Convex configurations for solutions to semilinear elliptic problems in convex rings

Andrew ACKER
Dept. of Mathematics and Statistics
Wichita State University
Wichita, KS 67260-0033 USA
e-mail: acker@math.wichita.edu

Michael POGHOSYAN *
Department of Mathematics
Yerevan State University
Alex Manoogian 1, 375025 ,
Yerevan, ARMENIA
e-mail: michael@ysu.am

Henrik SHAHGHOLIAN ${ }^{\dagger}$
Department of Mathematics
Royal Institute of Technology
10044 Stockholm SWEDEN
e-mail: henriksh@math.kth.se

January 29, 2005

Abstract

For a given convex ring $\Omega=\Omega_{2} \backslash \bar{\Omega}_{1}$ and an L^{1} function $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}_{+}$we show, under mild assumptions on f, that there exists a solution (in the weak sense) to $$
\left\{\begin{array}{lll} \Delta_{p} u=f(x, u) & \text { in } & \Omega \\ u=0 & \text { on } & \partial \Omega_{2} \\ u=M & \text { on } & \partial \Omega_{1}, \end{array}\right.
$$ with $\{x \in \Omega: u(x)>s\} \cup \Omega_{1}$ convex, for all $s \in(0, M)$.

\section*{1 Introduction and statement of the problem}

1.1 The mathematical setting

We start with the mathematical setting of the problem. Let us be given two convex domains $\Omega_{1} \subset \subset \Omega_{2} \subset \mathbb{R}^{N}$ and the function $f(x, y)$. We study the following boundary value problem:

$$
\begin{cases}\Delta_{p} u=f(x, u) & \text { in } \quad \Omega:=\Omega_{2} \backslash \bar{\Omega}_{1} \tag{1}\\ u=0 & \text { on } \partial \Omega_{2} \\ u=M & \text { on } \partial \Omega_{1},\end{cases}
$$

[^0]where M is a given constant and $\Delta_{p}, 1<p<\infty$ is the p-Laplace operator defined by
$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

The differential equation in (1) will be understood in the weak sense, i.e. for every $\eta \in C_{0}^{\infty}(\Omega)$

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla \eta(x) d x=-\int_{\Omega} f(x, u(x)) \cdot \eta(x) d x \tag{2}
\end{equation*}
$$

The differential equation in problem (1) is the Euler equation for the following minimization problem:

$$
\left\{\begin{array}{l}
\int_{\Omega}\left(|\nabla u(x)|^{p}+F(x, u(x))\right) d x \rightarrow \inf \tag{3}\\
u \in K:=\left\{v \in W^{1, p}(\Omega): u=0 \quad \text { on } \quad \partial \Omega_{2}, \quad u=M \quad \text { on } \quad \partial \Omega_{1}\right\}
\end{array}\right.
$$

where

$$
F(x, t):=p \cdot \int_{0}^{t} f(x, z) d z
$$

Our objective is to prove the existence of a solution, with convex level sets, to problem (1) (with some restrictions on the right hand side of the equation, of course). For our proof, we require convex solutions to the multi-layer free-boundary problem, which occurs in fluid dynamics (see [AHPS]). Our solutions are obtained by passing to the limit as the number oflayers (and free boundaries) becomes infinite.

This approach was realized in [LS], where those authors have proved the existence of the weak solution with convex level lines (in \mathbb{R}^{2}) of the following problem:

$$
\begin{cases}\Delta u=f(u) & \text { in } \quad \Omega:=\Omega_{2} \backslash \bar{\Omega}_{1} \tag{4}\\ u=0 & \text { on } \quad \partial \Omega_{2} \\ u=M & \text { on } \quad \partial \Omega_{1}\end{cases}
$$

where Ω_{1} and Ω_{2} are as above and the function f satisfies

$$
f \in L^{1}(-\infty, \infty), \quad f(x) \geq 0, \quad \text { and } \quad f(x)=0 \quad \text { on } \quad(-\infty, 0)
$$

It should be added that recently, the third author and R. Monneau [MS] have constructed a solution u, with non-convex level sets, to the above problem with $f \leq 0$ and smooth.

Definition 1.1 (The class of functions \mathcal{F}) We will always assume, unless otherwise stated, that the function $f(x, y)$ on the right hand side of (1) belongs to the class \mathcal{F} of functions having the following four properties:
$(\mathcal{F} 1): f(x, y): \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(x, y) \geq 0$ for every $(x, y) \in \Omega \times \mathbb{R}$.
$(\mathcal{F} 2):$ For every $\alpha, \beta \in[0, M]$ with $\alpha<\beta$, the function:

$$
g_{\alpha, \beta}(x):=\left(\int_{\alpha}^{\beta} f(x, y) d y\right)^{-\frac{1}{p}}
$$

is concave in Ω.
$(\mathcal{F} 3):$ There exists a number C, s.t.

$$
\int_{0}^{M}\left(\sup _{x \in \Omega} f(x, y)\right) d y \leq C
$$

$(\mathcal{F} 4):$ For $y \rightarrow 0+$, we have

$$
y^{1-p}\left(\sup _{x \in \Omega} f(x, y)\right) \rightarrow 0
$$

1.2 Main result

The body of this paper is devoted to the proof of the following result:
Theorem 1.2 Let $M>0$ be a given constant, and let $f(x, y) \in \mathcal{F}$. Then there exists a weak solution $u(x)$ of Problem (1) with convex level sets, for which

$$
0 \leq u(x) \leq M, \quad x \in \Omega
$$

In addition, if $f(x, y)$ is non-decreasing function with respect to its second argument, then the solution is unique.

We remark that an alternate uniqueness result not requiring the monotonicity of f relative to y appears in Section 5 .

The continuity of $f(x, y)$ and the last two assumptions in Definition 1.1 of the class \mathcal{F} are actually not critical to the validity of our convex existence results, although they facilitate the proof. In fact Theorem 1.2 directly generalizes by an approximation argument (see [DPS], Section 3) to the following result:

Theorem 1.3 The assertion of Theorem 1.2 continues to hold when $f(x, y) \in \mathcal{F}^{\prime}$, where \mathcal{F}^{\prime} denotes the closure of \mathcal{F} in E^{1}.

We observe that \mathcal{F}^{\prime} consists of the L^{1} functions $f(x, y): \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ with properties $(\mathcal{F} 1)$ and $(\mathcal{F} 2)$.

Example. The above existence theory applies to any function of the form

$$
f(x, y)=\sum_{i=1}^{n} f_{i}(x) \phi_{i}(y) \in L^{1}(\Omega)
$$

where the functions $f_{i}(x): \Omega \rightarrow \mathbb{R}, \phi_{i}(y): \mathbb{R} \rightarrow \mathbb{R}$ are all non-negative, and $\left(f_{i}(x)\right)^{-\frac{1}{p}}$ are concave in Ω.

To show this, it suffices to show that if g, h are non-negative \mathcal{L}^{1} functions and satisfy the concavity condition \mathcal{F}_{2}, then so does $f=(g+h)$. Observe that a sufficiently regular function g satisfies the concavity condition \mathcal{F}_{2} if and only if $g g^{\prime \prime} \geq C\left(g^{\prime}\right)^{2}$, where $C=(1+(1 / p))$ and g^{\prime} and $g^{\prime \prime}$ refer to 1st and 2 nd order directional derivatives at any point and in any direction. Thus, if f, g are sufficiently regular, then

$$
\begin{aligned}
f f^{\prime \prime} & =(g+h)\left(g^{\prime \prime}+h^{\prime \prime}\right)=g g^{\prime \prime}+g h^{\prime \prime}+h g^{\prime \prime}+h h^{\prime \prime}=(1+(h / g)) g g^{\prime \prime}+(1+(g / h)) h h^{\prime \prime} \\
& \geq C\left((1+(h / g))\left(g^{\prime}\right)^{2}+(1+(g / h))\left(h^{\prime}\right)^{2} \geq C\left(\left(g^{\prime}\right)^{2}+2 g^{\prime} h^{\prime}+\left(h^{\prime}\right)^{2}\right)=C\left(f^{\prime}\right)^{2},\right.
\end{aligned}
$$

where we have used the fact that $2 f^{\prime} g^{\prime} \leq(h / g)\left(g^{\prime}\right)^{2}+(g / h)\left(h^{\prime}\right)^{2}$. Now an approximation argument gives the result for non-negative L^{1}-functions.

2 The multilayer free boundary problem

We start with the following multilayer free boundary problem.
Let $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[0, M]$, i.e. $0=t_{0}<t_{1}<\ldots<t_{n}=M$, and let $\tau_{i}=M-t_{i}$, so that $M=\tau_{0}>\tau_{1}>\cdots>\tau_{n}=0$. Also let

$$
F(x, t):=p \cdot \int_{0}^{t} f(x, z) d z
$$

We consider the following $(n-1)$-layer problem:

Problem 2.1 Find convex domains $K_{1}, K_{2}, \ldots, K_{n-1}$ such that

$$
K_{0} \subset \subset K_{1} \subset \subset K_{2} \subset \subset \ldots . \subset \subset K_{n-1} \subset \subset K_{n},
$$

where $K_{0}:=\Omega_{1}, K_{n}:=\Omega_{2}$, with the property that the p-capacitary potentials u_{i} for each annular convex region $K_{i} \backslash \bar{K}_{i-1}$ satisfies a nonlinear joining Bernoulli condition

$$
\begin{equation*}
\left|\nabla u_{i}(x)\right|^{p}-\left|\nabla u_{i+1}(x)\right|^{p}=\frac{1}{p-1}\left[F\left(x, \tau_{i-1}\right)-F\left(x, \tau_{i}\right)\right] \quad \text { on } \partial K_{i}, \quad i=1, \ldots, n-1 \tag{5}
\end{equation*}
$$

By p-capacitary potential of the annular region $K_{i} \backslash \bar{K}_{i-1}$ we mean the solution of the following Dirichlet problem

$$
\begin{cases}\Delta_{p} u_{i}=0 & \text { in } \tag{6}\\ u_{i}=K_{i} \backslash \bar{K}_{i-1} \\ u_{i-1} & \text { on } \quad \partial K_{i-1} \\ u_{i}=\tau_{i} & \text { on } \quad \partial K_{i} .\end{cases}
$$

Theorem 2.2 For every partition T of $[0, M]$ and every function $f(x, y) \in \mathcal{F}$ Problem 2.1 has a (Lipschitz) solution, where the joining condition (5) is satisfied strongly.

Remark We will define the function $u^{T}(x): \bar{\Omega} \rightarrow \mathbb{R}$ by

$$
u^{T}(x):=u_{i}(x), \quad x \in \bar{K}_{i} \backslash K_{i-1} .
$$

Proof of Theorem 2.2

We only need to verify that if $f(x, y) \in \mathcal{F}$ and $\alpha, \beta \in[0, M]$ with $\alpha<\beta$, then the function $q(x, y)$, defined by

$$
\begin{equation*}
q(x, y):=\left(\frac{1}{p-1} \int_{\alpha}^{\beta} f(x, z) d z+y^{p}\right)^{\frac{1}{p}} \tag{7}
\end{equation*}
$$

satisfies conditions (A1)-(A4) of Definition 2.3 in the paper [AHPS], which are the following:
(A1): q is continuous and $\exists c_{0}>0$ such that $q(x, 0) \geq c_{0}$ for all $x \in \Omega$,
(A2): q is non-decreasing with respect to second argument,
(A3): q satisfies the following concavity property: $x \mapsto \frac{1}{q(x, h(x))} \quad$ is concave whenever h is a given function such that $1 / h$ is concave, and
(A4): for any given value $y_{0}>0$, there exist constants $0<C_{1}<C_{2}$ such that $C_{1} \leq$ $(q(x, y) / y) \leq C_{2}$, uniformly for all $x \in \Omega$ and all $y \geq y_{0}$.

The conditions (A1) and (A2) are obvious, the condition (A3) can be easily verified if we use Lemma 2.1 of the above mentioned paper and the concavity property $(\mathcal{F} 2)$ of $f \in \mathcal{F}$. The last condition (A4) follows from the fact that

$$
\frac{q(x, y)}{y} \rightarrow 1, \quad y \rightarrow+\infty \quad \text { uniformly in } \Omega
$$

3 Passage To Limit

For a partition $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ we denote $|T|:=\max \left\{t_{i+1}-t_{i}: i=0,1, \ldots, n-1\right\}$.

Theorem 3.1 For a given convex annular domain $\Omega:=\Omega_{2} \backslash \bar{\Omega}_{1}$, there exist a continuous, (strictly) increasing function $\varphi(s):[0, \infty) \rightarrow \mathbb{R}$ with $\varphi(0)=0$, and a strictly-positive function $P(x): \Omega \rightarrow \mathbb{R}$, such that for any partition T of $[0, M]$ with $|T|$ sufficiently small, and any solution $u^{T}(x)$ of the multilayer free boundary problem (2.1), corresponding to T, we have

$$
\begin{equation*}
\left|\nabla u^{T}(x)\right| \leq \frac{\varphi\left(\operatorname{dist}\left(x, \partial \Omega_{1}\right)\right)+|T|}{\operatorname{dist}\left(x, \partial \Omega_{1}\right)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla u^{T}(x)\right| \geq(P(x)-|T|) \operatorname{dist}\left(x, \partial \Omega_{2}\right) \tag{9}
\end{equation*}
$$

both wherever $\nabla u^{T}(x)$ exists.
Proof. We break the proof into the following 5 steps.
Step 1. (Estimates for a family of multilayer subsolutions) Let the function $V(x)$ solve the Dirichlet problem

$$
\left\{\begin{array}{lll}
\Delta_{p} V(x)=0 & \text { in } \quad \Omega \tag{10}\\
V(x)=0 & \text { on } & \partial \Omega_{1} \\
V(x)=1 & \text { on } & \partial \Omega_{2}
\end{array}\right.
$$

For any $\rho \in(0,1)$, we define

$$
\begin{equation*}
V_{\rho}(x):=\frac{V(x)}{\rho} \quad \text { and } \quad \Omega_{\rho}:=\{x \in \Omega: V(x)<\rho\} \tag{11}
\end{equation*}
$$

observing that $V_{\rho}(x)$ is the p-capacitary potential in the domain Ω_{ρ}. Let $T=\left\{t_{0}, t_{1}, \cdots, t_{n}\right\}$ be a given partition of $[0, M]$, and let $A=\left\{\alpha_{0}, \alpha_{1}, \ldots \alpha_{n}\right\}, 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}=1$, denote a partition of $[0,1]$ which is to be determined. In terms of $\rho \in(0,1)$ and A, we define the convex domains $\omega_{i}:=\Omega_{1} \cup\left\{x \in \bar{\Omega}_{\rho}: V_{\rho}(x)<\alpha_{i}\right\}, i=0, \cdots, n$. Let the functions $U_{i}(x), i=1, \cdots, n$, solve the Dirichlet problems:

$$
\left\{\begin{array}{lll}
\Delta_{p} U_{i}(x)=0 & \text { in } & \omega_{i} \backslash \bar{\omega}_{i-1} \tag{12}\\
U_{i}(x)=\tau_{i-1} & \text { on } \quad \partial \omega_{i-1} \\
U_{i}(x)=\tau_{i} & \text { on } \quad \partial \omega_{i}
\end{array}\right.
$$

Then it is clear that

$$
\begin{equation*}
U_{i}(x)=\tau_{i-1}+\frac{\tau_{i}-\tau_{i-1}}{\alpha_{i}-\alpha_{i-1}} \cdot\left(V_{\rho}(x)-\alpha_{i-1}\right), \quad i=1, \cdots, n \tag{13}
\end{equation*}
$$

Now $\left(\omega_{1}, \cdots, \omega_{n-1}\right)$ will be a subsolution of the multilayer problem relative to the annular domain Ω_{ρ} and corresponding to the given partition T (see [AHPS], section 4.2.2), if the partition A is chosen such that

$$
\begin{equation*}
\left|\nabla U_{i}(x)\right|^{p} \geq\left|\nabla U_{i+1}(x)\right|^{p}+\frac{F\left(x, \tau_{i-1}\right)-F\left(x, \tau_{i}\right)}{p-1}, \quad x \in \partial \omega_{i} \tag{14}
\end{equation*}
$$

for $i=1, \cdots, n-1$. Set

$$
\hat{\delta}_{i}:=t_{i}-t_{i-1}=\tau_{i-1}-\tau_{i}>0 \quad \text { and } \quad \delta_{i}:=\alpha_{i}-\alpha_{i-1}>0
$$

for $i=1, \cdots, n$. Then we must have

$$
\begin{array}{r}
\hat{\delta}_{1}+\cdots+\hat{\delta}_{n}=M \\
\delta_{1}+\cdots+\delta_{n}=1 \tag{16}
\end{array}
$$

By (13) and (14), $\left(\omega_{1}, \cdots, \omega_{n-1}\right)$ is a subsolution if

$$
\begin{equation*}
\left(\frac{\hat{\delta}_{i}}{\delta_{i}}\right)^{p} \geq\left(\frac{\hat{\delta}_{i+1}}{\delta_{i+1}}\right)^{p}+\frac{F\left(x, \tau_{i-1}\right)-F\left(x, \tau_{i}\right)}{(p-1) \cdot\left|\nabla V_{\rho}(x)\right|^{p}}, \quad x \in \partial \omega_{i} \tag{17}
\end{equation*}
$$

for $i=1, \cdots, n-1$, where $\left(1 /\left|\nabla V_{\rho}(x)\right|\right)$ is uniformly bounded from above in Ω_{ρ}. It is suffices to require for a fixed value $\varepsilon \geq 0$ that

$$
\begin{equation*}
\left(\frac{\hat{\delta}_{i}}{\delta_{i}}\right)^{p} \geq\left(\frac{\hat{\delta}_{i+1}}{\delta_{i+1}}\right)^{p}+\Delta_{i}+\varepsilon \tag{18}
\end{equation*}
$$

for $i=1, \cdots, n-1$, where

$$
\begin{equation*}
\Delta_{i}:=C_{0} \cdot \sup _{x \in \Omega}\left(F\left(x, \tau_{i-1}\right)-F\left(x, \tau_{i}\right)\right) \tag{19}
\end{equation*}
$$

and $C_{0}=C_{0}(\rho)=\sup _{x \in \Omega_{\rho}}\left(1 /\left((p-1)\left|\nabla V_{\rho}(x)\right|^{p}\right)\right)$. Let the values $\mu_{i}, i=1, \cdots, n$ be chosen such that $\mu_{i}-\mu_{i+1}=\Delta_{i}+\varepsilon \geq 0, i=1, \cdots, n-1$, and $\mu_{n}=0$. Then

$$
\begin{equation*}
0=\mu_{n} \leq \mu_{n-1} \leq \cdots \leq \mu_{1}=C_{T}+(n-1) \varepsilon \leq C^{*}+(n-1) \varepsilon \tag{20}
\end{equation*}
$$

where $C_{T}:=\sum_{i=1}^{n-1} \Delta_{i}$ and $C^{*}=C^{*}(\rho)=p \cdot C_{0}(\rho) \int_{0}^{M}\left(\sup _{x \in \Omega} f(x, y)\right) d y$ (due to Assumption $(\mathcal{F} 3)$. To define a subsolution $\left(\omega_{1}, \cdots, \omega_{n-1}\right)$ satisfying (17), it suffices to choose

$$
\begin{equation*}
\delta_{i}=\hat{\delta}_{i} \cdot\left(\mu_{i}+\lambda\right)^{-1 / p} \quad\left(\Longleftrightarrow\left(\frac{\hat{\delta}_{i}}{\delta_{i}}\right)^{p}=\mu_{i}+\lambda\right) \tag{21}
\end{equation*}
$$

for $i=1, \cdots, n$, where $\lambda>0$ is a constant determined by (15). Namely, the continuous function $\psi(s):=\sum_{i=1}^{n} \hat{\delta}_{i} \cdot\left(\mu_{i}+s\right)^{-1 / p}$ is such that $\psi^{\prime}(s)<0$ for all $s>0, \psi(s) \rightarrow \infty$ as $s \downarrow 0$, and $\psi(s) \rightarrow 0$ as $s \rightarrow \infty$. Therefore, there exists a unique value $\lambda>0$ such that $\psi(\lambda)=1$. Assuming (15), we have

$$
\begin{equation*}
1=\psi(\lambda)=\sum_{i=1}^{n} \hat{\delta}_{i} \cdot\left(\mu_{i}+\lambda\right)^{-1 / p} \leq \sum_{i=1}^{n} \hat{\delta}_{i} \cdot \lambda^{-1 / p}=\frac{M}{\lambda^{1 / p}} \tag{22}
\end{equation*}
$$

from which it follows that $\lambda \leq M^{p}$.
Now let us consider the case $\epsilon=0$. Due to $\operatorname{Property}(\mathcal{F} 4)$ of f, we can choose a function $z(y)$ such that $t^{1-p} f(x, t) \leq z(y)$ for all $x \in \Omega$ and $0<t \leq y$, and such that $z(y) \rightarrow 0+$ as $y \rightarrow 0+$. For any $m=1, \cdots, n$, we have $\Delta_{i} \leq C_{0} \eta^{p-1} z(\eta)\left(\tau_{i-1}-\tau_{i}\right)$ for all $i=m+1, \cdots, n-1$, where $\eta=\tau_{m}$. Thus

$$
\begin{equation*}
\mu_{k}=\sum_{i=k}^{n-1} \Delta_{i} \leq C_{0} \eta^{p-1} z(\eta) \sum_{i=k}^{n-1}\left(\tau_{i-1}-\tau_{i}\right) \leq C_{0} \eta^{p-1} z(\eta)\left(\tau_{k-1}-\tau_{n-1}\right) \leq C_{0} \eta^{p} z(\eta) \tag{23}
\end{equation*}
$$

for $k=m+1, \cdots, n-1$, with $\eta=\tau_{m}$. Thus

$$
\begin{equation*}
1 \geq \sum_{i=m+1}^{n} \frac{\hat{\delta}_{i}}{\left(\lambda+\mu_{i}\right)^{1 / p}} \geq \sum_{i=m+1}^{n} \frac{\hat{\delta}_{i}}{\left(\lambda+C_{0} \eta^{p} z(\eta)\right)^{1 / p}}=\frac{\eta}{\left(\lambda+C_{0} \eta^{p} z(\eta)\right)^{1 / p}} \tag{24}
\end{equation*}
$$

Thus $\lambda \geq \eta^{p}\left(1-C_{0} z(\eta)\right)$, from which it follows that $\lambda \geq(1 / 2) \eta^{p}$, provided $\eta>0$ is small enough so that $2 C_{0} z(\eta) \leq 1$. By (20), (21), and the fact that $(1 / 2) \eta^{p} \leq \lambda \leq M^{p}$, we have

$$
\begin{equation*}
\frac{\eta}{2^{1 / p}} \leq \lambda^{1 / p} \leq \frac{\hat{\delta}_{i}}{\delta_{i}}=\left(\mu_{i}+\lambda\right)^{1 / p} \leq\left(C_{T}+(n-1) \varepsilon+\lambda\right)^{1 / p} \leq\left(C^{*}+(n-1) \varepsilon+M^{p}\right)^{1 / p} \tag{25}
\end{equation*}
$$

for all $i=1, \cdots, n$, provided that $|T|$ is sufficiently small and $2 C_{0} z(\eta) \leq 1$.
Step 2. (Inner barriers for multilayer solutions) For any $\rho \in(0,1)$ and partition $T=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[0, M]$, we let $\left(\omega_{1}(\rho), \cdots, \omega_{n-1}(\rho)\right)$ denote the explicit subsolution
constructed in Step 1 for the n-layer problem (Problem 2.1) corresponding to the partition T, the annular domain Ω_{ρ}, the function V_{ρ}, and the value $\varepsilon=0$. Let (K_{1}, \cdots, K_{n-1}) denote any (fixed) solution of the n-layer problem in the original domain Ω corresponding to the same partition T. Then

$$
\begin{equation*}
\left(\omega_{1}(\rho), \cdots, \omega_{n-1}(\rho)\right) \subset\left(K_{1}, \cdots, K_{n-1}\right) \tag{26}
\end{equation*}
$$

for any $\rho \in(0,1)$, where " \subset " is interpreted componentwise.
For proof of this claim, let $\left(\omega_{1}(\rho, \varepsilon), \cdots, \omega_{n-1}(\rho, \varepsilon)\right)$ denote the (strict) subsolution constructed in Step 1 corresponding to the partition T, the annular domain $\Omega_{\rho}, \rho \in$ $(0,1)$, and a small value $\varepsilon>0$. There is an $r \in(0,1)$ so small that

$$
\left(\omega_{1}(r, \varepsilon), \cdots, \omega_{n-1}(r, \varepsilon)\right) \subset\left(K_{1}, \cdots, K_{n-1}\right)
$$

for all small $\varepsilon>0$. We assert that the same inequality holds for all $r \in(0,1)$ and all sufficiently small $\varepsilon>0$. Clearly, the domains $\omega_{i}(r, \varepsilon)$ depend continuously on $r \in(0,1)$ and $\varepsilon \geq 0$. Therefore, if this claim is false, then for some small $\varepsilon>0$, there is a largest value $\rho=\rho(\varepsilon) \in(0,1)$ such that $\left(\omega_{1}(r, \varepsilon), \cdots, \omega_{n-1}(r, \varepsilon)\right) \subset\left(K_{1}, \cdots, K_{n-1}\right)$ for all $r \in(0, \rho)$. Then $\left(\omega_{1}(\rho, \varepsilon), \cdots, \omega_{n-1}(\rho, \varepsilon)\right) \subset\left(K_{1}, \cdots, K_{n-1}\right)$ by continuity, and there exists a point $x_{0} \in \partial \omega_{i}(\rho, \varepsilon) \cap \partial K_{i}$ for some $i \in\{1, \cdots, n-1\}$. This leads to the following contradiction: By maximum and comparison principles for p-harmonic functions, we have

$$
\tau_{j} \leq u_{j}(x) \leq U_{j}(x) \leq \tau_{j-1}
$$

in $\omega_{j}(\rho, \varepsilon) \backslash K_{j-1}$ for $j=i, i+1$, where $u_{j}\left(\operatorname{resp} U_{j}\right)$ solves the Dirichlet problem (6) (resp. (12)) with $i:=j$. Thus

$$
\left|\nabla U_{i}\left(x_{0}\right)\right| \leq\left|\nabla u_{i}\left(x_{0}\right)\right| \quad \text { and } \quad\left|\nabla U_{i+1}\left(x_{0}\right)\right| \geq\left|u_{i+1}\left(x_{0}\right)\right|
$$

at $x_{0} \in \partial \omega_{i}(\rho, \varepsilon) \cap \partial K_{i}$, contradicting the fact that $\left(K_{1}, \cdots, K_{n-1}\right)$ is a classical solution while $\left(\omega_{1}(\rho, \varepsilon), \cdots, \omega_{n-1}(\rho, \varepsilon)\right)$ is a strict C^{2}-subsoluton. Finally, our assertion follows in the limit as $\varepsilon \rightarrow 0+$.
Step 3. (Estimates for multilayer inner solutions.) Let u^{T} correspond to any solution (K_{1}, \cdots, K_{n-1}) of the n-layer problem (Problem 2.1) in Ω, corresponding to the partition T. Then for any $\rho \in(0,1)$, there exist positive constants $A=A(\rho), B=B(\rho)$ (independent of the particular partition) such that

$$
\begin{gather*}
M-B \cdot V_{\rho}(x)-|T| \leq u^{T}(x) \leq M \quad \text { in } \quad \Omega_{\rho} \tag{27}\\
A \cdot W_{\rho}(x)-|T| \leq u^{T}(x) \leq M \quad \text { in } \quad \Omega_{\rho} \tag{28}
\end{gather*}
$$

where we define $W_{\rho}(x):=1-V_{\rho}(x)$.
Proof: Although our development of the multilayer subsolutions in Step 1 depends on the partition T, the estimate (25) is independent of T (provided only that $|T|$ is sufficiently small to permit a suitable choice of η in (25)). Thus, we have

$$
\begin{equation*}
A \cdot \delta_{i} \leq \hat{\delta}_{i} \leq B \cdot \delta_{i} \tag{29}
\end{equation*}
$$

for $i=1, \cdots, n$, independent of T (with $|T|$ sufficiently small), where $A=A(\rho)>0$ and $B=B(\rho):=\left(C^{*}(\rho)+M^{p}\right)^{1 / p}$ are independent of T (as follows from (25) with $\varepsilon=0$). By summation of (29), we have

$$
\begin{gather*}
\tau_{m}=\tau_{m}-\tau_{n}=\sum_{i=m+1}^{n} \hat{\delta}_{i} \geq A \cdot \sum_{i=m+1}^{n} \delta_{i}=A \cdot\left(1-\alpha_{m}\right) \tag{30}\\
M-\tau_{m}=t_{m}=\sum_{i=1}^{m} \hat{\delta_{i}} \leq B \cdot \sum_{i=1}^{m} \delta_{i} \leq B \cdot \alpha_{m} \tag{31}
\end{gather*}
$$

both for any $m \in\{1,2, \cdots, n\}$. It follows that:

$$
\begin{align*}
& |T|+\inf \left\{u^{T}(x): x \in K_{m+1} \backslash \Omega_{1}\right\} \geq \inf \left\{u^{T}(x): x \in K_{m} \backslash \Omega_{1}\right\} \geq u^{T}\left(\partial K_{m}\right) \tag{32}\\
= & U^{T}\left(\partial \omega_{m}\right)=\tau_{m} \geq A \cdot\left(1-\alpha_{m}\right)=A \cdot W_{\rho}\left(\partial \omega_{m}\right) \geq A \cdot \sup \left\{W_{\rho}(x): x \in \Omega_{2, \rho} \backslash K_{m}\right\}, \\
& |T|+\inf \left\{u^{T}(x): x \in K_{m+1} \backslash \Omega_{1}\right\} \geq \inf \left\{u^{T}(x): x \in K_{m} \backslash \Omega_{1}\right\}=u^{T}\left(\partial K_{m}\right) \tag{33}\\
= & U^{T}\left(\partial \omega_{m}\right)=\tau_{m} \geq M-B \cdot \alpha_{m}=M-B \cdot V_{\rho}\left(\partial \omega_{m}\right) \geq M-B \cdot \inf \left\{V_{\rho}(x): x \in \Omega_{2, \rho} \backslash K_{m}\right\},
\end{align*}
$$

both for any partition T of $[0, M]$ and any $m \in\{0, \cdots, n-1\}$, where $\Omega_{2, \rho}=\operatorname{Cl}\left(\Omega_{1}\right) \cup \Omega_{\rho}$. Therefore, the asserted estimates (27) and (28) both hold relative to $\Omega_{\rho} \cap\left(K_{m+1} \backslash K_{m}\right)$ for each $m \in\{1, \cdots, n-1\}$.
Step 4. Proof of Theorem 3.1, eq. (8). It is easily seen, using the continuity of the function $V_{\rho}($ for any fixed $\rho \in(0,1))$, that $B(\rho) \cdot V_{\rho}(x) \leq \phi\left(\operatorname{dist}\left(x, \partial \Omega_{1}\right)\right)$ relative to Ω_{ρ}, where $\varphi(s):[0, \infty) \rightarrow \mathbb{R}$ denotes a suitable continuous, monotone increasing function such that $\varphi(0)=0$. In view of this, it follows from Step 3 that

$$
\begin{equation*}
M \geq u^{T}(x) \geq M-B \cdot V_{\rho}(x)-|T| \geq M-\varphi\left(\operatorname{dist}\left(x, \partial \Omega_{1}\right)\right)-|T| \tag{34}
\end{equation*}
$$

for any partition T of $[0, M]$, any solution u^{T} (corresponding to T) in Ω, and any $x \in \Omega_{\rho}$. By enlarging ϕ if necessary, we can assume (34) holds for all $x \in \Omega$. Therefore

$$
\begin{gather*}
\left|\nabla u^{T}(x)\right| \cdot \operatorname{dist}\left(x, \partial \Omega_{1}\right) \leq\left|\nabla u^{T}(x)\right| \cdot|\gamma| \leq \int_{\gamma}\left|\nabla u^{T}(y)\right| d s \tag{35}\\
\leq M-u^{T}(x) \leq \varphi\left(\operatorname{dist}\left(x, \partial \Omega_{1}\right)\right)+|T|
\end{gather*}
$$

for any partition T of $[0, M]$, any solution u^{T} of Problem 2.1 in Ω corresponding to T, and any point $x \in \Omega \backslash\left(\partial K_{1} \cup \cdots \cup \partial K_{n-1}\right)$, where γ is the arc of steepest ascent of u^{T} joining x to $\partial \Omega_{1}$. Here, we have used the fact that $\left|\nabla u^{T}(x)\right|$ is weakly increasing (with increasing $\left.u^{T}(x)\right)$ on γ. The assertion (8) follows.
Step 5. Proof of Theorem 3.1, eq. (9). In view of (28), we have

$$
\begin{equation*}
u^{T}(x)+|T| \geq P(x):=\sup \left\{A(\rho) W_{\rho}(x): \rho \in(0,1), x \in \Omega_{\rho}\right\}>0 \tag{36}
\end{equation*}
$$

for any $x \in \Omega$. Therefore

$$
\begin{gather*}
\left|\nabla u^{T}(x)\right| \geq \int_{\gamma}\left|\nabla u^{T}(y)\right| d s=u^{T}(x)|\gamma| \geq u^{T}(x) \operatorname{dist}\left(x, \partial \Omega_{2}\right) \tag{37}\\
\geq(P(x)-|T|) \operatorname{dist}\left(x, \partial \Omega_{2}\right)
\end{gather*}
$$

for any partition T of $[0, M]$, any solution u^{T} of Problem 2.1 in Ω corresponding to T, and any point $x \in \Omega \backslash\left(\partial K_{1} \cup \cdots \cup \partial K_{n-1}\right)$, where γ is the arc of steepest ascent of u^{T} joining x to $\partial \Omega_{2}$. The assertion (9) follows.

Theorem 3.2 Let T^{k} be the sequence of partitions of $[0, M]$ such that $\left|T^{k}\right| \rightarrow 0$ when $k \rightarrow+\infty$. Then there exists a subsequence $\left\{u^{T^{k m}}\right\}$ which converges in $W^{1, p}(\Omega) \cap C^{0, \alpha}(\Omega)$ to a limit $u_{0} \in W^{1, p}(\Omega)$. Also, due to equicontinuity, the convergence holds true in $C(\bar{\Omega})$.

Proof The proof follows from Theorem 3.1.

4 Proof of Theorem 1.2

In case $f(x, z)$ is monotone nondecreasing in z, the uniqueness follows by classical arguments. Next, we will show that the function $u_{0}(x)$, defined in Theorem 3.2, solves problem (1) in the weak sense, i.e. for every $\eta \in C_{0}^{\infty}(\Omega)$

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{0}(x)\right|^{p-2} \nabla u_{0}(x) \cdot \nabla \eta(x) d x=-\int_{\Omega} f\left(x, u_{0}(x)\right) \cdot \eta(x) d x . \tag{38}
\end{equation*}
$$

For simplicity we denote $u^{n}(x):=u^{T^{n}}(x)$ and we assume, that $u^{n} \rightarrow u_{0}$ in $W^{1, p}(\Omega)$. Let $\left\{K_{i}^{n}, i=0, \ldots, n\right\}$ be the corresponding solution of the multilayer free boundary problem for the partition $T^{n}:=\left\{t_{0}^{n}, t_{1}^{n}, \ldots, t_{n}^{n}\right\}$, and let $u_{i}^{n}:=\left.u^{n}\right|_{\left(K_{i}^{n} \backslash K_{i-1}^{n}\right)}$.

Let $\eta \in C_{0}^{\infty}(\Omega)$. By the divergence theorem we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u^{n}(x)\right|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) d x=\sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}}\left(\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}\right) \cdot \eta(x) d x \tag{39}
\end{equation*}
$$

where $\Gamma_{i}^{n}=\partial K_{i}^{n}$.
¿From the free boundary conditions we get

$$
\begin{gather*}
\int_{\Omega}\left|\nabla u^{n}(x)\right|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) d x= \\
=-\sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}} \frac{F\left(x, t_{i}^{n}\right)-F\left(x, t_{i-1}^{n}\right)}{p-1} \cdot \frac{\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i+1}^{n}(x)\right|^{p}-\left|\nabla u_{i}^{n}(x)\right|^{p}} \cdot \eta(x) d x= \\
=-\sum_{i=1}^{n-1} \int_{\Gamma_{i}^{n}} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \frac{p \cdot f(x, y)}{p-1} \cdot \frac{\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i+1}^{n}(x)\right|^{p}-\left|\nabla u_{i}^{n}(x)\right|^{p}} \cdot \eta(x) d y d x= \\
=-\sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{\Gamma_{i}^{n}} \frac{p \cdot f(x, y)}{p-1} \cdot \frac{\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i+1}^{n}(x)\right|^{p}-\left|\nabla u_{i}^{n}(x)\right|^{p}} \cdot \eta(x) d x d y \tag{40}
\end{gather*}
$$

It is easy to see that for every $\lambda>0$ there exist $\delta=\delta(p, \lambda)>0$ and $C=C(p, \lambda)>0$ such that

$$
\begin{equation*}
\left|\frac{b^{p-1}-a^{p-1}}{b^{p}-a^{p}}-\frac{p-1}{p a}\right| \leq C|b-a| \tag{41}
\end{equation*}
$$

for every $a, b \geq \lambda$ satisfying $|b-a|<\delta$.
We have that $\left|\nabla u_{i}^{n}(x)\right|=q\left(x,\left|\nabla u_{i+1}^{n}(x)\right|\right)$ on Γ_{i}^{n} (see (7)). Using the fact, that the function $q(x, y)$ is increasing by y, and the function $\frac{1}{q(x, 0)}$ is concave, we can claim that $q(x, y)$ is bounded from below, that is, there exists a constant $C_{0}>0$ such that

$$
\left|\nabla u_{i}^{n}(x)\right| \geq C_{0}, \quad x \in \Gamma_{i}^{n} .
$$

¿From (5) and (41) we can conclude, that there exists a $\delta>0$ such that if $\left|T^{n}\right|<\delta$ then on Γ_{i}^{n}

$$
\left|\frac{\left|\nabla u_{i}^{n}(x)\right|^{p-1}-\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i}^{n}(x)\right|^{p}-\left|\nabla u_{i+1}^{n}(x)\right|^{p}}-\frac{p-1}{p\left|\nabla u_{i}^{n}(x)\right|}\right| \leq C| | \nabla u_{i}^{n}(x)\left|-\left|\nabla u_{i+1}^{n}(x)\right|\right| .
$$

Using the last inequality, we can get the following estimate:

$$
\left|\int_{\Gamma_{i}^{n}} \frac{p \cdot f(x, y)}{p-1} \cdot \frac{\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i+1}^{n}(x)\right|^{p}-\left|\nabla u_{i}^{n}(x)\right|^{p}} \cdot \eta(x) d x-\int_{\Gamma_{i}^{n}} \frac{f(x, y)}{\left|\nabla u_{i}^{n}(x)\right|} \cdot \eta(x) d x\right| \leq
$$

$$
\begin{equation*}
\leq C_{1} \cdot \sup _{x \in \Gamma_{i}^{n} \cap \operatorname{supp} \eta} f(x, y) \cdot \sup |\eta(x)| \cdot \int_{\Gamma_{i}^{n}} \| \nabla u_{i}^{n}(x)\left|-\left|\nabla u_{i+1}^{n}(x)\right|\right| d x \tag{42}
\end{equation*}
$$

for $y \in\left[t_{i-1}^{n}, t_{i}^{n}\right]$, where C_{1} depends only from p and C_{0}.
Using the inequality

$$
\left\|\nabla u_{i}^{n}(x)|-| \nabla u_{i+1}^{n}(x)\right\| \leq \frac{\|\left.\nabla u_{i}^{n}(x)\right|^{p}-\left|\nabla u_{i+1}^{n}(x)\right|^{p} \mid}{\min \left(\left|\nabla u_{i}^{n}(x)\right|^{p-1},\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}\right)} \leq \frac{F\left(x, t_{i}^{n}\right)-F\left(x, t_{i-1}^{n}\right)}{(p-1) \cdot C_{0}^{p-1}}
$$

from (42), we conclude that

$$
\begin{align*}
& \left|\int_{\Gamma_{i}^{n}} \frac{p \cdot f(x, y)}{p-1} \cdot \frac{\left|\nabla u_{i+1}^{n}(x)\right|^{p-1}-\left|\nabla u_{i}^{n}(x)\right|^{p-1}}{\left|\nabla u_{i+1}^{n}(x)\right|^{p}-\left|\nabla u_{i}^{n}(x)\right|^{p}} \cdot \eta(x) d x-\int_{\Gamma_{i}^{n}} \frac{f(x, y)}{\left|\nabla u_{i}^{n}(x)\right|} \cdot \eta(x) d x\right| \leq \\
& \leq C_{2}(y) \cdot \int_{\Gamma_{i}^{n} \cap \operatorname{supp} \eta}\left(\int_{t_{i-1}^{n}}^{t_{i}^{n}} f(x, t) d t\right) d x \leq C_{2}(y) \cdot\left|\Gamma_{i}^{n}\right| \cdot \max _{x \in \Gamma_{i}^{n} \cap \operatorname{supp} \eta} \int_{t_{i-1}^{n}}^{t_{i}^{n}} f(x, t) d t \leq \\
& \leq C_{2}(y) \cdot\left|\partial \Omega_{2}\right| \cdot \int_{t_{i-1}^{n}}^{t_{i}^{n}} f\left(x_{0}, t\right) d t \tag{43}
\end{align*}
$$

for some $x_{0} \in \Gamma_{i}^{n} \cap \operatorname{supp} \eta$, where $\left|\Gamma_{i}^{n}\right|$ denotes the length of Γ_{i}^{n}, and

$$
C_{2}(y):=C_{1} \cdot \sup _{x \in \Gamma_{i}^{n} \cap \operatorname{supp} \eta} f(x, y) \cdot \sup |\eta(x)|
$$

Now from the compactness of the set $\Gamma_{i}^{n} \cap \operatorname{supp} \eta$ we can obtain, that for any small $\epsilon>0$ we can choose $\delta_{1}>0$ such that for all T^{n} satisfying $\left|T^{n}\right|<\delta_{1}$ (η is fixed)

$$
\begin{equation*}
\int_{t_{i-1}^{n}}^{t_{i}^{n}} f\left(x_{0}, t\right) d t<\epsilon \tag{44}
\end{equation*}
$$

for all $x_{0} \in \Gamma_{i}^{n} \cap \operatorname{supp} \eta$.
Finally, from (40), (43) and (44) we obtain

$$
\begin{gather*}
\left.\left.\left|\int_{\Omega}\right| \nabla u^{n}(x)\right|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) d x+\sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{\Gamma_{i}^{n}} \frac{f(x, y)}{\left|\nabla u_{i}^{n}(x)\right|} \cdot \eta(x) d x d y \right\rvert\, \leq \\
\leq \epsilon \cdot\left|\partial \Omega_{2}\right| \cdot \int_{0}^{M} C_{2}(y) d y \leq C_{3} \cdot \epsilon \tag{45}
\end{gather*}
$$

where in the last inequality we have used the property 3) of the definition of the class \mathcal{F}.
Just like in [LS] (see pp. 494-495) we can prove, that for small $\left|T^{n}\right|$

$$
\begin{equation*}
\left|\int_{\Gamma_{i}^{n}} \frac{f(x, y)}{\left|\nabla u_{i}^{n}(x)\right|} \cdot \eta(x) d x-\int_{u^{n}(x)=y} \frac{f(x, y)}{\left|\nabla u^{n}(x)\right|} \cdot \eta(x) d x\right| \leq \epsilon, \quad y \in\left[t_{i-1}^{n}, t_{i}^{n}\right] \tag{46}
\end{equation*}
$$

Combining (45) and (46), we obtain

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u^{n}(x)\right|^{p-2} \nabla u^{n}(x) \cdot \nabla \eta(x) d x=-\sum_{i=1}^{n-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} \int_{u^{n}(x)=y} \frac{f(x, y) \eta(x)}{\left|\nabla u^{n}(x)\right|} d x d y+o(1)= \\
& =-\int_{0}^{M} \int_{u^{n}(x)=y} \frac{f(x, y) \eta(x)}{\left|\nabla u^{n}(x)\right|} d x d y+o(1)=-\int_{\Omega} f\left(x, u^{n}(x)\right) \cdot \eta(x) d x+o(1) \tag{47}
\end{align*}
$$

Since $f(x, y)$ is uniformly continuous in $\operatorname{supp} \eta \times[0, M]$, we can claim that

$$
\left|\int_{\Omega} f\left(x, u^{n}(x)\right) \cdot \eta(x) d x-\int_{\Omega} f(x, u(x)) \cdot \eta(x) d x\right| \leq \epsilon
$$

for $n>n_{0}$. For the first integral in (47), we have, due to local-uniform Lipschitz estimates of u^{n}, that, for a subsequence, $\left|\nabla u^{n}\right|^{p-2} \nabla u^{n}$ converges weakly (in $L^{p /(p-1)}$) to $|\nabla u|^{p-2} \nabla u$.

5 A uniqueness result

Theorem 5.1 Let $u(x): \bar{\Omega} \rightarrow \mathbb{R}$ denote a classical solution of the Dirichlet problem (1) with $f \geq 0$, and let $v(x): \bar{\Omega} \rightarrow \mathbb{R}$ denote a classical solution of the same Dirichlet problem (1) with f replaced by a function $g \geq 0$ (we assume $0<u, v<M$, from which it follows that $|\nabla u|,|\nabla v|>0$, both in $\Omega)$. Then $u \leq v$ in Ω provided that $0<g(x, y) \leq f(x, y)$ and that $g(x, y)<t^{p} g(t x, y)$ for all $x \in \Omega, 0<y<M$, and $t>1$ for which the inequality is meaningfull.

Proof. (See [A].) We set $v_{t}(x)=v(x / t)$ in $\Omega_{t}=t \cdot \Omega$ for any $t>0$, observing that $\Delta_{p} v_{t}=(1 / t)^{p} g\left(x / t, v_{t}(x)\right)$ in Ω_{t} by change of variables. It is easy to see that $v_{t}>u$ (resp. $v_{t}<u$) in $\Omega \cap \Omega_{t}$ for any sufficiently large (small) $t>0$. Since v_{t} depends continuously on t, we can choose $t>0$ to be minimum subject to the requirement that $v_{\tau} \geq u$ in $\Omega \cap \Omega_{\tau}$ for all $\tau \geq t$. We claim that $t \leq 1$. Assuming that $t>1$, it is easy to see that $v_{t}>u$ on $\partial\left(\Omega \cap \Omega_{t}\right)$ and that $v_{t}\left(x_{0}\right)=u\left(x_{0}\right)$ for some point $x_{0} \in\left(\Omega \cap \Omega_{t}\right)$. Thus $\Delta_{p} v_{t}\left(x_{0}\right) \geq \Delta_{p} u\left(x_{0}\right)$, and we conclude using the final assumption on g that

$$
g\left(x_{0}, y_{0}\right)>(1 / t)^{p} g\left(x_{0} / t, v_{t}\left(x_{0}\right)\right)=\Delta_{p} v_{t}\left(x_{0}\right) \geq \Delta_{u}\left(x_{0}\right)=f\left(x_{0}, u\left(x_{0}\right)\right)=f\left(x_{0}, y_{0}\right)
$$

where $y_{0}=u\left(x_{0}\right)=v_{t}\left(x_{0}\right)$. However, this violates the assumption that $g \leq f$.

References

[A] A. Acker, On the uniqueness, monotonicity, starlikeness, and convexity of solutions for a nonlinear boundary value problem in elliptic pde's, Nonlinear Analysis, Theory, Methods and Applications, v. 22, no. 6, pp. 697-705.
[AHPS] A.Acker, A.Henrot, M. Poghosyan, H. Shahgholian, The multi-layer free boundary problem for the p-Laplacian in convex domains. Interfaces Free Bound. 6 (2004), no. 1, 81-103.
[DPS] D. Danielli, A. Petrosyan, H. Shahgholian, A singular perturbation problem for the p-Laplace operator. Indiana Univ. Math. J. 52 (2003), no. 2, 457-476.
[LS] P. Laurence, E. Stredulinsky, Existence of regular solutions with convex level sets for semilinear elliptic equations with nonmonotone L^{1} nonlinearities. II. Passage to the limit. Indiana Univ. Math. J., v. 39, no. 2, 1990, pp. 485-498.
[MS] R. Monneau, H. Shahgholian, Non-convexity of level sets in convex rings for semilinear elliptic problems. (Indian Univ. J., To appear.)

[^0]: *The second author's contribution to this work started when he visited the Royal Institute of Technology, through a grant from Swedish Royal Academy of Sciences, and it was finalized during his visit at Wolfgang Pauli Institute (Vienna).
 ${ }^{\dagger}$ Third author was supported by the Swedish Research Council. He also thanks Wolfgang Pauli Institute for appointments.

