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Abstract. For the parabolic obstacle-problem-like equation

∆u − ∂tu = λ+χ{u>0} − λ−χ{u<0} ,

where λ+ and λ− are positive Lipschitz functions, we prove in arbitrary finite

dimension that the free boundary ∂{u > 0} ∪ ∂{u < 0} is in a neighborhood

of each “branch point” the union of two Lipschitz graphs that are continu-

ously differentiable with respect to the space variables. The result extends the

elliptic paper [11] to the parabolic case. There are substantial difficulties in

the parabolic case due to the fact that the time derivative of the solution is in

general not a continuous function.

Our result is optimal in the sense that the graphs are in general not better

than Lipschitz, as shown by a counter-example.
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1. Introduction

1.1. Background and main result. In this paper we study the regularity of the
parabolic obstacle-problem-like equation

(1.1) ∆u − ∂tu = λ+χ{u>0} − λ−χ{u<0} in (0, T ) × Ω,

where T < +∞, λ+ > 0, λ− > 0 are Lipschitz functions and Ω ⊂ Rn is a given
domain. The problem arises as limiting case in the model of temperature control
through the interior described in [4, 2.3.2] as h1, h2 → 0.
We are interested in the regularity of the free boundary ∂{u > 0} ∪ ∂{u < 0}.
As the one-phase case (i.e. the case of a non-negative or non-positive solution) is
covered by classical results, and regularity of the set {u = 0} ∩ {∇u ̸= 0} can be
obtained via the implicit function theorem (see Section 7 for higher regularity), the
research focuses on the study of ∂{u > 0} ∩ ∂{u < 0} ∩ {∇u = 0}.
In the stationary case — the two-phase membrane problem — the authors proved
([12] and [11]) that the free boundary ∂{u > 0} ∪ ∂{u < 0} is in a neighborhood of
each branch point, i.e. a point in the set Ω∩ ∂{u > 0} ∩ ∂{u < 0} ∩ {∇u = 0}, the
union of (at most) two C1-graphs. Note that the definition of “branch point” does
not necessarily imply a bifurcation as that in Figure 1.

v = 0

v < 0

v > 0

(x1, x2) = (−1,−1)

(x1, x2) = (1,−1)

(x1, x2) = (−1, 1)

Figure 1. Example of a Stationary Branch Point
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We formulate the main result in this paper.

Theorem 1.1. Suppose that

0 < λmin ≤ inf
Q1(0)

min(λ+, λ−), sup
Q1(0)

max(|∇λ+|, |∇λ−|, |∂tλ+|, |∂tλ−|) < +∞

and that u is a weak solution of

∆u − ∂tu = λ+χ{u>0} − λ−χ{u<0} in Q1(0) ;

here Q1(0) is the parabolic cylinder (−1, 1) × B1(0).
Then there are constants σ > 0 and r0 > 0 such that

(1.2) u(0) = 0 , |∇u(0)| ≤ σ , pardist(0, {u > 0}) ≤ σ and pardist(0, {u < 0}) ≤ σ

imply ∂{u > 0} ∩ Qr0(0) and ∂{u < 0} ∩ Qr0(0) being graphs of Lipschitz func-
tions (in some space direction) that are continuously differentiable with respect
to the space variables. The constants σ, r0, the Lipschitz norms and the modu-
lus of continuity of the spatial normal vectors to these surfaces depend only on
infQ1(0) min(λ+, λ−), the Lipschitz norms of λ±, the supremum norm of u and the
space dimension n.
Moreover the regularity above is optimal in the sense that the graphs are in general
not better than Lipschitz.

Corollary 1.2. Suppose that

0 < λmin ≤ inf
Q1(0)

min(λ+, λ−), sup
Q1(0)

max(|∇λ+|, |∇λ−|, |∂tλ+|, |∂tλ−|) < +∞

and that u is a weak solution of

∆u − ∂tu = λ+χ{u>0} − λ−χ{u<0} in Q1(0) .

Then there is a constant r0 > 0 such that if the origin is a branch point, then
∂{u > 0} ∩ Qr0(0) and ∂{u < 0} ∩ Qr0(0) are graphs of Lipschitz functions (in
some space direction) that are continuously differentiable with respect to the space
variables. The constant r0, the Lipschitz norms and the modulus of continuity of
the spatial normal vectors to these surfaces depend only on infQ1(0) min(λ+, λ−),
the Lipschitz norms of λ±, the supremum norm of u and the space dimension n.

As to the proof we extend the method of [11] to the parabolic case. There is how-
ever a substantial difficulty as the time derivative ∂tu is in general not continuous,
so that it is not possible to apply directly the comparison principle. We deal with
that problem by a two-stage proof of directional monotonicity and by establishing
alternative tools for the time derivative.



4 H. SHAHGHOLIAN, N. URALTSEVA, AND G.S. WEISS

2. Notation

Throughout this article Rn will be equipped with the Euclidean inner product
x · y and the induced norm |x| , Br(x0) will denote the open n-dimensional ball of
center x0 , radius r and volume rn ωn , B′

r(0) the open n − 1-dimensional ball of
center 0 and radius r , and ei the i-th unit vector in Rn . We define Qr(t0, x0) :=
(t0−r2, t0+r2)×Br(x0) to be the cylinder of radius r and height 2r2, Q−

r (t0, x0) :=
(t0 − r2, t0)×Br(x0) its “negative part” and Q+

r (t0, x0) := (t0, t0 + r2)×Br(x0) its
“positive part”. When omitted, x0 (or (t0, x0), respectively) is assumed to be the
origin. Moreover let ∂parQr(t0, x0) := (t0−r2, t0+r2)×∂Br(x0)∪{t0−r2}×Br(x0)
denote the parabolic boundary of Qr(t0, x0). Let us also introduce the parabolic
distance pardist((t, x), A) := inf(s,y)∈A

√
|x − y|2 + |t − s| . Given a set A ⊂ Rn+1 ,

we denote its interior by A◦ and its characteristic function by χA . By ∇u we
mean the gradient with respect to the space variables. In the text we use the n-
dimensional Lebesgue-measure Ln and the m-dimensional Hausdorff measure Hm.
Finally, Cβ,µ := Hµ,β denotes the parabolic Hölder-space as defined in [7].

3. A supremum-mean-value estimate

In this section we show that at branch points the time derivative ∂tu, in general
a discontinuous function, satisfies a sup-mean-value estimate.

Lemma 3.1. Let Q−
2r(t

0, x0) ⊂ (0, T ) × Ω and let λ+, λ− be non-negative and
Lipschitz continuous with respect to the time variable. Then each solution u of
(1.1) satisfies

sup
Q1

|∂turk
| = sup

Q−
r (t0,x0)

|∂tu| ≤ C

r2 +

(
r−n−2

∫
Q−

2r(t0,x0)

|∂tu|2
) 1

2
 .

Proof. Using the scaling invariance of the equation with respect to the scaling

ur(t, x) = r−2u(t0 + r2t, x0 + rx)

we may assume that r = 1/2, t0 = 0 and x0 = 0.
Let H(t, x, z) = λ+(t, x)χ{z>0} − λ−(t, x)χ{z<0}. For

v(t, x) := ∂τ
t u(t, x) :=

u(t + τ, x) − u(t)
τ

and η ∈ L2((−1, 1);W 1,2(B1)) such that η = 0 on (−1, 0) × ∂B1, we calculate

(3.1)
∫ s

−1

∫
B1

(η∂tv + ∇v · ∇η)
= −

∫ s

−1

∫
B1

η∂τ
t H(t, x, u(t, x)) , s ∈ (−1, 0) .

Here

∂τ
t H(t, x, u(t, x)) = λ+(t0 + r2t, x0 + rx)∂τ

t χ{u>0} − λ−(t0 + r2t, x0 + rx)∂τ
t χ{u<0}

+χ{u(t0+r2(t+τ),x0+rx)>0}∂
τ
t λ+ − χ{u(t0+r2(t+τ),x0+rx)<0}∂

τ
t λ− .
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Testing with η(t, x) := ζ2(x)φ2(t)max(v(t, x)−k, 0) where k ≥ 0, ζ ∈ C0,1
0 (B1) and

φ ∈ C0,1(−1, 1) such that φ(t) ∈ [0, 1] and

φ(t) :=

{
1, t ≥ −1/2
0, t ≤ −1 ,

and observing that

max(v(t, x) − k, 0)∂τ
t H(t, x, u(t, x)) ≥ −C1r

2 max(v(t, x) − k, 0)

we obtain

(3.2) sup
−1<s<0

∫
B1

φ2(s)ζ2 max(v(s, ·) − k, 0)2 +
∫ s

−1

∫
B1

φ2ζ2|∇max(v − k, 0)|2

≤ C2

∫ s

−1

∫
B1

[max(v − k, 0)2(φ2|∇ζ|2| + φ|∂tφ|ζ2) + r2φ2ζ2 max(v − k, 0)] .

From the proof of [8, Theorem 4.7] we infer that

(3.3) sup
Q−

1/2

v ≤ C3

r2 +

(∫
Q−

1

v2

) 1
2
 .

Testing with η(t, x) := ζ2(x)φ2(t)max(−v(t, x) − k, 0) where k ≥ 0, we obtain in a
similar way that

(3.4) sup
Q−

1/2

(−v) ≤ C3

(
r2 +

∫
Q−

1

v2

) 1
2

.

Letting τ → 0 and scaling back we obtain the statement. ¤

4. Non-degeneracy and regularity of the solution

Lemma 4.1 (Non-Degeneracy). For every Q2r(t0, x0) ⊂ (0, T ) × Ω the following
holds:

1) If (t0, x0) ∈ ∂{u > 0}, then sup
Q−

r (t0,x0)

u ≥ 1
8n

inf
Qr(t0,x0)

λ+ r2 .

2) If (t0, x0) ∈ ∂{u < 0}, then inf
Q−

r (t0,x0)
u ≤ − 1

8n
inf

Qr(t0,x0)
λ− r2 .

Proof. We choose a sequence {u > 0} ∋ (tm, xm) → (t0, x0) as m → ∞ . Supposing
that supQ−

r (tm,xm) u ≤ 1
8n infQr(t0,x0) λ+ r2 , the comparison principle yields that

u(t, x) ≤ v(t, x) := ( tm−t
2 + 1

8n |x − xm|2) infQr(t0,x0) λ+ in Q−
r (tm, xm) , a contra-

diction to the fact that u(tm, xm) > 0 .

The estimate for infQ−
r (t0,x0) u is obtained the same way, replacing u by −u and λ+

by λ− . ¤
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Lemma 4.2. Let λ+, λ− ∈ C0,1
loc ((0, T )×Ω). Then each solution u of (1.1) satisfies

the following:
1) ∂tu ∈ L∞

loc((0, T ) × Ω).
2) ∂t∇u ∈ L2

loc((0, T ) × Ω).

Proof. 1) follows from Lemma 3.1.
2) follows from (3.2) with k = 0 and from the analogous estimate for max(−v, 0).

¤

Corollary 4.3. For every Q2r(t0, x0) ⊂ (0, T ) × Ω, there exists a constant c0 > 0
depending only on n and ∥∂tu∥L∞(Qr(t0,x0)) such that

u ≥ 0 in Q−
r (t0, x0) implies u ≥ 0 in Qc0r(t0, x0) , and

u ≤ 0 in Q−
r (t0, x0) implies u ≤ 0 in Qc0r(t0, x0) .

Proof. Suppose towards a contradiction that u(t1, x1) < 0 for some (t1, x1) ∈
Q+

c0r(t
0, x0). Then there is a point (t2, x2) ∈ ∂{u < 0} ∩ Q+

c0r(t0, x0). Apply-
ing Lemma 4.1 at (t2, x2) with respect to the cylinder Q(1−c0)r(t

2, x2) yields a
contradiction to Lemma 4.2 1) provided that c0 has been chosen small enough.
The second estimate is proved in the same fashion. ¤

Proposition 4.4. Let λ+, λ− ∈ C0,1
loc ((0, T ) × Ω). Then each solution u of (1.1)

satisfies ∇u ∈ C1/2,1
loc ((0, T ) × Ω), that is, the gradient is Lipschitz continuous with

respect to the space variables and Hölder continuous with exponent 1/2 with respect
to the time variable.

Proof. Let us first show that for any e ∈ ∂B1, (∆ − ∂t)(max(∂eu, 0)) ≥ −C and
(∆ − ∂t)(max(−∂eu, 0)) ≥ −C in Ω. We give a formal proof that can be made
rigorous translating everything into a weak formulation. In {∂eu > 0},

(∆ − ∂t)(∂eu)

=
∂eu

|∇u|
(λ+Hn−1⌊({∇u ̸= 0} ∩ ∂{u > 0}) + λ−Hn−1⌊({∇u ̸= 0} ∩ ∂{u < 0}))

+∂eλ+χ{u>0} − ∂eλ−χ{u<0} ≥ −C .

As ∂eu is continuous, we obtain (∆ − ∂t)(max(∂eu, 0)) ≥ −C.
Considering −e instead of e we obtain also (∆ − ∂t)(max(−∂eu, 0)) ≥ −C. But
then the “almost monotonicity formula” Theorem I of [5] applies and we proceed
as follows (cf. [9]): at each point (t0, x0) ∈ {u ̸= 0}∩{∇u = 0}, we obtain from the
almost monotonicity formula that ∇∂eu is bounded at (t0, x0) by a locally uniform
constant.
At each point (t0, x0) ∈ {u ̸= 0} ∩ {∇u ̸= 0}, we obtain in a similar way that
for every e⊥∇u(t0, x0), |∇∂eu(t0, x0)| is bounded by a locally uniform constant.
Let e1 = ∇u(t0,x0)

|∇u(t0,x0)| . Then −∂11u(t0, x0) = −λ+χ{u(t0,x0)>0} + λ−χ{u(t0,x0)<0} −
∂tu(t0, x0) +

∑n
j=2 ∂jju(t0, x0) is by Lemma 4.2 bounded by a locally uniform con-

stant. ¤
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Corollary 4.5. Ln+1(∂{u > 0} ∪ ∂{u < 0}) = 0

Proof. First, we obtain from Lemma 4.1, Lemma 4.2 and Proposition 4.4 that there
exists a locally uniform constant c > 0 such that for Q2r(s, y) ⊂ (0, T ) × Ω,

Ln+1(Qr(s, y) ∩ {u > 0})
Ln+1(Qr)

≥ c > 0 if (s, y) ∈ ∂{u > 0}

and
Ln+1(Qr(s, y) ∩ {u < 0})

Ln+1(Qr)
≥ c > 0 if (s, y) ∈ ∂{u < 0} .

Since χ{u>0} ∗ χQr/Ln+1(Qr) → χ{u>0} in L1
loc((0, T ) × Ω) as r → 0 and the

analogous fact holds for χ{u<0}, we obtain that χ{u>0} ≥ c > 0 Ln+1-a.e. on
∂{u > 0} and χ{u<0} ≥ c > 0 Ln+1-a.e. on ∂{u < 0}. Thus Ln+1(∂{u >

0} ∪ ∂{u < 0}) = 0. ¤

5. Vanishing time derivative

As a corollary of Lemma 3.1 we obtain now that at points at which the blow-up
limit depends only on the space variables, the time derivative ∂tu – in general a
discontinuous function – attains the limit 0.

Corollary 5.1. Let Q2r(t0, x0) ⊂ (0, T ) × Ω and suppose that for a sequence of
solutions uk in (0, T ) × Ω

urk
(t, x) = rk

−2uk(tk + r2
kt, xk + rkx) → u0(x) in L1

loc(R
n+1) as rk → 0 .

Then
sup

Qrk
(tk,xk)

|∂tuk| → 0

as rk → 0.

Proof. The statement follows from Lemma 3.1 and the fact that ∂turk
converges to

0 in L2
loc(R

n+1) as rk → 0. The L2-convergence in turn may be shown as follows:
as ∂tuk is by Lemma 3.1 bounded in L∞(Qr(t0, x0)), it is sufficient to prove a.e.
convergence. For (s, y) ∈ {u0 = 0}0 we obtain from Lemma 4.1 that urk

= 0 in
Qδ(s, y) for some δ > 0 and large k. For (s, y) ∈ {u0 > 0}∪{u0 < 0}, urk

converges
in C1(Qδ(s, y)) for some δ > 0 as k → ∞. Moreover we know from Corollary 4.5
that Ln+1(∂{u0 > 0} ∪ ∂{u0 < 0}) = 0. It follows that ∂turk

converges Ln+1-a.e.
to ∂tu0. ¤

6. Directional monotonicity

In a first stage, we show that if the solution is close to the one-dimensional
solution

(6.1) h(x) :=
λ+(0)

2
max(x1, 0)2 − λ−(0)

2
min(x1, 0)2 .

then it is increasing in a cone of spatial directions. Later on we will extend the
result to a cone of tempo-spatial directions.
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Proposition 6.1. Let 0 < λmin ≤ infQ1(0) min(λ+, λ−), h as in (6.1), and let
ε ∈ (0, 1). Then each solution u of (1.1) in Q1(0) such that

distL∞((−1,1);W 1,∞(B1))(u, h) ≤ δ :=
λminε

48n

and

sup
Q1(0)

max(|∇λ+|, |∇λ−|) ≤ δ

satisfies ε−1∂eu − |u| ≥ 0 in Q1/2(0) for every e ∈ ∂B1(0) such that e1 ≥ ε; here
e1 denotes the first component of the vector e.

Proof. First note that ε−1∂eh − |h| ≥ 0 in Q2(0). It follows that

(6.2) ε−1∂eu − |u| ≥ −3δε−1 in Q1(0)

provided that distL∞((−1,1);W 1,∞(B1))(u, h) ≤ δ. Suppose now towards a contradic-
tion that the statement is not true. Then there exist λ+, λ− ∈ (λmin, +∞), (t∗, x∗) ∈
Q1/2(0), e∗, and a solution u of (1.1) in Q1(0) such that distL∞((−1,1);W 1,∞(B1))(u, h) ≤
δ,

sup
Q1(0)

max(|∇λ+|, |∇λ−|) ≤ δ,

e∗1 ≥ ε and ε−1∂e∗u(t∗, x∗)−|u(t∗, x∗)| < 0. For the positive constant c to be defined
later the functions v := ε−1∂e∗u−|u| and w := ε−1∂e∗u−|u|+ c|x−x∗|2 − c(t− t∗)
satisfy then the following: in the set D := Q1(0) ∩ {v < 0} ∩ {t < t∗},

∆w − ∂tw ≤ 2nc + c − λ+χ{u>0} − λ−χ{u<0}

+ε−1(λ+ + λ−)νx · e∗Hn−1⌊({u = 0} ∩ {∇u ̸= 0})

+ε−1(χ{u>0}∂e∗λ+ − χ{u<0}∂e∗λ−)

where νx = ∇u
|∇u| . As

νx · e∗ < 0 on {u = 0} ∩ {v < 0} = {u = 0} ∩ {ε−1∂e∗u < 0} ,

we obtain by the definition of δ that w is supercaloric in D provided that c has
been chosen accordingly, say c := λmin/(4n). It follows that the negative infimum
of w is attained on

∂parD ⊂ (∂parQ1(0) ∩ {t ≤ t∗}) ∪ (Q1(0) ∩ ∂{v < 0}) .

Consequently it is attained on {t ≤ t∗} ∩ ∂parQ1(0), say at the point (t̄, x̄) ∈ {t ≤
t∗} ∩ ∂parQ1(0). Since pardist((t̄, x̄), (t∗, x∗)) ≥ 1/2, we obtain that

ε−1∂e∗u(t̄, x̄) − |u(t̄, x̄)| = v(t̄, x̄) = w(t̄, x̄) − c|x∗ − x̄|2 + c(t̄ − t∗)

< −c/4 = −λmin/(16n) .

But this contradicts (6.2) in view of δ = λminε
48n . ¤
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7. The set of non-vanishing gradient

In the sequel we are going to need higher regularity of the level set {u = 0} ∩
{∇u ̸= 0}. Higher regularity can be obtained in a standard way using the von
Mises transform:

Lemma 7.1. The set {u = 0}∩{∇u ̸= 0} is locally in (0, T )×Ω a C1-surface and
∂tu is continuous on that surface.

Proof. Let (t0, x0) ∈ {u = 0} ∩ {∇u ̸= 0}. We may assume that ∇u(t0, x0) =
∂1u(t0, x0) and that in Qδ(t0, x0), u is strictly increasing in the x1-direction and
{u = 0} is the graph of a function, say x1 = g(t, x′) for (t, x) ∈ Qδ(t0, x0), where g ∈
C0((t0−δ2, t0 +δ2);C1(B′

δ(x
0))). It is sufficient to prove that g ∈ C1(Qδ/2(t0, x0)).

To do so, we use von Mises variables, i.e.

y = u(t, x1, x
′) and x1 = v(t, y, x′) .

The calculation

∂1v = 1/∂1u, ∂tv = −∂tu/∂1u, ∂iv = −∂iu/∂1u for 2 ≤ i ≤ n,

∂ijv + ∂i1v∂ju + ∂1jv∂iu + ∂1v∂iju + ∂11v∂iu∂ju = 0 for 2 ≤ i, j ≤ n ,

∂i1v∂1u + ∂11v∂1u∂iu + ∂1v∂i1u = 0 for 2 ≤ i ≤ n, ∂11v = −∂11u/(∂1u)3

assures that ∂tv and all spatial second derivatives of v are bounded. Moreover(
−1 − |∇′v|2

(∂yv)3
∂yyv

)
− ∆′v

∂yv
+ 2

∇′v · ∇′∂yv

(∂yv)2
+

∂tv

∂yv

=

{
λ+(t, v(t, y, x′), x′), y > 0
−λ−(t, v(t, y, x′), x′), y < 0

.

Thus

∂tv − aij(∇v)∂ijv = f(t, y, x′)∂yv :=

{
−λ+(t, v(t, y, x′), x′)∂yv, y > 0
λ−(t, v(t, y, x′), x′)∂yv, y < 0 .

Provided that δ has been chosen small enough, |∇′v| ≤ 1/2, 0 < ∂yv ≤ C and the
above equation is uniformly parabolic. Furthermore

∂t∂
h
t v − aij(∇v)∂ij∂

h
t v − ∂aij(zh)

∂pk
∂ijv(t + h, y, x′)∂k∂h

t v

= f(t, y, x′)∂y∂h
t v + ∂yv(t + h, y, x′)∂h

t f(t, y, x′)

where zh = θ(t, y, x′)∇v(t + h, y, x′) + (1 − θ(t, y, x′))∇v(t, y, x′) and θ(t, y, x′) ∈
[0, 1]. Since f(t, y, x′), ∂h

t f(t, y, x′) and ∂aij(zh)
∂pk

∂ijv(t + h, y, x′) are bounded uni-
formly in h, we obtain from [6] that ∂h

t v is uniformly Hölder continuous with respect
to h and that ∂tu is Hölder continuous in Qδ/2(t0, x0). ¤
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8. Global solutions

In this section we extend our characterization of elliptic global solutions [10,
Theorem 4.3] to the parabolic case. We are going to need the following version of
the Caffarelli-Kenig monotonicity formula of [3]:

Theorem 8.1. Let

Φ(r, w) :=
1
r4

I(r,max(w, 0))I(r,max(−w, 0))

where

I(r, v) :=
∫ 0

−r2

∫
Rn

|∇v|2G(t, x)

and G is the backwards heat kernel

G(t, x) = (4π(−t))n/2 exp(
|x|2

4t
) .

If max(w, 0) and max(−w, 0) are continuous subcaloric functions, then r 7→ Φ(r, w)
is non-decreasing, and Φ(σ,w) = Φ(ρ, w) for some 0 < ρ < σ implies that either
(A) ∇max(w, 0) = 0 in −σ2 < t < 0 or ∇max(−w, 0) = 0 in −σ2 < t < 0.
or
(B) max(w, 0)(∂t − ∆) max(w, 0) = 0 and max(−w, 0)(∂t − ∆)max(−w, 0) = 0 in
−σ2 < t < 0 in the sense of measures.

Proof. For v := max(w, 0) (or v := max(−w, 0), respectively) we calculate

I(r, v) = −1
2

∫ 0

−r2

∫
Rn

G(t, x)(∂t − ∆)v2 +
∫ 0

−r2

∫
Rn

G(t, x)v(∂t − ∆)v ,

I ′(r, v) ≥ 2r

∫
Rn

|∇v|2G(−r2, x) .

In what follows we assume that I(r, v) ̸= 0. It follows that

I ′(r, v)
I(r, v)

≥ 4r

∫
Rn |∇v(−r2, x)|2G(−r2, x)∫

Rn v2(−r2, x)G(−r2, x)
.

In the case I ′(r, v) ̸= 0 the inequality is strict unless
∫ 0

−r2

∫
Rn v(∂t − ∆)v = 0.

Consequently Φ(r, w) = 0, or else

Φ′(r, w)
Φ(r, w)

≥ 4
r

[
− 1 + r2

∫
Rn |∇max(w, 0)|2G(−r2, x)∫

Rn max(w, 0)2G(−r2, x)

+r2

∫
Rn |∇max(−w, 0)|2G(−r2, x)∫

Rn max(−w, 0)2G(−r2, x)

]
,

where the inequality is strict unless both
∫ 0

−r2

∫
Rn max(w, 0)(∂t−∆)max(w, 0) = 0

and
∫ 0

−r2

∫
Rn max(−w, 0)(∂t − ∆)max(−w, 0) = 0. Moreover, by [3, Corollary

2.4.6], the right-hand side is non-negative. ¤
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Lemma 8.2. Let v1, v2 be solutions of (1.1) in Rn+1 with such that v1 = v2 in
{t < 0} and v1, v2 have polynomial growth with respect to the space variables. Then
v1 = v2 in Rn+1.

Proof. Multiplying the difference of the two equations by (v1−v2)W where W (t, x) =
G(t − T, x) and integrating, we obtain for each 0 < T < +∞, 0 < S < T and H

defined in Lemma 3.1 that 0 =∫ S

0

∫
Rn

W [|∇(v1 − v2)|2 + (H(v1)−H(v2))(v1 − v2)] − 1
2

∫ S

0

∫
Rn

(v1 − v2)2∂tW

+
1
2

∫
Rn

W (S)(v1(S) − v2(S))2 +
∫ S

0

∫
Rn

(v1 − v2)∇W · ∇(v1 − v2)

≥ 1
2

∫
Rn

W (S)(v1(S) − v2(S))2 +
1
2

∫ S

0

∫
Rn

(v1 − v2)2[−∂tW − ∆W ]

=
1
2

∫
Rn

W (S)(v1(S) − v2(S))2 .

¤

Lemma 8.3. Assume that w is a backward self-similar solution with constant co-
efficients λ+, λ−, i.e.

w(θ2t, θx) = θ2w(t, x) for all θ ≥ 0, t < 0 and x ∈ Rn .

Then ∇w = 0 on {w = 0} ∩ {t < 0}.

Proof. First, the self-similarity implies that

(8.1) ∂ew(λ2t, λx) = λ∂ew(t, x) for all e ∈ ∂B1, λ ≥ 0, t < 0 and x ∈ Rn.

Consequently the function r 7→ Φ(r, ∂ew) of the monotonicity formula Theorem 8.1
is constant in (0, +∞), implying by Theorem 8.1 that either
(A) ∇max(∂ew, 0) = 0 in {t < 0} or ∇max(−∂ew, 0) = 0 in {t < 0}.
or
(B) max(∂ew, 0)(∂t − ∆)max(∂ew, 0) = 0 in {t < 0} and max(−∂ew, 0)(∂t −
∆)max(−∂ew, 0) = 0 in {t < 0} in the sense of measures.
Suppose now towards a contradiction that there is a point (t1, x1) ∈ {t < 0}∩{w =
0} ∩ {∇w ̸= 0} and denote ν = ∇w

|∇w| , ν0 = ∇w(t1,x1)
|∇w(t1,x1)| and let Qκ(t1, x1) such

that ∂ν0w > 0 in Qκ(t1, x1) and {w = 0} ∩ Qκ(t1, x1) is a C1-surface. In the case
ν0 · e ̸= 0,

|(∂t −∆)∂ew|(Qκ(t1, x1)) = |λ+ +λ−|
∫ t1+κ2

t1−κ2

∫
Bκ(x1)∩{w(t)=0}

|e · ν| dHn−1 dt ̸= 0 .

Thus (A) holds. From (8.1) we infer that ∂ew ≥ 0 in {t < 0} if e · ν0 > 0 and
∂ew ≤ 0 in {t < 0} if e · ν0 < 0. Hence ∂ew = 0 in {t < 0} for all e⊥ν0. As in [2,
p. 844] we may write

w(t, x) = −tf(
xn√
−t

)
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and calculate the 2-parameter family of solutions of the ODE which f(ξ) = w(−1, ξ)
satisfies in (0,+∞),

f(ξ) = λ+ + C1(ξ2 − 2)

+ C2

(
−2ξeξ2/4 + (ξ2 − 2)

∫ ξ

0

es2/4 ds

)
in {f > 0}

and
f(ξ) = −λ− + C3(ξ2 − 2)

+ C4

(
−2ξeξ2/4 + (ξ2 − 2)

∫ ξ

0

es2/4 ds

)
in {f < 0} .

As w has polynomial growth towards infinity we conclude that 0 = C2 = C4 and
that

f(ξ) = λ+ + C1(ξ2 − 2) in {f > 0}
and

f(ξ) = −λ− + C3(ξ2 − 2) in {f < 0} .

If f(a) = 0 and f ′(a) ̸= 0 for some a ∈ R then C1 = C3 = −λ+/(a2 − 2) =
λ−/(a2 − 2), a contradiction. Therefore f(a) = 0 implies f ′(a) = 0. It follows that
∇w = 0 on {w = 0}. ¤

Theorem 8.4. Let w be a global solution with constant coefficients λ+, λ− such
that ∂tw and D2w are bounded, and suppose that the origin (in time-space) is a
branch point of w. Then after rotation

w(t, x) = w∗(t, x) := λ+max(xn, 0)2/2 − λ−max(−xn, 0)2/2 for (t, x) ∈ Rn+1 .

Proof.

Step 1: Let us first assume that w is a backward self-similar solution. By Lemma
8.3 ∇w = 0 on {w = 0}∩{t < 0}. But then z1 := max(w, 0) and z2 := max(−w, 0)
are in {t ≤ 0} non-negative backward self-similar solutions. Concerning those, it
has been shown in [2, Lemma 6.3] and [2, Theorem 8.1] that either zj is a half-
plane solution of the form zj(t, x) = λ±/2 max(x · e, 0)2 for some e ∈ ∂B1, or
zj(t, x) = −a0t +

∑n
i=1 aix

2
i with non-negative constants ai, 0 ≤ i ≤ n. In the

latter case the symmetry of zj implies that zk = 0 in {t < 0} for k ̸= j, and by
Corollary 4.3 the origin cannot be a branch point.
It follows that after rotation

w(t, x) = w∗(t, x) for t < 0 .

Step 2: In the case of a general solution w as in the statement of our theorem,
we consider the blow-up up w0 of w at the origin and the blow-down w∞. By
the non-degeneracy Lemma 4.1 and [13, Theorem 4.1], both w0 and w∞ satisfy
the assumptions of Step 1. Thus both w0 and w∞ are after rotation of the form
λ+max(xn, 0)2/2−λ−max(−xn, 0)2/2 for t < 0, and the monotonicity formula [13]
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implies that w is backward self-similar. But then it follows from Step 1 that after
rotation

w(t, x) = w∗(t, x) for t < 0 .

Last, we apply Lemma 8.2 to obtain the same for t ≥ 0. ¤

9. Uniform closeness to h

We are now ready to prove uniform closeness of the scaled solution to the global
solution h of (6.1), assuming that we are in the setting of Theorem 1.1.

Lemma 9.1. Let u be a solution of (1.1) in Q1(0). Then, given δ > 0, there are
constants rδ > 0, σδ > 0 (depending only on infQ1(0) min(λ+, λ−), the Lipschitz
norms of λ±, the supremum norm of u and the space dimension n) such that the
following holds:
If r ∈ (0, rδ] , u(s, y) = 0 , |∇u(s, y)| ≤ σδr, pardist((s, y), {u > 0}) ≤ σδr and
pardist((s, y), {u < 0}) ≤ σδr for some (s, y) ∈ Q1/2(0) then in Qr(s, y), the
solution u(s + ·, y + ·) is δr2-close to a rotated version h̃ of the one-dimensional
solution h defined in (6.1), more precisely

r−2 sup
Qr(0)

|u(s+ ·, y + ·)− h̃|+ r−1 sup
Qr(0)

|∇u(s+ ·, y + ·)−∇h̃|+ sup
Qr(0)

|∂tu(s+ ·, y + ·)|

≤ δ.

Proof. Suppose towards a contradiction that the statement of the lemma fails. Then
for some δ > 0 there exist σj → 0, rj → 0, (sj , yj) → (s0, y0) ∈ Q1/2, a sequence
uj of solutions such that (sj , yj) ∈ Q1/2(0), uj(sj , yj) = 0, |∇uj(sj , yj)| ≤ σjrj ,
pardist((sj , yj), {uj > 0}) ≤ σjrj , pardist((sj , yj), {uj < 0}) ≤ σjrj and

r−2
j sup

Q1(0)

|uj(sj +r2
j ·, yj +rj ·)− h̃(rj ·)| + r−1

j sup
Q1(0)

|∇uj(sj +r2
j ·, yj +rj ·)−∇h̃(rj ·)|

+ sup
Q1(0)

|∂tuj(sj + r2
j ·, yj + rj ·)| > δ

for all possible rotations h̃ of h.
We may define

Uj(x) :=
uj(r2

j t + sj , rjx + yj)
r2
j

and arrive at

(9.1) ∥Uj − h̃∥W 1,∞(Q1) > δ,

for all possible rotations h̃ of h.
Observe that Uj is a solution of (1.1) in Q1 with respect to the scaled coefficients
λ+(r2

j t + sj , rjx + yj) and λ−(r2
j t + sj , rjx + yj). Since Uj(0) = 0, |∇Uj(0)| ≤

σj , pardist(0, {Uj > 0}) ≤ σj , pardist(0, {Uj < 0}) ≤ σj and the derivatives
D2Uj , ∂tUj are uniformly bounded, we obtain by standard compactness arguments
a global limit solution U0 of (1.1) in Rn with respect to λ+(s0, y0) and λ−(s0, y0)
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which satisfies 0 ∈ ∂{U0 > 0} ∩ ∂{U0 < 0} ∩ {∇U0 = 0}. By Theorem 8.4, U0 = h̃

where h̃ is a rotated version of h. Thus Uj and ∇Uj converge in Q1 uniformly to
h̃ and ∇h̃, respectively, and by Corollary 5.1 ∂tUj → 0 in L∞(Q1) as j → ∞. We
obtain a contradiction to (9.1). ¤

10. Continuity of the time derivative

Assuming once more that we are in the setting of Theorem 1.1, we show in the
present section that the time derivative of the solution is continuous in a suitable
neighborhood of the origin.

Proposition 10.1. Let u be a solution of (1.1) in Q1. Then there are positive
constants r̃ and σ̃ (depending on infQ1 min(λ+, λ−), the Lipschitz norms of λ±, the
supremum norm of u and the space dimension n) such that the following holds. If
u(0) = 0, |∇u(0)| ≤ σ̃r̃, pardist(0, {u > 0}) ≤ σ̃r̃ and pardist(0, {u < 0}) ≤ σ̃r̃ then
each blow-up limit at a point (t1, x1) ∈ Qr̃∩{u = 0}∩{∇u = 0} is time-independent.

Proof. Let us consider (t1, x1) ∈ {u = 0} ∩ {∇u = 0}. As the statement of the
Proposition is by Theorem 8.4 true when (t1, x1) is a branch point, we may as-
sume that u ≥ 0 in some neighborhood of (t1, x1). From Lemma 9.1 (with δ :=
infQ1 min(λ+, λ−)/(96n)) and Proposition 6.1 we know that u is non-decreasing, say
in the direction e for every e close to xn in Qr̃ and that |∂tu| ≤ infQr̃

min(λ+, λ−)/4
in Qr̃.
From [13, Theorem 4.1] we infer now that each blow-up limit z at (t1, x1) is a non-
negative backward self-similar solution. Concerning those, it has been shown in [2,
Lemma 6.3] and [2, Theorem 8.1] that either z is a half-plane solution of the form
z(t, x) = λ+(t1, x1)/2max(x ·e, 0)2 for some e ∈ ∂B1, or z(t, x) = −a0t+

∑n
i=1 aix

2
i

with non-negative constants ai, 0 ≤ i ≤ n satisfying a0 + 2
∑n

i=1 ai = λ+(t1, x1).
As a0 ≤ λ+(t1, x1)/2, it follows in this case that at least one ai, 1 ≤ i ≤ n is strictly
positive which contradicts the fact that z is non-decreasing in every direction e as
above. Consequently z(t, x) = λ+(t1, x1)/2 max(x · e, 0)2 in {t < 0}, and Lemma
8.2 implies that ∂tz = 0 in Rn+1. ¤

Corollary 10.2. Let u be a solution of (1.1) in Q1. Then there are positive con-
stants r̃ and σ̃ (depending on infQ1 min(λ+, λ−), the Lipschitz norms of λ±, the
supremum norm of u and the space dimension n) such that the following holds. If
u(0) = 0 , |∇u(0)| ≤ σ̃r̃, pardist(0, {u > 0}) ≤ σ̃r̃ and pardist(0, {u < 0}) ≤ σ̃r̃

then ∂tu is continuous in Qr̃.

Proof. The corollary follows immediately from Lemma 7.1, Proposition 10.1 and
Corollary 5.1. ¤
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11. Directional Monotonicity II

It is now possible to extend the directional monotonicity result of Section 6 to a
directional monotonicity result with respect to time-space variables.

Proposition 11.1. Let 0 < λmin ≤ infQ1(0) min(1, λ+, λ−), h as in (6.1), let
ε ∈ (0, 1) and let r̃ and σ̃ be the constants of Corollary 10.2. Then each solution u

of (1.1) in Q1(0) such that

distW 1,∞(Q1(0))(u, h) ≤ δ :=
λminε

48n
r̃2σ̃2

and
sup

Q1(0)

max(|∇λ+|, |∂tλ+|, |∇λ−|, |∂tλ−|) ≤ δ

satisfies ε−1α∂tu + ε−1∂eu − |u| ≥ 0 in Q1/2(0) for every α ∈ [−1, 1] and every
e ∈ ∂B1(0) such that e1 ≥ ε; here e1 denotes the first component of the vector e.

Proof. First note that Q1 ∩ {u = 0} is by the assumptions contained in the strip
|x1| < σ̃r̃/2, implying by Corollary 10.2 and Lemma 7.1 that ∂tu is continuous in
Q1. We know that ε−1α∂th + ε−1∂eh − |h| ≥ 0 in Q1. It follows that

(11.1) ε−1α∂tu + ε−1∂eu − |u| ≥ −3δε−1 in Q1

provided that distW 1,∞(Q1(0))(u, h) ≤ δ. Suppose now towards a contradiction
that the statement is not true. Then there exist λ+, λ− ∈ (λmin, +∞), (t∗, x∗) ∈
Q1/2(0), α∗, e∗, and a solution u of (1.1) in Q1(0) such that distW 1,∞(Q1(0))(u, h) ≤
δ,

sup
Q1(0)

max(|∇λ+|, |∂tλ+|, |∇λ−|, |∂tλ−|) ≤ δ,

|α∗| ≤ 1, e∗1 ≥ ε and ε−1α∗∂tu(t∗, x∗) + ε−1∂e∗u(t∗, x∗) − |u(t∗, x∗)| < 0. For the
positive constant c to be defined later the functions v := ε−1α∗∂tu + ε−1∂e∗u− |u|
and w := ε−1α∗∂tu + ε−1∂e∗u − |u| + c|x − x∗|2 − c(t − t∗) satisfy then by the
definition of δ the following: in the set D := Q1(0) ∩ {v < 0} ∩ {t < t∗},

∆w − ∂tw ≤ 2nc + c − λ+χ{u>0} − λ−χ{u<0}

+ε−1(λ+ + λ−)νx · e∗Hn⌊({u = 0} ∩ {∇u ̸= 0})

+ε−1(λ+ + λ−)νtα
∗Hn⌊({u = 0} ∩ {∇u ̸= 0})

+ε−1(χ{u>0}(α∗∂t + ∂e∗)λ+ − χ{u<0}(α∗∂t + ∂e∗)λ−)

where ν = (∂tu,∇u)
|(∂tu,∇u)| . As

ν · (α∗, e∗) ≤ 0 on {u = 0} ∩ {v < 0} = {u = 0} ∩ {ε−1α∗∂tu + ε−1∂e∗u < 0} ,

we obtain by the definition of δ that w is supercaloric in D provided that c has
been chosen accordingly, say c := λmin/(4n). It follows that the negative infimum
of w is attained on

∂parD ⊂ (∂parQ1(0) ∩ {t < t∗}) ∪ (Q1(0) ∩ ∂{v < 0}) .



16 H. SHAHGHOLIAN, N. URALTSEVA, AND G.S. WEISS

Consequently it is attained on {t < t∗} ∩ ∂parQ1(0), say at the point (t̄, x̄) ∈ {t <

t∗} ∩ ∂parQ1(0). Since pardist((t̄, x̄), (t∗, x∗)) ≥ 1/2, we obtain that

ε−1α∗∂tu(t̄, x̄) + ε−1∂e∗u(t̄, x̄) − |u(t̄, x̄)|

= v(t̄, x̄) = w(t̄, x̄) − c|x∗ − x̄|2 + c(t̄ − t∗) < −c/4 = −λmin/(16n) .

But this contradicts (11.1) in view of δ = λminε
48n r̃2σ̃2. ¤

12. Proof of the main theorem

The theorem is proven in several simple steps, using mainly Proposition 11.1,
and Lemma 9.1. Note that the proof can be simplified substantially in the case
that we are dealing not with a whole class of solutions but a single solution.
Part I: In this first part we prove uniform Lipschitz regularity and continuous
differentiability with respect to the space variables.
Step 1 (Directional monotonicity): Given ε > 0, there are σε > 0 and rε > 0
(depending only on the parameters of the statement) such that 2αε−1r2

ε∂tu +
2ε−1rε∂eu − |u| ≥ 0 in Qrε/2(y) for every α ∈ [−1, 1]. The inequality holds for
every (s, y) ∈ Q1/2(0) satisfying u(s, y) = 0, |∇u(s, y)| ≤ σεrε, pardist((s, y), {u >

0}) ≤ σεrε and pardist((s, y), {u < 0}) ≤ σεrε, for some unit vector νε(s, y) and
for every e ∈ ∂B1 satisfying e · νε(s, y) ≥ ε

2 . In particular, for ε = 1, the solution u

is by condition (1.2) with σ = σ1r1 non-decreasing in Qr1/2(0) in direction (r1, e)
for every e ∈ ∂B1(0) such that e · νε(0) ≥ 1

2 .
Proof: By Lemma 9.1 there are σε > 0 and rε > 0 as above such that the scaled
function urε(t, x) = u(s + r2

εt, y + rεx)/r2
ε is δ := ελmin

64n r̃2σ̃2-close in C1(Q1(0))
to a rotated version h̃ of h in Q1. Let νε(s, y) be the accordingly rotated version
of the unit vector e1. Since urε solves (1.1) with respect to λ+(r2

ε · +s, rε · +y)
and λ−(r2

ε ·+s, rε ·+y), and since max(|∇(λ+(r2
ε ·+s, rε ·+y))|, |∇(λ−(r2

ε ·+s, rε ·
+y))|, |∂t(λ+(r2

ε · +s, rε · +y))|, |∂t(λ−(r2
ε · +s, rε · +y))|) ≤ C1rε, we may choose

rε < δ/C1 in order to apply Proposition 11.1 to urε in Q1 and to conclude that
2αε−1∂turε + 2ε−1∂eurε − |urε | ≥ 0 in Q1/2(0) for every α ∈ [−1, 1] and every
e ∈ ∂B1(0) such that e · νε(s, y) ≥ ε/2. Scaling back we obtain the statement of
Step 1.
Step 2 (Lipschitz continuity): ∂{u > 0}∩Qr1/2(0) and ∂{u < 0}∩Qr1/2(0) are
Lipschitz graphs in the direction of (0, νε(0)) with spatial Lipschitz norms less than
1 and temporal Lipschitz norms less than r−1

1 . Moreover, for each ε ∈ (0, 1) and
(s, y) ∈ {u = 0} ∩ Q1/2 satisfying |∇u(s, y)| ≤ σεrε, pardist((s, y), {u > 0}) ≤ σεrε

and pardist((s, y), {u < 0}) ≤ σεrε, the free boundaries ∂{u > 0} ∩ Qrε/2(s, y) and
∂{u < 0}∩Qrε/2(s, y) are Lipschitz graphs (in the direction of νε(s, y)) with spatial
Lipschitz norms not greater than ε.
Proof: This follows from the monotonicity obtained in Step 1.
Step 3 (Existence of a spatial tangent plane at points (s, y) ∈ ∂{u >
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0} ∩ ∂{u < 0} ∩ Q1/2(0) satisfying |∇u(s, y)| = 0): The Lipschitz graphs of Step
2 are both differentiable with respect to the space variables at the point (s, y), and
the two spatial tangent planes at (s, y) coincide.
Proof: This follows from Step 2 by letting ε tend to zero.
Step 4 (One-phase points are regular): If (s, y) ∈ Qr1/2(0) is a free boundary
point and the solution u is non-negative or non-positive in Qδ(s, y), then the free
boundary is the graph of a C1,α-function in Qc1δ(s, y), where c1 and the C1,α-norm
depend only on the parameters in the statement. Consequently, in Qr1/2(0), there
exist no singular one-phase free boundary points.
Proof: By Step 2, the sets {u > 0} ∩ Qr1/2(0) and {u < 0} ∩ Qr1/2(0) are
sub/supergraphs of Lipschitz continuous functions. Therefore {u = 0} ∩ Qδ(s, y)
satisfies the thickness condition required for [2, Theorem 15.1] and the statement
follows.
Step 5 (Existence of space normals in Qr1/2(0)): ∂{u > 0} ∩ Qr1/2(0) and
∂{u < 0} ∩ Qr1/2(0) are graphs of Lipschitz continuous functions which are differ-
entiable with respect to the space variables.
Proof: Let (s, y) ∈ Qr1/2(0) be a free boundary point. We have to prove existence
of a tangent plane at (s, y).
First, if (s, y) is a one-phase point, i.e. if the solution u is non-negative or non-
positive in Qδ(s, y), then the statement holds at (s, y) by the result of Step 4. Sec-
ond, if |∇u(s, y)| ̸= 0, the statement holds by Lemma 7.1. Last, if |∇u(s, y)| = 0
and (s, y) is the limit point of both phases {u > 0} and {u < 0}, then Step 3
applies.
Step 6 (Equicontinuity of the space normals): It remains to prove that the
space normals are equicontinuous on Qr1/2(0)∩∂{u > 0} and on Qr1/2(0)∩∂{u < 0}
for u in the class of solutions specified in the statement of the main theorem.
Proof: By Step 2 we know already that the spatial Lipschitz norms of ∂{u >

0} ∩ Qr1/2(0) and ∂{u < 0} ∩ Qr1/2(0) are less than 1. We prove that the space
normals are equicontinuous on Qr1/2(0) ∩ ∂{u > 0}.
We may assume that ν(0) points in the direction of the x1-axis and that x1 =
f(t, x2, . . . , xn) is the representation of ∂{u > 0} ∩ Qr1/2(0). Besides we have
|∇f(t, x′)| < 1 for (t, x) = (t, x1, x

′) ∈ ∂{u > 0} ∩ Qr1/2(0). We claim that for
ε > 0 there is δε > 0 depending only on the parameters in the statement such that
for any pair of free boundary points (s1, y1), (s2, y2) ∈ ∂{u > 0} ∩ Qr1/2(0),

(12.1) pardist((s1, y1), (s2, y2)) ≤ δε ⇒ |ν(s1, y1) − ν(s2, y2)| ≤ 2ε.

In what follows let ρε := σεrε/2 ≤ r1/2.
Suppose first that u is non-negative in Qρε(s

1, y1). Here we may as in Step 4 apply
[2, Theorem 15.1] to the scaled function w(t, x) := u(s1 + ρ2

εt, y
1 + ρεx)/ρ2

ε; since
the C1,α-norm of the free boundary normal of w is on Qc2 ∩ ∂{w > 0} bounded by
a constant C3, where c2 > 0 and C3 < +∞ depend only on the parameters in the
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statement, we may choose

δε := min(
ε

1
α

C
1
α
3

, c2)ρε

to obtain (12.1).
Next, suppose that u changes its sign at Qρε(s

1, y1). If there is a point (s, y) ∈
Qρε(s

1, y1) ∩ ∂{u > 0} such that |∇u(s, y)| ≤ ρε then we are in the situation of
Step 1. By Step 2 the free boundary ∂{u > 0}∩Qrε/2(s, y) is Lipschitz with spatial
Lipschitz norm not greater than ε. Hence (12.1) follows in this case with δε := rε/2.
Last, if |∇u(s, y)| ≥ ρε for all points (s, y) ∈ Qρε(s

1, y1) ∩ ∂{u > 0}, we proceed as
follows: from the equation u(t, f(t, x′), x′) = 0 we infer that ∇′u + ∂1u ∇′f = 0 on
∂{u > 0} ∩ Qr1/2(0). Hence we obtain

|∇′f(s1, (y1)′) −∇′f(s2, (y2)′)| =
∣∣∣∣∇′u(s1, y1)
∂1u(s1, y1)

− ∇′u(s2, y2)
∂1u(s2, y2)

∣∣∣∣
≤ |∇′u(s2, y2) −∇′u(s1, y1)|

|∂1u(s1, y1)|

+
∣∣∣∣∇′u(s2, y2)
∂1u(s2, y2)

∣∣∣∣ |∂1u(s2, y2) − ∂1u(s1, y1)|
|∂1u(s1, y1)|

≤ 4Mρ−1
ε pardist((s1, y1), (s2, y2)) ,

where M = ∥∇u∥C1/2,1(Q1/2(0))
. In particular we may choose

δε :=
ε

4M
ρε

to arrive at (12.1).

Part II: We conclude the proof of the main theorem by pointing out a counter-
example to C1-regularity.
Consider the one-phase counter-example u : [−r2, r2]× [0, r] → [0,+∞) from [1, p.
376] satisfying the following: sup[−r2,r2]×[0,r] max(|∂tu|, |∂xxu|) < +∞, u(t, 0) = 0
for −r2 ≤ t ≤ r2, and the free boundary touches the lateral boundary at the origin
in a non-tangential way (for the sake of completeness we repeat the construction of
[1] below). Thus we may reflect u to a solution

v(t, x) :=

{
u(t, x), x ≥ 0
−u(t,−x), x < 0

and obtain that v is a solution of our two-phase problem (1.1) in Qr for λ+ = λ− =
1. As the free boundary ∂{v > 0} is only Lipschitz at the origin, we conclude that
differentiability with respect to the time variable is in general not true. ¤
Construction of the counter-example (cf.[1, p. 376]):
let u : [−1, 1] × [0, 1] → [0, +∞) be any solution of the one-phase obstacle problem

∂tu − ∂xxu = −χ{u>0} in (−1, 1) × (0, 1)
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(t, x) = (−1,−1) (t, x) = (−1, 1)

(t, x) = (1,−1)

v > 0

v = 0

v < 0

Figure 2. A counter-example to C1-regularity

such that sup[−1,1]×[0,1] max(|∂tu|, |∂xxu|) < +∞, ∂tu ≥ 0 in Q1, u(t, 0) = 0 for
−1 ≤ t ≤ 1, {u = 0}◦ contains (−δ, 0) × {0} for some δ > 0 and the free boundary
touches the lateral boundary at the origin. Such a solution surely exists as ∂xu(0, x)
depends continuously on the boundary data on ({0} × [0, 1]) ∪ ([−1, 1] × {1}). By
Corollary 10.2 (applied to the reflected solution) ∂tu is continuous on the closure of
some smaller cylinder Qr, and by Theorem 1.1 (applied to the reflected solution)
the free boundary ∂{u > 0}∩ ([−r2, r2]× [0, r]) is the graph of a Lipschitz function
of the time variable, say f(t). As ∂tu ≥ 0, f is a non-increasing function in [−r2, r2].
From our construction we also obtain that f(t) > 0 in −δ < t < 0. Choosing r

even smaller if necessary we may assume that 0 < f(t) < r/2 in −r2 < t < 0.
Consider now the continuous function w := ∂tu with the change of variables y =
x−f(t). In C := {0 < y < r/2,−r2 < t < r2} the function w(t, y) is a non-negative
solution of the equation

∂tw(t, y) − f ′(t)∂yw(t, y) − ∂yyw(t, y) = 0 .

Since w(t, 0) = 0 in −r2 < t < 0, the Hopf principle implies that w(t, y) ≥ βy

in {(t, y) : −r2 < t < 0, 0 < y < ρ} for some positive β and ρ. It follows that
∂tu(t, x) ≥ β(x − f(t)) in Cρ := {f(t) < x < f(t) + ρ,−ρ2 < t < 0}. On the other
hand ∂xu = 0 on {x = f(t)} implies that |∂xu(t, x)| ≤ (x − f(t)) supCρ

|∂xxu| in
Cρ. Consequently for any e = (a, b) ∈ ∂B1 such that a ≤ 0 and b > 0,

∂eu ≥ a sup
Cρ

|∂xxu| + bβ in Cρ .
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But then u is in Cρ increasing in every direction e satisfying −a supCρ
|∂xxu| < bβ.

As u is non-negative and u(0, 0) = 0 we obtain that {u = 0} ∩ {t < 0} contains a
cone of positive measure around the t-axis. ¤
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