \qquad (35)$$
$$\leq M - u^{T}(x) \leq \varphi(\operatorname{dist}(x, \partial \Omega_{1})) + |T|$$

for any partition T of [0, M], any solution u^T of Problem 2.1 in Ω corresponding to T, and any point $x \in \Omega \setminus (\partial K_1 \cup \cdots \cup \partial K_{n-1})$, where γ is the arc of steepest ascent of u^T joining x to $\partial \Omega_1$. Here, we have used the fact that $|\nabla u^T(x)|$ is weakly increasing (with increasing $u^T(x)$) on γ . The assertion (8) follows.

Step 5. Proof of Theorem 3.1, eq. (9). In view of (28), we have

$$u^{T}(x) + |T| \ge P(x) := \sup\{A(\rho)W_{\rho}(x) : \rho \in (0,1), x \in \Omega_{\rho}\} > 0,$$
(36)

for any $x \in \Omega$. Therefore

$$|\nabla u^{T}(x)| \geq \int_{\gamma} |\nabla u^{T}(y)| ds = u^{T}(x) |\gamma| \geq u^{T}(x) \operatorname{dist}(x, \partial \Omega_{2})$$

$$\geq (P(x) - |T|) \operatorname{dist}(x, \partial \Omega_{2})$$
(37)

for any partition T of [0, M], any solution u^T of Problem 2.1 in Ω corresponding to T, and any point $x \in \Omega \setminus (\partial K_1 \cup \cdots \cup \partial K_{n-1})$, where γ is the arc of steepest ascent of u^T joining x to $\partial \Omega_2$. The assertion (9) follows.

Theorem 3.2 Let T^k be the sequence of partitions of [0, M] such that $|T^k| \to 0$ when $k \to +\infty$. Then there exists a subsequence $\{u^{T^{k_m}}\}$ which converges in $W^{1,p}(\Omega) \cap C^{0,\alpha}(\Omega)$ to a limit $u_0 \in W^{1,p}(\Omega)$. Also, due to equicontinuity, the convergence holds true in $C(\overline{\Omega})$.

Proof The proof follows from Theorem 3.1.

Proof of Theorem 1.2 4

In case f(x, z) is monotone nondecreasing in z, the uniqueness follows by classical arguments. Next, we will show that the function $u_0(x)$, defined in Theorem 3.2, solves problem (1) in the weak sense, i.e. for every $\eta \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} |\nabla u_0(x)|^{p-2} \nabla u_0(x) \cdot \nabla \eta(x) dx = -\int_{\Omega} f(x, u_0(x)) \cdot \eta(x) dx.$$
(38)

For simplicity we denote $u^n(x) := u^{T^n}(x)$ and we assume, that $u^n \to u_0$ in $W^{1,p}(\Omega)$. Let $\{K_i^n, i = 0, ..., n\}$ be the corresponding solution of the multilayer free boundary problem for the partition $T^n := \{t_0^n, t_1^n, ..., t_n^n\}$, and let $u_i^n := u^n|_{(K_i^n \setminus K_{i-1}^n)}$.

Let $\eta \in C_0^{\infty}(\Omega)$. By the divergence theorem we have

$$\int_{\Omega} |\nabla u^{n}(x)|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) dx = \sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}} \left(|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1} \right) \cdot \eta(x) dx$$
(39)

where $\Gamma_i^n = \partial K_i^n$.

From the free boundary conditions we get

$$\int_{\Omega} |\nabla u^n(x)|^{p-2} \nabla u^n(x) \cdot \nabla \eta(x) dx =$$

$$= -\sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}} \frac{F(x,t_{i}^{n}) - F(x,t_{i-1}^{n})}{p-1} \cdot \frac{|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p} - |\nabla u_{i}^{n}(x)|^{p}} \cdot \eta(x)dx =$$

$$= -\sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \frac{p \cdot f(x,y)}{p-1} \cdot \frac{|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p} - |\nabla u_{i}^{n}(x)|^{p}} \cdot \eta(x)dydx =$$

$$= -\sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{\Gamma_{i}^{n}} \frac{p \cdot f(x,y)}{p-1} \cdot \frac{|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1}} \cdot \eta(x)dxdy \qquad (40)$$

It is easy to see that for every $\lambda > 0$ there exist $\delta = \delta(p, \lambda) > 0$ and $C = C(p, \lambda) > 0$ such that

$$\left|\frac{b^{p-1} - a^{p-1}}{b^p - a^p} - \frac{p-1}{pa}\right| \le C|b-a|$$
(41)

for every $a, b \ge \lambda$ satisfying $|b - a| < \delta$. We have that $|\nabla u_i^n(x)| = q(x, |\nabla u_{i+1}^n(x)|)$ on Γ_i^n (see (7)). Using the fact, that the function q(x, y) is increasing by y, and the function $\frac{1}{q(x, 0)}$ is concave, we can claim that q(x,y) is bounded from below, that is, there exists a constant $C_0 > 0$ such that

$$|\nabla u_i^n(x)| \ge C_0, \quad x \in \Gamma_i^n$$

From (5) and (41) we can conclude, that there exists a $\delta > 0$ such that if $|T^n| < \delta$ then on Γ_i^n

$$\left|\frac{|\nabla u_i^n(x)|^{p-1} - |\nabla u_{i+1}^n(x)|^{p-1}}{|\nabla u_i^n(x)|^p - |\nabla u_{i+1}^n(x)|^p} - \frac{p-1}{p|\nabla u_i^n(x)|}\right| \le C||\nabla u_i^n(x)| - |\nabla u_{i+1}^n(x)||.$$

Using the last inequality, we can get the following estimate:

$$\left| \int_{\Gamma_i^n} \frac{p \cdot f(x,y)}{p-1} \cdot \frac{|\nabla u_{i+1}^n(x)|^{p-1} - |\nabla u_i^n(x)|^{p-1}}{|\nabla u_{i+1}^n(x)|^p - |\nabla u_i^n(x)|^p} \cdot \eta(x) dx - \int_{\Gamma_i^n} \frac{f(x,y)}{|\nabla u_i^n(x)|} \cdot \eta(x) dx \right| \le \frac{1}{2} \sum_{i=1}^n \frac{1}{|\nabla u_i^n(x)|} \cdot \eta(x) dx + \frac{1}{|\nabla u_i^n(x)|}$$

$$\leq C_1 \cdot \sup_{x \in \Gamma_i^n \cap \mathrm{supp}\eta} f(x, y) \cdot \sup |\eta(x)| \cdot \int_{\Gamma_i^n} ||\nabla u_i^n(x)| - |\nabla u_{i+1}^n(x)|| dx$$
(42)

for $y \in [t_{i-1}^n, t_i^n]$, where C_1 depends only from p and C_0 . Using the inequality

$$||\nabla u_i^n(x)| - |\nabla u_{i+1}^n(x)|| \le \frac{||\nabla u_i^n(x)|^p - |\nabla u_{i+1}^n(x)|^p|}{\min(|\nabla u_i^n(x)|^{p-1}, |\nabla u_{i+1}^n(x)|^{p-1})} \le \frac{F(x, t_i^n) - F(x, t_{i-1}^n)}{(p-1) \cdot C_0^{p-1}}$$

from (42), we conclude that

$$\left| \int_{\Gamma_{i}^{n}} \frac{p \cdot f(x,y)}{p-1} \cdot \frac{|\nabla u_{i+1}^{n}(x)|^{p-1} - |\nabla u_{i}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p} - |\nabla u_{i}^{n}(x)|^{p}} \cdot \eta(x) dx - \int_{\Gamma_{i}^{n}} \frac{f(x,y)}{|\nabla u_{i}^{n}(x)|} \cdot \eta(x) dx \right| \leq \frac{1}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \left| \frac{|\nabla u_{i+1}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \cdot \eta(x) dx \right| \leq \frac{1}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \left| \frac{|\nabla u_{i+1}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \cdot \eta(x) dx \right| \leq \frac{1}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \left| \frac{|\nabla u_{i+1}^{n}(x)|^{p-1}}{|\nabla u_{i+1}^{n}(x)|^{p-1}} \cdot \eta(x) dx \right|$$

$$\leq C_{2}(y) \cdot \int_{\Gamma_{i}^{n} \cap \operatorname{supp}\eta} \left(\int_{t_{i-1}^{n}}^{t_{i}^{n}} f(x,t) dt \right) dx \leq C_{2}(y) \cdot |\Gamma_{i}^{n}| \cdot \max_{x \in \Gamma_{i}^{n} \cap \operatorname{supp}\eta} \int_{t_{i-1}^{n}}^{t_{i}^{n}} f(x,t) dt \leq \\ \leq C_{2}(y) \cdot |\partial \Omega_{2}| \cdot \int_{t_{i-1}^{n}}^{t_{i}^{n}} f(x_{0},t) dt$$

$$(43)$$

for some $x_0 \in \Gamma_i^n \cap \text{supp}\eta$, where $|\Gamma_i^n|$ denotes the length of Γ_i^n , and

$$C_2(y) := C_1 \cdot \sup_{x \in \Gamma_i^n \cap \text{supp}\eta} f(x, y) \cdot \sup |\eta(x)|.$$

Now from the compactness of the set $\Gamma_i^n \cap \operatorname{supp} \eta$ we can obtain, that for any small $\epsilon > 0$ we can choose $\delta_1 > 0$ such that for all T^n satisfying $|T^n| < \delta_1$ (η is fixed)

$$\int_{t_{i-1}^n}^{t_i^n} f(x_0, t)dt < \epsilon \tag{44}$$

for all $x_0 \in \Gamma_i^n \cap \operatorname{supp} \eta$.

Finally, from (40), (43) and (44) we obtain

$$\left| \int_{\Omega} |\nabla u^{n}(x)|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) dx + \sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{\Gamma_{i}^{n}} \frac{f(x,y)}{|\nabla u_{i}^{n}(x)|} \cdot \eta(x) dx dy \right| \leq \leq \epsilon \cdot |\partial \Omega_{2}| \cdot \int_{0}^{M} C_{2}(y) dy \leq C_{3} \cdot \epsilon,$$

$$(45)$$

where in the last inequality we have used the property 3) of the definition of the class \mathcal{F} . Just like in [LS] (see pp. 494-495) we can prove, that for small $|T^n|$

$$\left| \int_{\Gamma_i^n} \frac{f(x,y)}{|\nabla u_i^n(x)|} \cdot \eta(x) dx - \int_{u^n(x)=y} \frac{f(x,y)}{|\nabla u^n(x)|} \cdot \eta(x) dx \right| \le \epsilon, \quad y \in [t_{i-1}^n, t_i^n]$$
(46)

Combining (45) and (46), we obtain

$$\int_{\Omega} |\nabla u^{n}(x)|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) dx = -\sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{u^{n}(x)=y} \frac{f(x,y)\eta(x)}{|\nabla u^{n}(x)|} dx dy + o(1) = -\int_{\Omega}^{M} \int_{u^{n}(x)=y} \frac{f(x,y)\eta(x)}{|\nabla u^{n}(x)|} dx dy + o(1) = -\int_{\Omega}^{M} f(x,u^{n}(x)) \cdot \eta(x) dx + o(1).$$
(47)

Since f(x, y) is uniformly continuous in $\operatorname{supp} \eta \times [0, M]$, we can claim that

$$\left|\int_{\Omega} f(x, u^{n}(x)) \cdot \eta(x) dx - \int_{\Omega} f(x, u(x)) \cdot \eta(x) dx\right| \leq \epsilon$$

for $n > n_0$. For the first integral in (47), we have, due to local-uniform Lipschitz estimates of u^n , that, for a subsequence, $|\nabla u^n|^{p-2}\nabla u^n$ converges weakly (in $L^{p/(p-1)}$) to $|\nabla u|^{p-2}\nabla u$.

5 A uniqueness result

Theorem 5.1 Let $u(x) : \overline{\Omega} \to \mathbb{R}$ denote a classical solution of the Dirichlet problem (1) with $f \ge 0$, and let $v(x) : \overline{\Omega} \to \mathbb{R}$ denote a classical solution of the same Dirichlet problem (1) with f replaced by a function $g \ge 0$ (we assume 0 < u, v < M, from which it follows that $|\nabla u|, |\nabla v| > 0$, both in Ω). Then $u \le v$ in Ω provided that $0 < g(x, y) \le f(x, y)$ and that $g(x, y) < t^p g(tx, y)$ for all $x \in \Omega$, 0 < y < M, and t > 1 for which the inequality is meaningfull.

Proof. (See [A].) We set $v_t(x) = v(x/t)$ in $\Omega_t = t \cdot \Omega$ for any t > 0, observing that $\Delta_p v_t = (1/t)^p g(x/t, v_t(x))$ in Ω_t by change of variables. It is easy to see that $v_t > u$ (resp. $v_t < u$) in $\Omega \cap \Omega_t$ for any sufficiently large (small) t > 0. Since v_t depends continuously on t, we can choose t > 0 to be minimum subject to the requirement that $v_\tau \ge u$ in $\Omega \cap \Omega_\tau$ for all $\tau \ge t$. We claim that $t \le 1$. Assuming that t > 1, it is easy to see that $v_t > u$ on $\partial(\Omega \cap \Omega_t)$ and that $v_t(x_0) = u(x_0)$ for some point $x_0 \in (\Omega \cap \Omega_t)$. Thus $\Delta_p v_t(x_0) \ge \Delta_p u(x_0)$, and we conclude using the final assumption on g that

$$g(x_0, y_0) > (1/t)^p g(x_0/t, v_t(x_0)) = \Delta_p v_t(x_0) \ge \Delta_u(x_0) = f(x_0, u(x_0)) = f(x_0, y_0),$$

where $y_0 = u(x_0) = v_t(x_0)$. However, this violates the assumption that $g \leq f$.

References

- [A] A. ACKER, On the uniqueness, monotonicity, starlikeness, and convexity of solutions for a nonlinear boundary value problem in elliptic pde's, Nonlinear Analysis, Theory, Methods and Applications, v. 22, no. 6, pp. 697-705.
- [AHPS] A.ACKER, A.HENROT, M. POGHOSYAN, H. SHAHGHOLIAN, The multi-layer free boundary problem for the *p*-Laplacian in convex domains. Interfaces Free Bound. 6 (2004), no. 1, 81–103.
- [DPS] D. DANIELLI, A. PETROSYAN, H. SHAHGHOLIAN, A singular perturbation problem for the *p*-Laplace operator. Indiana Univ. Math. J. 52 (2003), no. 2, 457–476.
- [LS] P. LAURENCE, E. STREDULINSKY, Existence of regular solutions with convex level sets for semilinear elliptic equations with nonmonotone L^1 nonlinearities. II. Passage to the limit. Indiana Univ. Math. J., v. 39, no. 2, 1990, pp. 485–498.
- [MS] R. MONNEAU, H. SHAHGHOLIAN, Non-convexity of level sets in convex rings for semilinear elliptic problems. (Indian Univ. J., To appear.)